Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia
Abstract
:1. Introduction
1.1. Soil Properties and Vegetation
- 1.1 () for clay, sandy clay, silty clay and clay loam;
- 1.4 () for silt loam, silty clay loam, silt, silt loam, sandy clay loam, clay loam, sandy loam and loam;
- 1.6 () for sand and loamy sand.
1.2. Interstitial Water Properties and Saltmarsh Vegetation
2. Material and Methods
2.1. Study Sites
2.2. Sample Collection and Soil Physical Characteristics
2.3. Random Forest
3. Results
3.1. Saltmarsh Soils Physical Properties
3.2. Relationship among Vegetative Species, pH, Organic Matter, and Elevation Gradient
3.3. Relationship of Bulk Density and Organic Matter to Vegetation
4. Discussion
5. Conclusions
- Mean bulk densities for sites supporting S. tabernaemontani and B. frutescens are 0.323 g/cm3 and 1.560 g/cm3, respectively. B. frutescens was able to establish and develop in soils that have a relatively high bulk density, up to 1.670 g/cm3, in comparison to the other vegetation, which is a result of high sand content or low organic matter content. B. frutescens was found in the highest average bulk density (around 1.560 g/cm3) and the lowest average organic matter content (i.e., 1.383 percent). We found that S. tabernaemontani grows in the soil with the lowest average bulk density (0.478 g/cm3) and the highest average organic matter content (13.83 percent) in comparison to the other vegetative species observed in this study.
- With a 95% confidence, the salinity level of S. tabernaemontani is significantly different from that of B. frutescens and S. alterniflora. S. tabernaemontani has the lowest and S. alterniflora has the highest average salinities, which are 3.783 PSU and 27.873 PSU, respectively. High salinity inhibits S. tabernaemontani growth in coastal marshes, while the other studied species tend to be more salt tolerant. Vegetative species in costal marshes have different tolerances to salinity, and because of this, this tolerance is recommended to be considered for any restoration practice of disturbed salt marshes.
- The results of random forest models indicate that the soil properties of saltmarshes are interrelated and influenced by interstitial water, and vegetative species. With the random forest models, the targeted soils/interstitial water properties such as redox potential (Eh), bulk density (BD), and salinity can be predicted with the estimated time required for re-establishing the vegetative cover after construction activity, which can be beneficial for the saltmarsh restoration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nyman, J.A.; Walters, R.J.; Delaune, R.D.; Patrick, W.H. Marsh vertical accretion via vegetative growth. Estuar. Coast. Shelf Sci. 2006, 69, 370–380. [Google Scholar] [CrossRef]
- Roychoudhury, A.N. Spatial and seasonal variations in depth profile of trace metals in saltmarsh sediments from Sapelo Island, Georgia, USA. Estuarine Coast. Shelf Sci. 2007, 72, 675–689. [Google Scholar] [CrossRef]
- Craft, C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S tidal marshes. Limnol. Oceanogr. 2007, 52, 1220–1230. [Google Scholar] [CrossRef]
- Bradley, P.; Morris, J. Physical characteristics of salt marsh sediments: Ecological implications. Mar. Ecol. Prog. Ser. 1990, 61, 245–252. [Google Scholar] [CrossRef]
- Sun, C.; Fagherazzi, S.; Liu, Y. Classification mapping of salt marsh vegetation by flexible monthly NDVI time-series using Landsat imagery. Estuar. Coast. Shelf Sci. 2018, 213, 61–80. [Google Scholar] [CrossRef]
- Cintrón-Molero, G.; Schaeffer-Novelli, Y. Ecology and management of New World mangroves. In Coastal Plant Communities of Latin America; Elsevier: Amsterdam, The Netherlands, 1992; pp. 233–258. [Google Scholar]
- Callaway, J.C.; Zedler, J.B. Restoration of urban salt marshes: Lessons from southern California. Urban Ecosyst. 2004, 7, 107–124. [Google Scholar] [CrossRef]
- Ballantine, K.; Schneider, R.; Groffman, P.; Lehmann, J. Soil properties and vegetative development in four restored freshwater depressional wetlands. Soil Sci. Soc. Am. J. 2012, 76, 1482–1495. [Google Scholar] [CrossRef] [Green Version]
- Huff, T.P.; Feagin, R.A. Hydrological Barrier as a Cause of Salt Marsh Loss. J. Coast. Res. 2017, 77, 88–96. [Google Scholar] [CrossRef]
- Rogers, K.; Wilton, K.; Saintilan, N. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuar. Coast. Shelf Sci. 2006, 66, 559–569. [Google Scholar] [CrossRef]
- DeLaune, R.D.; Reddy, K.R. Biogeochemistry of Wetlands: Science and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Portnoy, J.; Giblin, A. Effects of historic tidal restrictions on salt marsh sediment chemistry. Biogeochemistry 1997, 36, 275–303. [Google Scholar] [CrossRef]
- Rogel, J.A.; Ariza, F.A.; Silla, R.O. Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 2000, 20, 357–372. [Google Scholar] [CrossRef]
- Tempest, J.A.; Harvey, G.L.; Spencer, K.L. Modified sediments and subsurface hydrology in natural and recreated salt marshes and implications for delivery of ecosystem services. Hydrol. Process. 2015, 29, 2346–2357. [Google Scholar] [CrossRef]
- Roman, C.T.; Niering, W.A.; Warren, R.S. Salt marsh vegetation change in response to tidal restriction. Environ. Manag. 1984, 8, 141–149. [Google Scholar] [CrossRef]
- Christian, J.; Kim, S.; Durham, S.A.; Sutter, L.; Hikouei, I.S.; House, K. Best Management Practices for Post-Construction Restoration of Rights-of-Way in Saltwater Marshes, Estuaries, and Other Tidally Influenced Areas; Georgia Department of Transportation: Atlanta, GA, USA, 2020.
- Alber, M.; Swenson, E.M.; Adamowicz, S.C.; Mendelssohn, I.A. Salt Marsh Dieback: An overview of recent events in the US. Estuarine, Coast. Shelf Sci. 2008, 80, 1–11. [Google Scholar] [CrossRef]
- Ogburn, M.B.; Alber, M. An investigation of salt marsh dieback in Georgia using field transplants. Chesap. Sci. 2006, 29, 54–62. [Google Scholar] [CrossRef]
- Lindstedt, D.M.; Swenson, E.M. The Case of the Dying Marsh Grass; Louisiana Department of Natural Resources: Baton Rouge, LA, USA, 2006.
- Mendelssohn, I.A.; McKee, K.L. Spartina alterniflora die-back in Louisiana: Time-course investigation of soil waterlogging effects. J. Ecol. 1988, 76, 509–521. [Google Scholar] [CrossRef]
- Goodman, P.; Braybrooks, E.; Lambert, J.M. Investigations intoDie-Back in Spartina Townsendii AGG.: I. The Present Status of Spartina Townsendii in Britain. J. Ecol. 1959, 47, 651–677. [Google Scholar] [CrossRef]
- Crawford, J.T.; Stone, A.G. Relationships between soil composition and Spartina alterniflora dieback in an Atlantic salt marsh. Wetlands 2015, 35, 13–20. [Google Scholar] [CrossRef]
- Edwards, J.; Frey, R. Substrate characteristics within a Holocene salt marsh, Sapelo Island, Georgia. Senckenbergiana Marit. 1977, 9, 215–259. [Google Scholar]
- Hinkle, R.L.; Mitsch, W.J. Salt marsh vegetation recovery at salt hay farm wetland restoration sites on Delaware Bay. Ecol. Eng. 2005, 25, 240–251. [Google Scholar] [CrossRef]
- Anastasiou, C.J.; Brooks, J.R. Effects of soil PH, redox potential, and elevation on survival of Spartina patens planted at a west Central Florida salt marsh restoration site. Wetlands 2003, 23, 845–859. [Google Scholar] [CrossRef]
- Warren, R.S.; Fell, P.E.; Rozsa, R.; Brawley, A.H.; Orsted, A.C.; Olson, E.T.; Swamy, V.; Niering, W.A. Salt Marsh Restoration in Connecticut: 20 Years of Science and Management. Restor. Ecol. 2002, 10, 497–513. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Luo, M.; Zhang, X.; Christakos, G.; Agusti, S.; Duarte, C.M.; Wu, J. Losses of salt marsh in China: Trends, threats and management. Estuarine, Coast. Shelf Sci. 2018, 214, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Broome, S.W.; Seneca, E.D.; Woodhouse, W.W. Tidal salt marsh restoration. Aquat. Bot. 1988, 32, 1–22. [Google Scholar] [CrossRef]
- Adam, P. Salt marsh restoration. Coastal Wetlands: An Integrated Ecosystem Approach, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 817–861. [Google Scholar]
- Sutton-Grier, A.E.; Ho, M.; Richardson, C.J. Organic amendments improve soil conditions and denitrification in a restored riparian wetland. Wetlands 2009, 29, 343–352. [Google Scholar] [CrossRef]
- Flaig, W. Soil Organic Matter as a Source of Nutrients; IRRI: Los Baños, Philippines, 1984; pp. 73–92. [Google Scholar]
- Rabenhorst, M. Soils of Tidal and Fringing Wetlands. In Wetland Soils; Apple Academic Press: Palm Bay, FL, USA, 2000; pp. 301–315. [Google Scholar]
- McKenzie, N.; Jacquier, D.; Isbell, R.; Brown, K. Australian Soils and Landscapes; CSIRO Publishing: Clayton, Australia, 2004. [Google Scholar]
- Daddow, R.L.; Warrington, G.E. Growth-Limiting Soil Bulk Densities as Influenced by Soil Texture; U.S. Department of Agriculture, Forest Service: Fort Collins, CO, USA, 1983.
- Arshad, M.; Lowery, B.; Grossman, B. Physical tests for monitoring soil quality. Methods Assess. Soil Qual. 1997, 49, 123–141. [Google Scholar]
- Barbosa, L.C.; de Souza, Z.M.; Franco, H.C.J.; Otto, R.; Rossi Neto, J.; Garside, A.L.; Nunes Carvalho, J.L. Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Geoderma Reg. 2018, 13, 15–25. [Google Scholar] [CrossRef]
- Asady, G.; Smucker, A. Compaction and root modifications of soil aeration. Soil Sci. Soc. Am. J. 1989, 53, 251–254. [Google Scholar] [CrossRef]
- Nyman, J.; Delaune, R.; Roberts, H.; Patrick, W. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar. Ecol. Prog. Ser. 1993, 96, 269–279. [Google Scholar] [CrossRef]
- O’Brien, E.L.; Zedler, J.B. Accelerating the Restoration of Vegetation in a Southern California Salt Marsh. Wetl. Ecol. Manag. 2006, 14, 269–286. [Google Scholar] [CrossRef]
- Stirzaker, R.J.; Passioura, J.B.; Wilms, Y. Soil structure and plant growth: Impact of bulk density and biopores. Plant Soil 1996, 185, 151–162. [Google Scholar] [CrossRef]
- Périé, C.; Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 2008, 88, 315–325. [Google Scholar] [CrossRef]
- Morris, J.T.; Barber, D.C.; Callaway, J.C.; Chambers, R.; Hagen, S.C.; Hopkinson, C.S.; Johnson, B.J.; Megonigal, P.; Neubauer, S.C.; Troxler, T.; et al. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Futur. 2016, 4, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendelssohn, I.A.; McKee, K.L.; Patrick, W.H., Jr. Oxygen deficiency in Spartina alterniflora roots: Metabolic adaptation to anoxia. Science 1981, 214, 439–441. [Google Scholar] [CrossRef] [PubMed]
- White, S.N. Spartina Species Zonation along an Estuarine Gradient in Georgia: Exploring Mechanisms Controlling Distribution. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2004. [Google Scholar]
- Maricle, B.R.; Lee, R.W. Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquat. Bot. 2002, 74, 109–120. [Google Scholar] [CrossRef]
- Waisel, Y. Biology of Halophytes; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Adams, D.A. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 1963, 44, 445–456. [Google Scholar] [CrossRef]
- Antlfinger, A.E.; Dunn, E. Seasonal patterns of CO2 and water vapor exchange of three salt marsh succulents. Oecologia 1979, 43, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Blake, G. Bulk density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling 9; American Society of Agronomy, Inc.: Madison, WI, USA, 1965; pp. 374–390. [Google Scholar]
- Cleveland, D.; Brumbaugh, W.G.; Macdonald, D.D. A comparison of four porewater sampling methods for metal mixtures and dissolved organic carbon and the implications for sediment toxicity evaluations. Environ. Toxicol. Chem. 2017, 36, 2906–2915. [Google Scholar] [CrossRef] [PubMed]
- Hobley, E.; Wilson, B.; Wilkie, A.; Gray, J.; Koen, T. Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant Soil 2015, 390, 111–127. [Google Scholar] [CrossRef]
- Hobley, E.U.; Wilson, B. The depth distribution of organic carbon in the soils of eastern Australia. Ecosphere 2016, 7, e01214. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Mehrjardi, R.; Neupane, R.; Sood, K.; Kumar, S. Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA. Carbon Manag. 2017, 8, 277–291. [Google Scholar] [CrossRef]
- Salehi Hikouei, I.; Kin, S.S.; Sutter, L.; Christian, J.; Durham, S.; Yang, J. Machine Learning Approach to Identify the Relationship Between Heavy Metals and Soil Parameters in Salt Marshes. Int. J. Environ. Sci. Nat. Resour. 2021, 27. [Google Scholar] [CrossRef]
- Craft, C.B.; Broome, S.W.; Seneca, E.D. Nitrogen, Phosphorus and Organic Carbon Pools in Natural and Transplanted Marsh Soils. Estuaries 1988, 11, 272–280. [Google Scholar] [CrossRef]
Site | Latitude | Longitude | OM | MC | BD | Clay | Silt | Sand | Texture |
---|---|---|---|---|---|---|---|---|---|
% | % | g/cm3 | % | % | % | ||||
1.A | 32.03 | −80.93 | 2.44 | 35.97 | 1.44 | 16.17 | 34.75 | 49.08 | Loam |
1.B | 32.03 | −80.93 | 7.22 | 201.72 | 0.40 | 35.25 | 27.28 | 37.47 | Clay loam |
1.C | 32.03 | −80.93 | 10.57 | 225.00 | 0.40 | 14.96 | 25.13 | 59.91 | Sandy loam |
2.A | 32.01 | −80.89 | 1.46 | 48.14 | 1.18 | 12.10 | 7.19 | 80.72 | Sandy loam |
2.B | 32.01 | −80.89 | 3.59 | 77.95 | 0.87 | 23.06 | 22.32 | 54.62 | Sandy clay loam |
2.C | 32.01 | −80.89 | 5.99 | 181.32 | 0.44 | 47.09 | 45.56 | 7.35 | Silty clay |
3.A | 32.06 | −81.02 | 3.73 | 90.65 | 0.76 | 44.57 | 29.28 | 26.15 | Clay |
3.B | 32.06 | −81.02 | 0.24 | 25.11 | 1.50 | 17.02 | 11.18 | 71.80 | Sandy loam |
3.C | 32.06 | −81.02 | 0.54 | 38.20 | 1.31 | 17.22 | 11.32 | 71.46 | Sandy loam |
4.A | 32.17 | −81.16 | 23.85 | 428.17 | 0.18 | 22.68 | 70.65 | 6.67 | Silt loam |
4.B | 32.17 | −81.16 | 19.54 | 278.87 | 0.27 | 56.46 | 37.10 | 6.44 | Clay |
4.C | 32.17 | −81.16 | 28.88 | 309.00 | 0.29 | 28.27 | 54.52 | 17.21 | Silty clay loam |
5.A | 31.36 | −81.44 | 8.02 | 227.01 | 0.39 | 38.90 | 33.15 | 27.95 | Clay loam |
5.B | 31.36 | −81.44 | 7.76 | 215.31 | 0.37 | 59.35 | 34.08 | 6.57 | Clay |
5.C | 31.36 | −81.44 | 8.54 | 254.17 | 0.35 | 55.15 | 39.99 | 4.86 | Clay |
6.A | 31.16 | −81.45 | 0.89 | 63.82 | 1.07 | 16.52 | 22.01 | 61.47 | Sandy loam |
6.B | 31.16 | −81.45 | 7.80 | 338.30 | 0.31 | 22.68 | 72.52 | 4.80 | Silty loam |
6.C | 31.16 | −81.45 | 5.66 | 261.39 | 0.37 | 19.61 | 73.11 | 7.28 | Silt loam |
7.A | 31.17 | −81.42 | 1.47 | 24.60 | 1.56 | 7.52 | 13.12 | 79.36 | Loamy sand |
7.B | 31.17 | −81.42 | 1.59 | 23.08 | 1.67 | 8.55 | 11.02 | 80.43 | Loamy sand |
7.C | 31.17 | −81.42 | 1.09 | 34.87 | 1.45 | 9.70 | 10.19 | 80.11 | Loamy sand |
8.A | 31.07 | −81.47 | 3.81 | 185.54 | 0.46 | 30.48 | 35.71 | 33.81 | Clay loam |
8.B | 31.07 | −81.47 | 1.05 | 35.64 | 1.36 | 17.87 | 22.31 | 59.82 | Sandy loam |
8.C | 31.07 | −81.47 | 5.98 | 213.95 | 0.40 | 39.11 | 55.59 | 5.30 | Silty clay loam |
Vegetation | Salinity | pH | Redox |
---|---|---|---|
B. frutescens | (5.44, 32.57) | (6.75, 6.93) | (−209.95, −123.14) |
J. roemerianus | (12.28, 22.88) | (6.33, 6.56) | (−18.75, −9.94) |
S. alterniflora | (23.6, 32.14) | (6.70, 6.81) | (−380.56, −171.86) |
S. tabernaemontani | (2.83, 4.73) | (6.40, 6.55) | (−134.70, −46.72) |
Vegetation | Difference in Mean pH | p-Value |
---|---|---|
B. frutescens vs. J. roemerianus | 0.3951 | 0.0012 * |
B. frutescens vs. S. tabernaemontani | 0.3652 | 0.0002 * |
S. alterniflora vs. J. roemerianus | 0.3162 | 0.0007 * |
S. alterniflora vs. S. tabernaemontani | 0.2863 | <0.0001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hikouei, I.S.; Christian, J.; Kim, S.S.; Sutter, L.A.; Durham, S.A.; Yang, J.J.; Vickery, C.G. Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia. Infrastructures 2021, 6, 70. https://doi.org/10.3390/infrastructures6050070
Hikouei IS, Christian J, Kim SS, Sutter LA, Durham SA, Yang JJ, Vickery CG. Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia. Infrastructures. 2021; 6(5):70. https://doi.org/10.3390/infrastructures6050070
Chicago/Turabian StyleHikouei, Iman Salehi, Jason Christian, S. Sonny Kim, Lori A. Sutter, Stephan A. Durham, Jidong J. Yang, and Charles Gray Vickery. 2021. "Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia" Infrastructures 6, no. 5: 70. https://doi.org/10.3390/infrastructures6050070
APA StyleHikouei, I. S., Christian, J., Kim, S. S., Sutter, L. A., Durham, S. A., Yang, J. J., & Vickery, C. G. (2021). Use of Random Forest Model to Identify the Relationships among Vegetative Species, Salt Marsh Soil Properties, and Interstitial Water along the Atlantic Coast of Georgia. Infrastructures, 6(5), 70. https://doi.org/10.3390/infrastructures6050070