Performance Evaluation of Electric Trolley Bus Routes. A Series Two-Stage DEA Approach
Abstract
:1. Introduction
2. Literature Review
3. Problem Statement
4. Methods—Data Set
4.1. Series Two-Stage DEA Structure
4.2. Model Building
4.3. Data Set
5. Results
5.1. Production and Sales Efficiency
5.2. Arterial vs. Feeder–Local Bus Routes
6. Conclusions and Implications
Funding
Conflicts of Interest
References
- Tomazinis, A.R. Productivity, Efficiency, and Quality in Urban Transportation Systems; Heath and Company: Lexington, MA, USA, 1975. [Google Scholar]
- Tomazinis, A.R. A Study of Efficiency Indicators of Urban Public Transportation Systems; Final Report DOT-TST-77-47; USDOT: Washington, DC, USA, 1977.
- Fielding, G.L.; Glauthier, R.E.; Lave, C.A. Performance indicators for transit management. Transportation 1978, 7, 365–379. [Google Scholar] [CrossRef]
- Fielding, G.L.; Glauthier, R.E.; Lave, C.A. Distribution and Allocation of Transit Subsidies in California. Transit Management Program; School of Sciences and Institute of Transportation Studies, University of California: Irvine, CA, USA, 1976. [Google Scholar]
- Deng, Y.; Yan, Y. Evaluating route and frequency design of bus lines based on data envelopment analysis with network epsilon-based measures. J. Adv. Transp. 2019, 12. [Google Scholar] [CrossRef]
- Karlaftis, M.G.; McCarthy, P.S. Subsidy and public transit performance: A factor analytic approach. Transportation 1997, 24, 253–270. [Google Scholar] [CrossRef]
- Benjamin, J.; Obeng, K. The effect of policy and background variables on total factor productivity for public transit. Transp. Res. 1990, 24B, 1–14. [Google Scholar] [CrossRef]
- Stokes, B.R. The need for and use of performance indicators in transit. Transit J. 1979, 1, 3–10. [Google Scholar]
- Aigner, D.J.; Lovell, C.A.K.; Schmidt, P.J. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; van den Broeck, J. Efficiency estimation from Cobb-Douglas production functions with composed error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Lozano, S.; Gutiérrez, E. A slacks-based network DEA efficiency analysis of European airlines. Transp. Plan. Technol. 2014, 37, 623–637. [Google Scholar] [CrossRef]
- Holmgren, J. The effects of using different output measures in efficiency analysis of public transport operations. Res. Transp. Bus. Manag. 2018, 28, 12–22. [Google Scholar] [CrossRef]
- Hahn, J.-S.; Kim, D.-K.; Kim, H.-C.; Lee, C. Efficiency analysis on bus companies in Seoul city using a network DEA model. KSCE J. Civ. Eng. 2013, 17, 1480–1488. [Google Scholar] [CrossRef]
- Kao, C. Network data envelopment analysis: A review. Eur. J. Oper. Res. 2014, 239, 1–16. [Google Scholar] [CrossRef]
- Kagiantalidis, N. Measurement of Technical Efficiency. Case Study: The Routes of ILPAP S.A. Diploma Thesis, National Technical University of Athens, Athens, Greece, 2004. [Google Scholar]
- Michaelides, P.G.; Belegri-Roboli, A.; Marinos, T. Evaluating the Technical Efficiency of Trolley Buses in Athens, Greece. J. Public Transp. 2010, 13, 93–109. [Google Scholar] [CrossRef]
- Chu, X.; Fielding, G.J.; Lamar, B.W. Measuring transit performance using data envelopment analysis. Transp. Res. 1992, 26A, 223–230. [Google Scholar] [CrossRef]
- Odeck, J.; Alkadi, A. Evaluating efficiency in the Norwegian bus industry using data envelopment analysis. Transportation 2001, 28, 211–232. [Google Scholar] [CrossRef]
- Nolan, J.F.; Ritchie, P.C.; Rowcroft, J.E. Identifying and measuring public policy goals: ISTEA and the US bus transit industry. J. Econ. Behav. Organ. 2002, 48, 291–304. [Google Scholar] [CrossRef]
- Viton, P.A. Changes in multi-mode bus transit efficiency, 1998–1992. Transportation 1998, 25, 1–21. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Emrouznejad, A.; Shetab-Boushehri, S.N.; Hejazi, S.R. The origins, development and future directions of Data Envelopment Analysis approach. Transp. Syst. Socio-Econ. Plan. Sci. 2020, 69, 100762. [Google Scholar]
- Yu, M.M. Measuring the efficiency and return to scale status of multi-mode bus transit—Evidence from Taiwan’s bus system. Appl. Econ. Lett. 2008, 15, 647–653. [Google Scholar] [CrossRef]
- Yu, M.M.; Fan, C.K. Measuring the performance of multimode bus transit. A mixed structure network DEA model. Transp. Res. Part E 2009, 45, 501–515. [Google Scholar] [CrossRef]
- Sheth, C.; Triantis, K.; Teodorović, D. Performance evaluation of bus routes: A provider and passenger perspective. Transp. Res. Part E 2007, 43, 453–478. [Google Scholar] [CrossRef]
- Lao, Y.; Liu, L. Performance evaluation of bus lines with Data Envelopment Analysis and Geographic Information Systems. Comput. Environ. Urban Syst. 2009, 33, 247–255. [Google Scholar] [CrossRef]
- Hahn, J.S.; Kim, H.R.; Kho, S.Y. Analysis of the efficiency of Seoul arterial bus routes and its determinant factors. KSCE J. Civ. Eng. 2011, 15, 1115–1123. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Shaw, J.; Wang, Y. Route-level transit operational-efficiency assessment with a bootstrap super-data-envelopment analysis model. J. Urban Plan. Dev. 2017, 143, 04017007. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, Y.; Sun, D. A mixed frontier model for urban bus performance evaluation. Proc. Inst. Civ. Eng. Transp. 2018, 171, 65–74. [Google Scholar] [CrossRef]
- Wei, R.; Liu, X.; Mu, Y.; Wang, L.; Golub, A.; Farber, S. Evaluating public transit services for operational efficiency and access equity. J. Transp. Geogr. 2017, 65, 70–79. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Boame, K.A.; Obeng, K. Sources of productivity change: A Malmquist total factor productivity approach. Transp. Rev. 2005, 25, 103–116. [Google Scholar] [CrossRef]
- Koronakos, G. A taxonomy and review of the network data envelopment analysis literature. In Machine Learning Paradigms. Learning and Analytics in Intelligent Systems; Tsihrintzis, G., Virvou, M., Sakkopoulos, E., Jain, L., Eds.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 255–311. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Models for estimating technical and scale efficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Cooper, W.W.; Seiford, L.M.; Tone, T. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Springer Science + Business Media, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Efron, B. The Jackknife, the Bootstrap, and Other Resampling Plans; Society for Industrial and Applied Mathematics Philadelphia: Philadelphia, PA, USA, 1982. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall: New York, NY, USA, 1993. [Google Scholar]
- Simar, L.; Wilson, P.W. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Ferrier, G.D.; Hirschberg, J.G. Bootstrapping confidence intervals for linear programming efficiency scores: With an illustration using Italian banking data. J. Product. Anal. 1997, 8, 19–33. [Google Scholar] [CrossRef]
- Löthgren, M.; Tambour, M. Bootstrapping DEA-based efficiency measures and Malmquist productivity indices. A study of Swedish eye-care service provision. Appl. Econ. 1999, 31, 417–425. [Google Scholar]
- Simar, L.; Wilson, P.W. Statistical inference in nonparametric frontier models: The state of the art. J. Product. Anal. 2000, 13, 49–78. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. A general methodology for bootstrapping in nonparametric frontier models. J. Appl. Stat. 2000, 27, 779–802. [Google Scholar] [CrossRef]
- Hahn, J.-S.; Kho, S.-Y.; Choi, K.; Kim, D.-K. Sustainability evaluation of rapid routes for buses with a network DEA model. Int. J. Sustain. Transp. 2017, 11, 659–669. [Google Scholar] [CrossRef]
- Polyzos, S.; Tsiotas, D. The contribution of transport infrastructures to the economic and regional development: A review of the conceptual framework. Theor. Empir. Res. Urban Manag. 2020, 15, 5–23. [Google Scholar]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of productive processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Graham, D.J. Productivity and Efficiency in Urban Railways: Parametric and Non-Parametric Estimates. Transp. Res. Part E: Logist. Transp. Rev. 2008, 44, 84–99. [Google Scholar] [CrossRef]
- Mostafa, M.M. Modeling the competitive market efficiency of Egyptian companies: A probabilistic neural network analysis. Expert Syst. Appl. 2009, 36, 8839–8848. [Google Scholar] [CrossRef]
- Athens Live Bus Map. Available online: https://oasa.live/ (accessed on 9 March 2021).
- Stathopoulos, A.; Tsekeris, T. The Athens dynamic traffic map for multimodal travel information services. J. Maps 2008, 4, 119–133. [Google Scholar] [CrossRef]
Descriptive Statistics | Man-Hours | Fleet Size (Number of Vehicles) | Electricity Consumed (kWh) | Vehicle-km | Trips per Legth Route | Tickets |
---|---|---|---|---|---|---|
Mean | 21,226 | 336 | 1,489,200 | 548,822 | 109 | 1,647,906 |
Standard deviation | 8595 | 130 | 676,716 | 244,111 | 40 | 924,663 |
Median | 20,511 | 359 | 1,523,294 | 511,144 | 91 | 1,652,333 |
Min | 7749 | 119 | 385,181 | 157,024 | 73 | 470,973 |
Max | 38,559 | 594 | 2,472,323 | 955,629 | 189 | 3,839,893 |
Sub-Process Efficiency/Bus Routes (BR) | Production Efficiency | Sales Efficiency | ||||||
---|---|---|---|---|---|---|---|---|
DEA estimates | BCC-O point estimates | BCC-O bias-corrected | BCC-O L | BCC-O U | BCC-I point estimates | BCC-I bias-corrected | BCC-I L | BCC-I U |
BR1 | 0.96 | 0.95 | 0.89 | 0.96 | 0.96 | 0.94 | 0.90 | 0.96 |
BR2 | 0.77 | 0.76 | 0.74 | 0.77 | 1.00 | 0.96 | 0.91 | 1.00 |
BR3 | 1.00 | 0.96 | 0.89 | 1.00 | 1.00 | 0.94 | 0.78 | 1.00 |
BR4 | 0.82 | 0.81 | 0.79 | 0.82 | 1.00 | 0.98 | 0.93 | 1.00 |
BR5 | 1.00 | 0.95 | 0.88 | 1.00 | 1.00 | 0.97 | 0.91 | 1.00 |
BR6 | 0.92 | 0.91 | 0.87 | 0.92 | 0.91 | 0.90 | 0.87 | 0.91 |
BR7 | 1.00 | 0.94 | 0.81 | 1.00 | 1.00 | 0.95 | 0.82 | 1.00 |
BR8 | 1.00 | 0.96 | 0.86 | 1.00 | 1.00 | 0.98 | 0.88 | 1.00 |
BR9 | 0.88 | 0.86 | 0.84 | 0.87 | 1.00 | 0.97 | 0.91 | 1.00 |
BR10 | 0.84 | 0.83 | 0.81 | 0.84 | 0.97 | 0.95 | 0.89 | 0.97 |
BR11 | 0.93 | 0.91 | 0.88 | 0.92 | 0.84 | 0.83 | 0.81 | 0.84 |
BR12 | 1.00 | 0.97 | 0.90 | 1.00 | 1.00 | 0.98 | 0.92 | 1.00 |
BR13 | 0.95 | 0.94 | 0.91 | 0.95 | 1.00 | 0.97 | 0.93 | 1.00 |
BR14 | 0.81 | 0.80 | 0.76 | 0.81 | 0.97 | 0.96 | 0.93 | 0.97 |
BR15 | 1.00 | 0.97 | 0.91 | 1.00 | 0.93 | 0.91 | 0.88 | 0.92 |
BR16 | 1.00 | 0.96 | 0.89 | 1.00 | 0.75 | 0.73 | 0.70 | 0.75 |
BR17 | 0.97 | 0.95 | 0.90 | 0.97 | 0.78 | 0.77 | 0.73 | 0.78 |
BR18 | 1.00 | 0.97 | 0.92 | 1.00 | 0.72 | 0.71 | 0.68 | 0.72 |
BR19 | 1.00 | 0.97 | 0.93 | 1.00 | 1.00 | 0.96 | 0.87 | 1.00 |
BR20 | 1.00 | 0.97 | 0.93 | 1.00 | 0.936 | 0.92 | 0.89 | 0.94 |
Mean | 0.94 | 0.92 | 0.87 | 0.94 | 0.94 | 0.91 | 0.86 | 0.94 |
Standard deviation | 0.08 | 0.07 | 0.06 | 0.08 | 0.09 | 0.08 | 0.08 | 0.09 |
Median | 0.99 | 0.95 | 0.88 | 0.98 | 0.98 | 0.95 | 0.89 | 0.98 |
Min | 0.77 | 0.76 | 0.74 | 0.77 | 0.72 | 0.71 | 0.68 | 0.72 |
Max | 1.00 | 0.97 | 0.93 | 1.00 | 1.00 | 0.98 | 0.93 | 1.00 |
Bus Route Type | Arterial Bus Routes | Feeder–Local Bus Routes | ||||||
---|---|---|---|---|---|---|---|---|
Sub-Process Efficiency | Production Efficiency | Sales Efficiency | Production Efficiency | Sales Efficiency | ||||
DEA estimates | BCC-O point estimates | BCC-O bias-corrected | BCC-I point estimates | BCC-I bias-corrected | BCC-O point estima-tes | BCC-O bias-corrected | BCC-I point estimates | BCC-I bias-corrected |
Mean | 0.96 | 0.93 | 0.91 | 0.89 | 0.93 | 0.90 | 0.96 | 0.93 |
Standard deviation | 0.05 | 0.04 | 0.10 | 0.09 | 0.10 | 0.08 | 0.08 | 0.07 |
Median | 0.97 | 0.95 | 0.95 | 0.93 | 1.00 | 0.95 | 1.00 | 0.96 |
Min | 0.84 | 0.83 | 0.72 | 0.71 | 0.77 | 0.76 | 0.75 | 0.73 |
Max | 1.00 | 0.97 | 1.00 | 0.98 | 1.00 | 0.97 | 1.00 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolas, I.E. Performance Evaluation of Electric Trolley Bus Routes. A Series Two-Stage DEA Approach. Infrastructures 2021, 6, 44. https://doi.org/10.3390/infrastructures6030044
Tsolas IE. Performance Evaluation of Electric Trolley Bus Routes. A Series Two-Stage DEA Approach. Infrastructures. 2021; 6(3):44. https://doi.org/10.3390/infrastructures6030044
Chicago/Turabian StyleTsolas, Ioannis E. 2021. "Performance Evaluation of Electric Trolley Bus Routes. A Series Two-Stage DEA Approach" Infrastructures 6, no. 3: 44. https://doi.org/10.3390/infrastructures6030044
APA StyleTsolas, I. E. (2021). Performance Evaluation of Electric Trolley Bus Routes. A Series Two-Stage DEA Approach. Infrastructures, 6(3), 44. https://doi.org/10.3390/infrastructures6030044