Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network
Abstract
:1. Introduction
- description of a novel inspection solution applied to Moroccan flexible pavement using a multifunctional pavement assessment system vehicle (SMAC) and deep neural networks for automatic crack detection and classification,
- application of the classification method on a large dataset extracted from videos captured by high-resolution cameras mounted on a SMAC vehicle,
- proposal and evaluation of a new method for automatic road crack detection using a convolutional neural network (CNN). The results are further compared with the outcome of a pre-trained transfer-learning VGG-19 model.
2. Dataset and Methods
2.1. Measurement and Resulting Dataset
2.2. Convolution Neural Network
2.3. Pre-Trained VGG-19 Model
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Laboratoire Centrale des Ponts et Chaussées. LCPC Méthode D’Essai No.52. Available online: https://www.ifsttar.fr/fileadmin/user_upload/editions/lcpc/MethodeDEssai/MethodeDEssai-LCPC-ME52.pdf (accessed on 28 July 2015).
- Analyse de la Méthode Marocaine des Degradations de Chaussées. Available online: http://www.ampcr.ma/actes/9eme_congres_national_de_la_route/CONGRE/A4/A4_3.pdf (accessed on 8 October 2014).
- Modèles de Dégradation des Chaussées Marocaines. Available online: http://www.ampcr.ma/actes/7eme_congres_national_de_la_route/CONGRE/TH2/TH2_9.pdf (accessed on 25 October 2006).
- Presentation du CNER. Available online: http://www.equipement.gov.ma/AR/Infrastructures-routieres/Reseau-Routier-du-Maroc/Documents/brochure%20CNER%202019.pdf (accessed on 17 January 2020).
- Eisenbach, M.; Stricker, R.; Seichter, D.; Amende, K.; Debes, K.; Sesselmann, M.; Ebersbach, D. How to get pavement distress detection ready for deep learning? A systematic approach. In Proceedings of the IJCNN 2017, Anchorage, AK, USA, 14–19 May 2017; pp. 2039–2047. [Google Scholar]
- Zhang, L.; Yang, F.; Zhang, D.Y.; Zhu, J.Y. Road crack detection using deep convolutional neural network. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Philadelphia, PA, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar]
- Mandal, V.; Uong, L.; Adu-Gyamfi, Y. Automated road crack detection using deep convolutional neural networks. In Proceedings of the IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5212–5215. [Google Scholar]
- Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road damage detection and classification using deep neural networks with smartphone images. Comput.-Aided Civ. Infrastruct. Eng. 2018, 1–15, 1127–1141. [Google Scholar] [CrossRef] [Green Version]
- Introduction to Convolutional Neural Networks. Available online: https://cs.nju.edu.cn/wujx/paper/CNN.pdf (accessed on 30 April 2017).
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Fan, R.; Bocus, J.M.; Zhu, Y.; Jianhao, J.; Wang, L.; Fulong, M.; Shanshan, C.; Ming, L. Road crack detection using deep convolutional neural network and adaptative thresholding. In Proceedings of the IEEE Intelligent Vehicules Symposium, Paris, France, 9–12 June 2019; pp. 474–479. [Google Scholar]
- Yusof, N.A.M.; Osman, M.K.; Noor, M.H.M.; Ibrahim, A.; Tahir, N.M.; Yusof, N.M. Crack detection and classification in asphalt pavement images using deep convolution neural network. In Proceedings of the 8th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 23–25 November 2018; pp. 227–232. [Google Scholar]
- Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. Deep Crack: Learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 2019, 28, 1498–1512. [Google Scholar] [CrossRef] [PubMed]
- Weidong, S.; Guohui, J.; Hong, Z.; Di, J.; Lin, G. Automated pavement crack damage detection using deep multiscale convolutional features. J. Adv. Transp. 2020, 2020, 1–11. [Google Scholar]
- Mei, Q.; Gül, M. A cost effective solution for pavement crack inspection using cameras and deep neural networks. Constr. Build. Mater. 2020, 256, 119397. [Google Scholar] [CrossRef]
- Fan, Z.; Li, C.; Chen, Y.; Wei, J.; Loprencipe, G.; Chen, X.; DiMascio, P. Automatic crack detection on road Pavements Using Encoder-Decoder Architecture. Materials 2020, 13, 2960. [Google Scholar] [CrossRef] [PubMed]
- Sheta, A.; Turabieh, H.; Aljahdali, S.; Alangari, A. Pavement crack detection using a lightweight convolutional neural network. EPIC Ser. Comput. 2020, 69, 214–223. [Google Scholar]
- Fan, Z.; Li, C.; Chen, Y.; Mascio, P.D.; Chen, X.; Zhu, G.; Loprencipe, G. Ensemble of Deep Convolutional Neural Networks for Automatic Pavement Crack Detection and Measurement. Coatings 2020, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Zhao, H.; Li, Y.; Li, S.; Zhou, R.; Chu, W. Rao-Unet: A residual attention and octave Unet for road crack detection via balance loss. IET Intell. Transp. Syst. 2021, 16, 332–343. [Google Scholar] [CrossRef]
- Haciefendioglu, K.; Basaga, H.B. Concrete road crack detection using deep learning-based faster R-CNN method. Ir. J. Sc. Techn. Transact. Civ. Eng. 2021, 46, 1621–1633. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, H.; Li, C.; Su, J.; Li, C.; Bruno, S.; Loprencipe, G. Use of Parallel ResNet for High-Performance Pavement Crack Detection and Measurement. Sustainability 2022, 14, 1825. [Google Scholar] [CrossRef]
- Xu, Z.; Guan, H.; Kang, J.; Lei, X.; Ma, L.; Yu, Y.; Chen, Y.; Li, J. Pavement crack detection from CCD images with a locally enhanced transformer network. Int. J. Appl. Earth Observat. Geoinformat. 2022, 110, 102825. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN. Sensors 2022, 22, 1215. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Elahi, H.; Sun, Z.; Khatoon, A.; Ahmad, I. Comparative Analysis of AlexNet, ResNet18 and SqueezeNet with Diverse Modification and Arduous Implementation. Arab J. Sci. Eng. 2022, 47, 2397–2417. [Google Scholar] [CrossRef]
- Jana, S.; Thangam, S.; Kishore, A.; Kumar, V.S.; Vandana, S. Transfer learning based deep convolutional neural network model for pavement crack detection from images. Int. J. Nonlinear Anal. Applicat. 2022, 13, 1209–1223. [Google Scholar]
- Khan, M.N.; Ahmed, M.M. Weather and surface condition detection based on road-side webcams: Application of pre-trained convolutional neural network. Int. J. Transport. Sci. Technol. 2021, 11, 468–483. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.P.; Waller, S.T. Image-Based Crack Detection Methods: A Review. Infrastructures 2021, 6, 115. [Google Scholar] [CrossRef]
- Qu, Z.; Mei, J.; Liu, L.; Zhou, D. Crack Detection of Concrete Pavement with Cross-Entropy Loss Function and Improved VGG16 Network Model. IEEE Access 2020, 8, 54564–54573. [Google Scholar] [CrossRef]
- Dung, C.V.; Anh, L.D. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Construct. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- Samma, H.; Suandi, A.S.; Ismail, N.A.; Sulaiman, S. Evolving Pre-Trained CNN Using Two-Layers Optimizer for Road Damage Detection from Drone Images. IEEE Access 2021, 9, 158215–158226. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
Types of Road Damage | Description | Class Name |
---|---|---|
Longitudinal cracking | Parallel to the centerline of the road | Longitudinal crack |
Alligator cracking | Interlaced cracking pattern | Alligator crack |
No cracking | No distress | No crack |
Training | Validation | Test |
---|---|---|
1643 | 823 | 821 |
Model | Number of Parameters |
---|---|
CNN | 479971 |
VGG-19 | 20099651 |
Class Name | Recall | Precision | F1-Score |
---|---|---|---|
Alligator crack | 0.9522 | 0.9177 | 0.9345 |
Longitudinal crack | 0.9157 | 0.8534 | 0.8853 |
No crack | 0.9232 | 0.9908 | 0.9558 |
Class Name | Recall | Precision | F1-Score |
---|---|---|---|
Alligator crack | 0.9692 | 0.8289 | 0.8934 |
Longitudinal crack | 0.7878 | 0.9528 | 0.8624 |
No crack | 0.9427 | 0.9542 | 0.9483 |
Model | Recall | Precision | F1-Score |
---|---|---|---|
CNN | 0.9319 | 0.9319 | 0.9319 |
VGG-19 | 0.9076 | 0.9076 | 0.9076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammouch, W.; Chouiekh, C.; Khaissidi, G.; Mrabti, M. Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network. Infrastructures 2022, 7, 152. https://doi.org/10.3390/infrastructures7110152
Hammouch W, Chouiekh C, Khaissidi G, Mrabti M. Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network. Infrastructures. 2022; 7(11):152. https://doi.org/10.3390/infrastructures7110152
Chicago/Turabian StyleHammouch, Wafae, Chaymae Chouiekh, Ghizlane Khaissidi, and Mostafa Mrabti. 2022. "Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network" Infrastructures 7, no. 11: 152. https://doi.org/10.3390/infrastructures7110152
APA StyleHammouch, W., Chouiekh, C., Khaissidi, G., & Mrabti, M. (2022). Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network. Infrastructures, 7(11), 152. https://doi.org/10.3390/infrastructures7110152