Characterisation of Permanent Deformation Behaviour of Asphalt Mix Based on a Combined Elastic Plastic (CEP) Parameter
Abstract
:1. Introduction
2. Research Objectives and Scope of Study
- The study aims to introduce the CEP parameter as one of the binder rheological rutting parameters. This study was also undertaken to investigate on the applicability and potential of this parameter to supplement the existing binder rheological parameters to characterise the properties of asphalt binder related to HMA rutting performance.
- To compare and correlate the permanent deformation characteristics of the asphalt mixtures evaluated in Dynamic Modulus (DM) and Dynamic Creep (DC) tests with the three binder rheological parameters discussed earlier.
3. Rheological Properties Measured by the Dynamic Shear Rheometer (DSR)
4. Asphalt Mixture Tests
4.1. Dynamic Modulus (DM) Test
4.2. Dynamic Creep (DC) Test
5. Materials and Experimental Program
5.1. Asphalt Binders
5.2. Asphalt Mixtures
6. Asphalt Binder Rheological Test Results
6.1. Binder Rheology
6.2. Percentage Change (Improvement Due to Polymer Modification)
7. Asphalt Mixture Test Results
7.1. Dynamic Modulus (DM) Test Results
7.2. Dynamic Creep Test Results
8. Relationship of Binder Rheological Parameters and Permanent Deformation Behaviour of the Mixes
9. Conclusions
- The percentage change values in rheological parameters as a sign of improvement due to the increase in SBS polymer content are more pronounced when the high-temperature parameter and non-recoverable creep compliance are combined in one single term, designated as CEP parameter.
- Jnr parameter is less sensitive compared to the CEP parameter and it was observed that the Jnr parameter alone could not clearly distinguish between PMB 4% SBS and PMB 6% SBS binders, and the distinction is not comparable with the asphalt mixture tests results. On the other hand, CEP parameter revealed a wider range of values, and the distinction between PMB 4% SBS and PMB 6% SBS binders based on this parameter is much clearer and comparable with asphalt mixture test results.
- For the mix gradation and binders utilised in this study, the CEP was found to be more reliable than the Jnr parameter for evaluating the rutting performance/resistance of asphalt binders, as better correlations of CEP were found with the asphalt mix performance evaluated in the DM and DC tests.
- The incorporation of more modified binders in future studies should reveal a more pronounced contrast in the relationship of Jnr and CEP with asphalt mixture rutting parameters.
- This study is limited to the use of only one dense-graded HMA. Therefore, it is recommended that more mix gradations (gap/open/semi-open) should be studied to further supplement the findings reported herein.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Walubita, L.F.; Faruk, A.N.M.; Karki, P.; Simate, G.S. Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance–A laboratory study. Constr. Build. Mater. 2015, 94, 218–227. [Google Scholar] [CrossRef]
- Polaczyk, P.; Ma, Y.; Xiao, R.; Hu, W.; Jiang, X.; Huang, B. Characterization of aggregate interlocking in hot mix asphalt by mechanistic performance tests. Road Mater. Pavement Des. 2021, 22, S498–S513. [Google Scholar] [CrossRef]
- Saleh, M. Modified Wheel Tracker as a Potential Replacement for the Current Conventional Wheel Trackers. Int. J. Pavement Eng. 2018. [Google Scholar] [CrossRef]
- Roy-Chowdhury, A.B.; Saleh, M.; Moyers-Gonzalez, M. Empirical correlation of the Modified Wheel Tracker (MWT) and the dynamic creep test for evaluating the permanent deformation of HMA. Can. J. Civ. Eng. 2021. [Google Scholar] [CrossRef]
- Ishaq, M.A.; Venturini, L.; Giustozzi, F. Correlation Between Rheological Rutting Tests on Bitumen and Asphalt Mix Flow Number. Int. J. Pavement Res. Technol. 2021. [Google Scholar] [CrossRef]
- Witczack, M.W.; Kaloush, K.; Pellinen, T.; El-Basyouny, M.; Von Quintus, H. NCHRP Report 465: Simple Performance Test for Superpave Mix Design; Transportation Research Board: Washington, DC, USA, 2002. [Google Scholar]
- Javilla, B.; Fang, H.; Mo, L.; Shu, B.; Wu, S. Test evaluation of rutting performance indicators of asphalt mixtures. Constr. Build. Mater. 2017, 155, 1215–1223. [Google Scholar] [CrossRef]
- Shenoy, A. Refinement of the Superpave specification parameter for performance grading of asphalt. J. Transp. Eng. 2001, 127, 357–362. [Google Scholar] [CrossRef]
- Shenoy, A. A comprehensive treatise of the high temperature specification parameter G*/(1 − (1/tanδsinδ)) for performance grading of asphalts. Appl. Rheol. 2004, 14, 303–314. [Google Scholar] [CrossRef]
- Shenoy, A. High temperature performance grading of asphalts through a specification criterion that could capture field performance. J. Transp. Eng. 2004, 1, 132–137. [Google Scholar] [CrossRef]
- Singh, D.; Kataware, A.V. Comparison of different rheological parameters for rutting susceptibility of SBS+WMA modified binders. Innov. Infrastruct. Solut. 2016, 1, 28. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, A. The relationship of the MSCR test to rutting. Road Mater. Pavement Des. 2009, 10, 61–80. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Sri, M.R.; Reddy, K.S. Evaluation of asphalt binder rutting parameters. Constr. Build. Mater. 2018, 173, 298–307. [Google Scholar] [CrossRef]
- Ameli, A.; Babagoli, R.; Khabooshani, M.; AliAsgari, R.; Jalali, F. Permanent deformation performance of binders and stone mastic asphalt mixtures modified by SBS/montmorillonite nanocomposite. Constr. Build. Mater. 2020, 239, 117700. [Google Scholar] [CrossRef]
- White, G. Grading highly modified binders by multiple stress creep recovery. Road Mater. Pavement Des. 2017, 18, 1322–1337. [Google Scholar] [CrossRef]
- Bastos, J.B.S.; Babadopulos, L.F.A.L.; Soares, J.B. Relationship between multiple stress creep recovery (MSCR) binder test results and asphalt concrete rutting resistance in Brazilian roadways. Constr. Build. Mater. 2017, 145, 20–27. [Google Scholar] [CrossRef]
- Salim, R.; Gundla, A.; Underwood, B.S.; Kaloush, K.E. Effect of MSCR Percent Recovery on Performance of Polymer Modified Asphalt Mixtures. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 309–319. [Google Scholar] [CrossRef]
- Behnood, A.; Shah, A.; McDaniel, R.S.; Beeson, M.; Olek, J. High-Temperature Properties of Asphalt Binders: Comparison of Multiple Stress Creep Recovery and Performance Grading Systems. Transp. Res. Rec. J. Transp. Res. Board 2016, 2574, 131–143. [Google Scholar] [CrossRef]
- ASTM D7175–15. Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM Int. 2015. [Google Scholar] [CrossRef]
- ASTM D7405-15. Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM Int. 2015. [Google Scholar] [CrossRef]
- Bonaquist, R.F. NCHRP Report 614: Refining the Simple Performance Tester for Use in Routine Practice; Transportation Research Board: Washington, DC, USA, 2008. [Google Scholar]
- Pellinen, T.K.; Witczak, M.W. Stress dependent master curve construction for dynamic (complex) modulus. J. Assoc. Asph. Paving Technol. 2002, 71, 281–309. [Google Scholar]
- Lu, S.D.; Saleh, M. Evaluation of warm mix asphalt performance incorporating high RAP content. Can. J. Civ. Eng. 2016, 43, 343–350. [Google Scholar] [CrossRef]
- Lu, D.X.; Saleh, M. Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives. Constr. Build. Mater. 2016, 114, 580–587. [Google Scholar] [CrossRef]
- Elseifi, M.A.; Mohammad, L.N.; Kassem, E.; Ying, H.; Masad, E. Damage in asphalt concrete during the dynamic complex modulus and flow number tests. In Asphalt Pavements; Kim, Y.R., Ed.; Taylor & Francis Group: London, UK, 2014; ISBN 978-1-138-02693-3. [Google Scholar]
- AASHTO T 378-17. Standard Method of Test for Determining the Dynamic Modulus and Flow Number for Asphalt Mixtures Using the Asphalt Mixture Performance Tester (AMPT); AASHTO Standard: Washington, DC, USA, 2017. [Google Scholar]
- Airey, G.D. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel 2003, 82, 1709–1719. [Google Scholar] [CrossRef]
- Hassanpour-Kasanagh, S.; Ahmedzade, P.; Fainleib, A.M.; Behnood, A. Rheological properties of asphalt binders modified with recycled materials: A comparison with Styrene-Butadiene-Styrene (SBS). Constr. Build. Mater. 2020, 230, 117047. [Google Scholar] [CrossRef]
- Alnaqbi, A.; Zeiada, W.; Al-Khateeb, G.; Ezzat, H.; Shanableh, A. Effect of Styrene-Butadiene-Styrene on the Properties and Grading of Local Asphalt Binder in the UAE. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1044, 012003. [Google Scholar] [CrossRef]
- AS/NZS 2891.2.1. Methods of sampling and testing asphalt. In Part 2.1: Sample Preparation–Mixing, Quartering and Conditioning of Asphalt in the Laboratory; SAI Global Limited under Licence from Standards Australia: Sydney, Australia, 2014. [Google Scholar]
- AS/NZS 2891.2.2. Methods of sampling and testing asphalt. In Part 2.2: Sample Preparation-Compaction of Asphalt Test Specimens Using a Gyratory Compactor; SAI Global Limited under Licence from Standards Australia: Sydney, Australia, 2014. [Google Scholar]
- Hu, S.; Zhou, F.; Scullion, T. Development, calibration, and validation of a new M-E rutting model for HMA overlay design and analysis. J. Mater. Civ. Eng. 2011, 23, 89–99. [Google Scholar] [CrossRef]
- Goh, S.W.; You, Z.; Williams, R.C.; Li, X. Preliminary dynamic modulus criteria of HMA for field rutting of asphalt pavements: Michigan’s experience. J. Transp. Eng. 2011, 137, 37–45. [Google Scholar] [CrossRef] [Green Version]
Appearance | Molecular Weight | Relative Density (g/cm3) at 25 °C | Melting Point (°C) |
---|---|---|---|
White; solid | >10,000 | 0.91–0.97 | 160–200 |
Test | DSR High-Temperature Test | MSCR |
---|---|---|
Size of specimen | 25-mm ϕ with 1-mm gap, asphalt binder specimen | 25-mm ϕ with 1-mm gap, asphalt binder specimen |
Mode of loading | Oscillation at 1.59 Hz | 1 s. loading; 9 s. rest |
Temperature | 64, 70, 76 °C | 64, 70, 76 °C |
Output | High temperature grading, G*/Sin(δ) | Jnr (non-recoverable creep compliance) |
Standard | ASTM D7175-15 | ASTM D7405-15 |
Binder | Temperature | G*/sinδ (kPa) of Unaged Binders | SD |
64 °C | 1.05 | 0.12 | |
PG 64-16 | 70 °C | 0.54 | 0.04 |
76 °C | 0.30 | 0.04 | |
64 °C | 2.20 | 0.07 | |
PG 70-16 | 70 °C | 1.09 | 0.03 |
76 °C | 0.57 | 0.02 | |
64 °C | 4.46 | 0.99 | |
PG 76-16 | 70 °C | 2.15 | 0.47 |
76 °C | 1.10 | 0.21 | |
64 °C | 3.93 | 0.49 | |
PMB 4% SBS | 70 °C | 2.06 | 0.19 |
76 °C | 1.14 | 0.03 | |
64 °C | 7.22 | 0.59 | |
PMB 6% SBS | 70 °C | 4.73 | 0.45 |
76 °C | 3.40 | 0.31 | |
Binder | Temperature | G*/sinδ (kPa) of RTFO-Aged Binders | SD |
64 °C | 2.80 | 0.21 | |
PG 64-16 | 70 °C | 1.30 | 0.12 |
76 °C | 0.60 | 0.11 | |
64 °C | 5.29 | 0.37 | |
PG 70-16 | 70 °C | 2.50 | 0.23 |
76 °C | 1.25 | 0.13 | |
64 °C | 12.10 | 0.13 | |
PG 76-16 | 70 °C | 5.69 | 0.04 |
76 °C | 2.76 | 0.05 | |
64 °C | 9.30 | 0.81 | |
PMB 4% SBS | 70 °C | 4.81 | 0.21 |
76 °C | 2.54 | 0.04 | |
64 °C | 11.35 | 0.30 | |
PMB 6% SBS | 70 °C | 6.24 | 1.10 |
76 °C | 3.75 | 0.11 |
Jnr (kPa−1) from MSCR Test | |||||
Binder | Temperature | Stress and Corresponding Standard Deviation (SD) | |||
---|---|---|---|---|---|
0.1 kPa | SD | 3.2 kPa | SD | ||
64 °C | 3.37 | 0.23 | 4.00 | 0.42 | |
PG 64-16 | 70 °C | 7.32 | 1.47 | 8.62 | 1.68 |
76 °C | 15.94 | 2.13 | 18.77 | 2.28 | |
64 °C | 1.56 | 0.10 | 1.99 | 0.15 | |
PG 70-16 | 70 °C | 3.42 | 0.76 | 4.33 | 1.04 |
76 °C | 7.18 | 1.92 | 9.00 | 2.47 | |
64 °C | 0.61 | 0.14 | 0.76 | 0.24 | |
PG 76-16 | 70 °C | 1.44 | 0.47 | 1.82 | 0.48 |
76 °C | 3.22 | 0.98 | 4.18 | 1.10 | |
64 °C | 0.33 | 0.01 | 0.54 | 0.17 | |
PMB 4% SBS | 70 °C | 0.64 | 0.23 | 1.52 | 0.27 |
76 °C | 1.92 | 0.55 | 3.68 | 0.44 | |
64 °C | 0.17 | 0.10 | 0.40 | 0.02 | |
PMB 6% SBS | 70 °C | 0.52 | 0.16 | 1.03 | 0.06 |
76 °C | 1.34 | 0.32 | 2.55 | 0.13 | |
Combined Elastic-Plastic Parameter (with G*/sin(δ) of RTFO-Aged Binder) | |||||
Binder | Temperature | Stress and corresponding Standard Deviation (SD) | |||
0.1 kPa | SD | 3.2 kPa | SD | ||
64 °C | 0.83 | 0.00 | 0.70 | 0.02 | |
PG 64-16 | 70 °C | 0.18 | 0.02 | 0.15 | 0.01 |
76 °C | 0.04 | 0.00 | 0.03 | 0.00 | |
64 °C | 3.39 | 0.02 | 2.66 | 0.01 | |
PG 70-16 | 70 °C | 0.73 | 0.07 | 0.58 | 0.06 |
76 °C | 0.17 | 0.02 | 0.14 | 0.02 | |
64 °C | 19.81 | 3.62 | 15.90 | 3.60 | |
PG 76-16 | 70 °C | 3.95 | 0.86 | 3.13 | 0.59 |
76 °C | 0.86 | 0.17 | 0.66 | 0.12 | |
64 °C | 28.48 | 1.16 | 17.34 | 2.71 | |
PMB 4% SBS | 70 °C | 7.51 | 1.60 | 3.17 | 0.34 |
76 °C | 1.32 | 0.25 | 0.69 | 0.06 | |
64 °C | 67.00 | 15.03 | 28.13 | 2.11 | |
PMB 6% SBS | 70 °C | 11.93 | 1.15 | 6.05 | 0.67 |
76 °C | 2.80 | 0.56 | 1.47 | 0.11 |
G*/sinδ (kPa) [Unaged Binders] | G*/sinδ (kPa) [RTFO-Aged Binders] | Jnr at 0.1 kPa | Jnr at 3.2 kPa | CEP Parameter at 0.1 kPa | CEP Parameter at 3.2 kPa | ||
---|---|---|---|---|---|---|---|
Binder | Temp | CV (%) | CV (%) | CV (%) | CV (%) | CV (%) | CV (%) |
64 °C | 10.60 | 6.96 | 6.60 | 9.87 | 0.36 | 2.91 | |
PG 64-16 | 70 °C | 7.44 | 8.68 | 17.6 | 17.16 | 8.98 | 8.54 |
76 °C | 12.86 | 15.71 | 12.2 | 11.2 | 3.55 | 4.55 | |
64 °C | 3.29 | 6.75 | 6.10 | 7.10 | 0.67 | 0.34 | |
PG 70-16 | 70 °C | 2.64 | 8.76 | 19.3 | 20.52 | 10.62 | 11.87 |
76 °C | 3.82 | 10.00 | 22.52 | 23.02 | 12.68 | 13.18 | |
64 °C | 19.19 | 1.10 | 20.00 | 25.85 | 20.96 | 26.87 | |
PG 76-16 | 70 °C | 18.82 | 0.62 | 26.37 | 22.26 | 25.77 | 21.66 |
76 °C | 16.47 | 1.77 | 24.95 | 21.76 | 23.24 | 20.02 | |
64 °C | 13.61 | 8.17 | 4.16 | 25.71 | 4.01 | 17.73 | |
PMB 4% SBS | 70 °C | 9.92 | 4.14 | 29.00 | 15.71 | 25.00 | 11.61 |
76 °C | 2.53 | 1.65 | 23.88 | 11.00 | 22.27 | 9.35 | |
64 °C | 7.69 | 2.73 | 24.15 | 5.11 | 26.79 | 7.84 | |
PMB 6% SBS | 70 °C | 8.96 | 15.53 | 25.61 | 5.29 | 10.28 | 10.29 |
76 °C | 8.60 | 2.89 | 20.33 | 4.82 | 23.15 | 7.70 |
Aggregate Content (%) | Binder Content (%) | Target VTM (%) | Maximum SG (Gmm) | Bulk SG (Gmb) | VMA (%) |
---|---|---|---|---|---|
94.9 | 5.1 | 1 | 2.47 | 2.36 | 14.8 |
Mix ID with BINDER | Average FN from the Dynamic Creep Test | SD | CV (%) |
---|---|---|---|
Mix 1 (PG 64-16) | 104 | 10.71 | 10.30 |
Mix 2 (PG 70-16) | 241 | 34.00 | 14.10 |
Mix 3 (PG 76-16) | 321 | 34.28 | 10.68 |
Mix 4 (PMB 4% SBS) | 1083 | 33.17 | 3.06 |
Mix 5 (PMB 6% SBS) | 7332 | 1550.00 | 21.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy-Chowdhury, A.B.; Saleh, M.F.; Moyers-Gonzalez, M. Characterisation of Permanent Deformation Behaviour of Asphalt Mix Based on a Combined Elastic Plastic (CEP) Parameter. Infrastructures 2021, 6, 183. https://doi.org/10.3390/infrastructures6120183
Roy-Chowdhury AB, Saleh MF, Moyers-Gonzalez M. Characterisation of Permanent Deformation Behaviour of Asphalt Mix Based on a Combined Elastic Plastic (CEP) Parameter. Infrastructures. 2021; 6(12):183. https://doi.org/10.3390/infrastructures6120183
Chicago/Turabian StyleRoy-Chowdhury, Abhirup B., Mofreh F. Saleh, and Miguel Moyers-Gonzalez. 2021. "Characterisation of Permanent Deformation Behaviour of Asphalt Mix Based on a Combined Elastic Plastic (CEP) Parameter" Infrastructures 6, no. 12: 183. https://doi.org/10.3390/infrastructures6120183
APA StyleRoy-Chowdhury, A. B., Saleh, M. F., & Moyers-Gonzalez, M. (2021). Characterisation of Permanent Deformation Behaviour of Asphalt Mix Based on a Combined Elastic Plastic (CEP) Parameter. Infrastructures, 6(12), 183. https://doi.org/10.3390/infrastructures6120183