Estimating Hydraulic Conductivity of Overconsolidated Soils Based on Piezocone Penetration Test (PCPT)
Abstract
:1. Introduction
2. Previous Work and Proposed Revision for Overconsolidated Soils
3. Derivation of the Correction Factor
3.1. Concept of Equivalent Soils in NC and OC Conditions
3.2. Definition of the Correction Factor
3.3. Expression for the Undrained Correction Factor,
3.4. Expression for the Partial Drainage Parameter
3.5. Expressing in Terms of Piezocone Parameters
3.6. Expressing in Terms of Piezocone Parameters
3.7. The Correction Factor and Estimation of
4. Estimation of Hydraulic Conductivity in OC Soils
5. Verification with Test Data from Different Sites
5.1. Lincoln, NE, USA
5.2. Cowden, UK
5.3. Cheongna, Incheon, South Korea
5.4. SR18, Indiana, USA
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burns, S.E.; Mayne, P.W. Penetrometers for Soil Permeability and Chemical Detection; Geosystems Engineering Group, School of Civil & Environmental Engineering: Atlanta, Georgia, 1998. [Google Scholar]
- Voyiadjis, G.Z.; Song, C.R. Determination of Hydraulic Conductivity Using Piezocone Penetration Test. Int. J. Geomech. 2003, 3, 217–224. [Google Scholar] [CrossRef]
- Senneset, K.; Sandven, R.; Janbu, N. Evaluation of Soil Parameters from Piezocone Tests. Transp. Res. Rec. 1989, 24–37. [Google Scholar]
- Robertson, P.K.; Sully, J.P.; Woeller, D.J.; Lunne, T.; Powell, J.J.M.; Gillespie, D.G. Estimating Coefficient of Consolidation from Piezocone Tests. Can. Geotech. J. 1992, 29, 539–550. [Google Scholar] [CrossRef]
- Song, C.R.; Bekele, B.M.; Sawyer, B. Piezocone Penetration Testing Device; Nebraska Transportation Center: Lincoln, Nebraska, 2017. [Google Scholar]
- Song, C.R.; Voyiadjis, G.Z.; Tumay, M.T. Determination of Permeability of Soils Using the Multiple Piezo-Element Penetrometer. Int. J. Numer. Anal. Methods Geomech. 1999, 23, 1609–1629. [Google Scholar] [CrossRef]
- Elsworth, D.; Lee, D.S. Permeability Determination from On-the-Fly Piezocone Sounding. J. Geotech. Geoenviron. Eng. 2005, 131, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Song, C.R.; Pulijala, S. Hydraulic Property Estimation Using Piezocone Results. J. Geotech. Geoenviron. Eng. 2010, 136, 456–463. [Google Scholar] [CrossRef]
- Chai, J.C.; Agung, P.M.A.; Hino, T.; Igaya, Y.; Carter, J.P. Estimating Hydraulic Conductivity from Piezocone Soundings. Géotechnique 2011, 61, 699–708. [Google Scholar] [CrossRef]
- Abu-Farsakh, M.Y.; Voyiadjis, G.Z.; Tumay, M.T. Numerical Analysis of the Miniature Piezocone Penetration Tests (PCPT) in Cohesive Soils. Int. J. Numer. Anal. Methods Geomech. 1998, 22, 791–818. [Google Scholar] [CrossRef]
- Sully, J.P.; Campanella, R.G. Evaluation of Field CPTU Dissipation Data in Overconsolidated Fine-Grained Soils. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, 5–10 January 1994; pp. 201–204. [Google Scholar]
- Burns, S.E.; Mayne, P.W. Monotonic and Dilatory Pore-Pressure Decay during Piezocone Tests in Clay. Can. Geotech. J. 2011. [Google Scholar] [CrossRef]
- Ren, X.W.; Santamarina, J.C. The Hydraulic Conductivity of Sediments: A Pore Size Perspective. Eng. Geol. 2018, 233, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.P. Heat as a Ground Water Tracer. Groundwater 2005, 43, 951–968. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.M. Soil Behaviour and Critical State Soil Mechanics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Vesic, A.S. Expansion of Cavities in Infinite Soil Mass. J. Soil Mech. Found. Div. 1972, 98, 265–290. [Google Scholar] [CrossRef]
- Mayne, P.W. Determination of OCR in Clays By Piezocone Tests Using Cavity Expansion and Critical State Concepts. Soils Found. 1991, 31, 65–76. [Google Scholar] [CrossRef]
- Chen, B.S.; Mayne, P.W. Profiling the Overconsolidation Ratio of Clays by Piezocone Tests; School of Civil and Environmental Engineering, Georgia Institute of Technology: Atlanta, Georgia, 1994. [Google Scholar]
- Schneider, J.A.; Randolph, M.F.; Mayne, P.W.; Ramsey, N.R. Analysis of Factors Influencing Soil Classification Using Normalized Piezocone Tip Resistance and Pore Pressure Parameters. J. Geotech. Geoenviron. Eng. 2008, 134, 1569–1586. [Google Scholar] [CrossRef]
- Teh, C.I.; Houlsby, G.T. An Analytical Study of the Cone Penetration Test in Clay. Geotechnique 1991, 41, 17–34. [Google Scholar] [CrossRef]
- Verruijt, A. Theory and Problems of Poroelasticity. Delft Univ. Technol. 2013, 71, 266. [Google Scholar]
- Kulhawy, F.H.; Mayne, P.W. Manual on Estimating Soil Properties for Foundation Design; Electric Power Research Institute: Palo Alto, CA, USA, 1990. [Google Scholar]
- Abu-Farsakh, M.; Tumay, M.; Voyiadjis, G. Numerical Parametric Study of Piezocone Penetration Test in Clays. Int. J. Geomech. 2003, 3, 170–181. [Google Scholar] [CrossRef]
- Robertson, P.K. The James K. Mitchell Lecture: Interpretation of in-Situ Tests–Some Insights. In Proceedings of the 4th International Conference on Geotechnical and Geophysical Site Characterization–ISC’4, Porto de Galinhas, Brazil, 18–21 September 2012; Taylor & Francis Group: London, UK, 2013; pp. 3–24. [Google Scholar]
- Skempton, A.W. Long-Term Stability of Clay Slopes. Géotechnique 1964, 14, 77–102. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, N.-K.; Tumay, M.T.; Lee, W. Spatial Distribution of Excess Pore-Water Pressure Due to Piezocone Penetration in Overconsolidated Clay. J. Geotech. Geoenviron. Eng. 2007, 133, 674–683. [Google Scholar] [CrossRef]
- Mayne, P.W. Cone Penetration Testing; NCHRP Synthesis 368; Transportation Research Board: Washington, DC, USA, 2007; ISBN 978-0-309-09784-0. [Google Scholar]
- Robertson, P.K. Cone Penetration Test (CPT)-Based Soil Behaviour Type (SBT) Classification System—An Update. Can. Geotech. J. 2016, 53, 1910–1927. [Google Scholar] [CrossRef]
- Robertson, P.K.; Cabal, K.L. Estimating Soil Unit Weight from CPT. In Proceedings of the 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, 9–11 May 2010; pp. 2–40. [Google Scholar]
- Lunne, T.; Powell, J.J.; Robertson, P.K. Cone Penetration Testing in Geotechnical Practice; Routledge: New York, NY, USA, 1997. [Google Scholar]
- Kaya Engineering Co. Technical Rewview of Ground Improvement Techniques for Developing Chungra Free Trading Area (District 1); Kaya Engineering: Incheon, Korea, 2005; p. 104. [Google Scholar]
- Kim, K. Cone Penetration Test in Clayey Soil: Rate Effect and Application to Pile Shaft Resistance Calculations. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekele, B.M.; Song, C.R.; Jin, G.; Lindemann, M. Estimating Hydraulic Conductivity of Overconsolidated Soils Based on Piezocone Penetration Test (PCPT). Infrastructures 2021, 6, 32. https://doi.org/10.3390/infrastructures6030032
Bekele BM, Song CR, Jin G, Lindemann M. Estimating Hydraulic Conductivity of Overconsolidated Soils Based on Piezocone Penetration Test (PCPT). Infrastructures. 2021; 6(3):32. https://doi.org/10.3390/infrastructures6030032
Chicago/Turabian StyleBekele, Binyam M., Chung R. Song, Gyunam Jin, and Mark Lindemann. 2021. "Estimating Hydraulic Conductivity of Overconsolidated Soils Based on Piezocone Penetration Test (PCPT)" Infrastructures 6, no. 3: 32. https://doi.org/10.3390/infrastructures6030032
APA StyleBekele, B. M., Song, C. R., Jin, G., & Lindemann, M. (2021). Estimating Hydraulic Conductivity of Overconsolidated Soils Based on Piezocone Penetration Test (PCPT). Infrastructures, 6(3), 32. https://doi.org/10.3390/infrastructures6030032