First Level Pre- and Post-Earthquake Building Seismic Assessment Protocol Based on Dynamic Characteristics Extracted In Situ
Abstract
:1. Introduction
2. The Screen and Measure First Level Pre- and Post-Seismic Assessment (SMSA) Methodology
- Site visit and installation of equipment: (i) fast-track inspection of the building, (ii) building taxonomy based on several parameters, i.e., construction date, height, construction material, (iii) installation and operation of three-dimensional accelerograph on building top.
- Operational Modal Analysis: (i) collection and automated treatment of measurements, (ii) derivation of building fundamental elastic frequency after statistical manipulation of ambient vibration data (e.g., averaging, cut-off strong excitations, etc.).
- Performance Analysis: (i) correction of elastic dominant frequency to an effective sort based on pushover curves of taxonomy in order to take into account elastoplastic behavior, (ii) targeted displacement is computed from the relation proposed in FEMA 356 [20] as well as in the Greek Code of Interventions on RC buildings called “KAN.EPE” [21], (iii) calculation of probability of being in or exceeding a given damage state (i.e., slight, moderate, extensive, complete) based on estimated interstory drifts for a specific earthquake scenario.
2.1. Site Visit and Installation of Equipment
2.1.1. Building Inspection
2.1.2. Building Classification
- Material (e.g., masonry, steel, concrete),
- Structural system (e.g., moment frames, shear walls),
- Seismic design level (i.e., the level of seismic design code used, moderate-code, low-code or pre-code design levels),
- Height and number of stories (e.g., low-rise, mid-rise or high-rise).
2.1.3. Installation and Operation of the Accelerograph
2.2. Operational Modal Analysis
- The standard deviation for each measurement file is calculated.
- A window of 30 s is selected.
- The standard deviation for the current window is calculated. If this is less than the standard deviation of the corresponding file, Fast Fourier Transform (FFT) is performed. Otherwise, the window moves without overlapping with the previous one. This step is necessary in order to distinguish ambient noise measurements from all those not subject to the assumption of white noise, such as stronger local (and not) excitations.
- For the accepted windows of previous steps, FFTs are calculated, the amplitude of each of these windows is summed and the mean value of those is calculated.
- From the peaks of the averaged Fourier spectra, the dominant eigenfrequencies (natural periods) of the structure (lower values) in each direction are determined. There are also some peaks at higher frequencies that are related to local eigenmodes of the structure. Observing the eigenfrequencies, they are unchanged over the period of the file measurements under consideration.
2.3. Performance Analysis
2.3.1. Correction of Elastic Dominant Frequency
2.3.2. Target Displacement Calculation
3. Experimental Cases for 27 RC Buildings
4. Numerical Validation with FEM (the 2 Building Case Studies)
4.1. Building 1
4.2. Building 2
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADRS | Acceleration-Displacement Response Spectrum |
AVT | Ambient Vibration Testing |
EMA | Experimental Modal Analysis |
FEM | Finite Element Method |
FEMA | Federal Emergency Management Agency |
FFT | Fast Fourier transform |
MDOF | Multiple Degree of Freedoms |
OMA | Operation Modal Analysis |
RC | Reinforced Concrete |
RVS | Rapid Visual Screening |
SDOF | Single Degree of Freedom |
SHM | Structural Health Monitoring |
SMSA | Screen and Measure first level Seismic Assessment methodology |
USGS | U.S. Geological Survey |
Appendix A. Experimental vs. Empirically Calculated 1st Eigenperiod
Appendix A.1. Trend Lines
No. | (s) | (s) | (s) | (s) |
---|---|---|---|---|
1 | 0.256 | 0.736 | 0.805 | 0.374 |
2 | 0.256 | 0.650 | 0.694 | 0.330 |
3 | 0.303 | 0.655 | 0.701 | 0.333 |
4 | 0.500 | 0.913 | 1.043 | 0.466 |
5 | 0.909 | 0.851 | 0.959 | 0.434 |
6 | 0.161 | 0.340 | 0.319 | 0.171 |
7 | 0.166 | 0.450 | 0.446 | 0.227 |
8 | 0.172 | 0.444 | 0.439 | 0.224 |
9 | 0.151 | 0.336 | 0.315 | 0.169 |
10 | 0.258 | 0.513 | 0.523 | 0.260 |
11 | 0.244 | 0.390 | 0.376 | 0.197 |
12 | 0.361 | 0.728 | 0.795 | 0.370 |
13 | 0.140 | 0.330 | 0.307 | 0.166 |
14 | 0.179 | 0.525 | 0.538 | 0.266 |
15 | 0.204 | 0.513 | 0.523 | 0.260 |
16 | 0.221 | 0.409 | 0.398 | 0.206 |
17 | 0.119 | 0.323 | 0.300 | 0.162 |
18 | 0.299 | 0.644 | 0.687 | 0.327 |
19 | 0.272 | 0.453 | 0.450 | 0.229 |
20 | 0.216 | 0.484 | 0.487 | 0.245 |
21 | 0.181 | 0.453 | 0.450 | 0.229 |
22 | 0.184 | 0.484 | 0.487 | 0.245 |
23 | 0.294 | 0.586 | 0.613 | 0.297 |
24 | 0.145 | 0.456 | 0.454 | 0.230 |
25 | 0.240 | 0.502 | 0.509 | 0.254 |
26 | 0.400 | 0.513 | 0.523 | 0.260 |
27 | 0.217 | 0.330 | 0.307 | 0.166 |
Appendix A.2. Sensitivity Analysis
No. | (s) | (s) | (s) | ||||
---|---|---|---|---|---|---|---|
1 | 0.349 | 0.520 | 0.493 | 0.037 | 0.361 | 0.510 | 0.711 |
2 | 0.395 | 0.460 | 0.558 | 0.042 | 0.319 | 0.451 | 0.805 |
3 | 0.462 | 0.463 | 0.654 | 0.049 | 0.321 | 0.454 | 0.943 |
4 | 0.548 | 0.646 | 0.775 | 0.058 | 0.448 | 0.633 | 1.117 |
5 | 1.068 | 0.602 | 1.511 | 0.113 | 0.417 | 0.590 | 2.179 |
6 | 0.472 | 0.240 | 0.668 | 0.050 | 0.167 | 0.236 | 0.963 |
7 | 0.369 | 0.318 | 0.521 | 0.039 | 0.221 | 0.312 | 0.752 |
8 | 0.387 | 0.314 | 0.547 | 0.041 | 0.218 | 0.308 | 0.789 |
9 | 0.448 | 0.238 | 0.634 | 0.048 | 0.165 | 0.233 | 0.914 |
10 | 0.503 | 0.363 | 0.712 | 0.053 | 0.252 | 0.356 | 1.026 |
11 | 0.626 | 0.276 | 0.885 | 0.066 | 0.191 | 0.270 | 1.277 |
12 | 0.496 | 0.515 | 0.701 | 0.053 | 0.357 | 0.505 | 1.012 |
13 | 0.425 | 0.233 | 0.602 | 0.045 | 0.162 | 0.229 | 0.868 |
14 | 0.340 | 0.371 | 0.481 | 0.036 | 0.258 | 0.364 | 0.693 |
15 | 0.397 | 0.363 | 0.562 | 0.042 | 0.252 | 0.356 | 0.811 |
16 | 0.539 | 0.289 | 0.763 | 0.057 | 0.201 | 0.284 | 1.100 |
17 | 0.370 | 0.228 | 0.523 | 0.039 | 0.158 | 0.224 | 0.755 |
18 | 0.465 | 0.456 | 0.657 | 0.049 | 0.316 | 0.447 | 0.948 |
19 | 0.601 | 0.320 | 0.851 | 0.064 | 0.222 | 0.314 | 1.227 |
20 | 0.446 | 0.342 | 0.631 | 0.047 | 0.237 | 0.335 | 0.910 |
21 | 0.399 | 0.320 | 0.564 | 0.042 | 0.222 | 0.314 | 0.814 |
22 | 0.381 | 0.342 | 0.538 | 0.040 | 0.237 | 0.335 | 0.776 |
23 | 0.502 | 0.414 | 0.710 | 0.053 | 0.287 | 0.406 | 1.024 |
24 | 0.318 | 0.323 | 0.449 | 0.034 | 0.224 | 0.316 | 0.648 |
25 | 0.478 | 0.355 | 0.677 | 0.051 | 0.246 | 0.348 | 0.976 |
26 | 0.778 | 0.363 | 1.100 | 0.083 | 0.252 | 0.356 | 1.587 |
27 | 0.658 | 0.233 | 0.931 | 0.070 | 0.162 | 0.229 | 1.342 |
No. | (s) | (s) | (s) | (s) | (s) | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.318 | 0.569 | 0.450 | 0.023 | 0.383 | 0.542 | 0.669 | 0.389 | 0.559 | 0.658 |
2 | 0.369 | 0.491 | 0.522 | 0.027 | 0.330 | 0.467 | 0.776 | 0.335 | 0.481 | 0.765 |
3 | 0.432 | 0.496 | 0.611 | 0.032 | 0.334 | 0.472 | 0.908 | 0.339 | 0.486 | 0.895 |
4 | 0.479 | 0.738 | 0.678 | 0.035 | 0.497 | 0.702 | 1.007 | 0.505 | 0.726 | 0.990 |
5 | 0.948 | 0.678 | 1.340 | 0.070 | 0.456 | 0.646 | 1.991 | 0.464 | 0.667 | 1.958 |
6 | 0.503 | 0.225 | 0.712 | 0.037 | 0.152 | 0.215 | 1.058 | 0.153 | 0.219 | 1.047 |
7 | 0.372 | 0.316 | 0.525 | 0.027 | 0.212 | 0.300 | 0.781 | 0.215 | 0.308 | 0.771 |
8 | 0.391 | 0.310 | 0.553 | 0.029 | 0.209 | 0.295 | 0.821 | 0.212 | 0.303 | 0.811 |
9 | 0.479 | 0.223 | 0.677 | 0.035 | 0.150 | 0.212 | 1.006 | 0.151 | 0.216 | 0.996 |
10 | 0.494 | 0.370 | 0.699 | 0.036 | 0.249 | 0.352 | 1.038 | 0.252 | 0.361 | 1.024 |
11 | 0.649 | 0.266 | 0.918 | 0.048 | 0.179 | 0.253 | 1.364 | 0.181 | 0.258 | 1.349 |
12 | 0.454 | 0.562 | 0.642 | 0.033 | 0.378 | 0.535 | 0.954 | 0.384 | 0.552 | 0.939 |
13 | 0.456 | 0.217 | 0.645 | 0.034 | 0.146 | 0.207 | 0.959 | 0.148 | 0.211 | 0.949 |
14 | 0.332 | 0.380 | 0.470 | 0.024 | 0.256 | 0.362 | 0.698 | 0.259 | 0.371 | 0.689 |
15 | 0.390 | 0.370 | 0.552 | 0.029 | 0.249 | 0.352 | 0.820 | 0.252 | 0.361 | 0.809 |
16 | 0.554 | 0.282 | 0.784 | 0.041 | 0.189 | 0.268 | 1.164 | 0.192 | 0.274 | 1.151 |
17 | 0.399 | 0.212 | 0.564 | 0.029 | 0.143 | 0.202 | 0.838 | 0.144 | 0.206 | 0.829 |
18 | 0.436 | 0.486 | 0.616 | 0.032 | 0.327 | 0.462 | 0.916 | 0.332 | 0.476 | 0.902 |
19 | 0.605 | 0.318 | 0.856 | 0.045 | 0.214 | 0.303 | 1.272 | 0.217 | 0.310 | 1.256 |
20 | 0.443 | 0.344 | 0.627 | 0.033 | 0.232 | 0.328 | 0.932 | 0.235 | 0.336 | 0.920 |
21 | 0.402 | 0.318 | 0.568 | 0.030 | 0.214 | 0.303 | 0.844 | 0.217 | 0.310 | 0.833 |
22 | 0.378 | 0.344 | 0.535 | 0.028 | 0.232 | 0.328 | 0.795 | 0.235 | 0.336 | 0.784 |
23 | 0.480 | 0.433 | 0.679 | 0.035 | 0.292 | 0.412 | 1.008 | 0.296 | 0.424 | 0.994 |
24 | 0.319 | 0.321 | 0.452 | 0.023 | 0.216 | 0.305 | 0.671 | 0.219 | 0.313 | 0.663 |
25 | 0.472 | 0.360 | 0.667 | 0.035 | 0.242 | 0.342 | 0.991 | 0.245 | 0.351 | 0.978 |
26 | 0.764 | 0.370 | 1.080 | 0.056 | 0.249 | 0.352 | 1.605 | 0.252 | 0.361 | 1.584 |
27 | 0.706 | 0.217 | 0.998 | 0.052 | 0.146 | 0.207 | 1.483 | 0.148 | 0.211 | 1.468 |
References
- Rasulo, A.; Testa, C.; Borzi, B. Seismic Risk Analysis at Urban Scale in Italy. In Proceedings of the Computational Science and Its Applications—ICCSA 2015, Banff, AB, Canada, 22–25 June 2015; Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 403–414. [Google Scholar]
- Rasulo, A.; Fortuna, M.A.; Borzi, B. A Seismic Risk Model for Italy. In Proceedings of the Computational Science and Its Applications—ICCSA, Beijing, China, 4–7 July 2016; Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A., Torre, C.M., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 198–213. [Google Scholar]
- United States Geological Survey. Earthquake Counts by U.S. State. 2019. Available online: https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics (accessed on 1 March 2022).
- FEMA. B-526, Earthquake Safety Checklist; Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division: Washington, DC, USA, 2017.
- Department of Homeland Security USA. Ready Campaign. 2020. Available online: https://www.ready.gov/earthquakes (accessed on 1 March 2022).
- Allaf, N.; Charleson, A. Seismic retrofitting and the integration of architecture and structure. In Proceedings of the Conference of the New Zealand Society for Earthquakel Engineering, Christchurch, New Zealand, 1–3 April 2016. [Google Scholar]
- Erdik, M. Earthquake risk assessment. Bull. Earthq. Eng. 2017, 15, 5055–5092. [Google Scholar] [CrossRef]
- Lagaros, N.D.; Charmpis, D.C.; Chatzieleftheriou, S.; Damikoukas, S. Vulnerability assessment of structures with stochastic properties subjected to random seismic excitation. Procedia Manuf. 2020, 44, 671–678. [Google Scholar] [CrossRef]
- FEMA. P-154: Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook; Federal Emergency Management Agency: Washington, DC, USA, 2015.
- Knott, C. Seismic Hazard Assessment of Oregon: Analysis of Earthquake Resilience within State Wide Infrastructure and the Cost of Retrofitting. Acad. Excell. Showc. Proc. 2020, 258. Available online: https://digitalcommons.wou.edu/aes/258 (accessed on 1 March 2022).
- Greek Earthquake Planning and Protection Organization (EPPO). Pre-Seismic Inspection of Public and Beneficial Buildings; Greek Earthquake Planning and Protection Organization (EPPO): Athens, Greece, 2022.
- Demartinos, K.; Dritsos, S. First-Level Pre-earthquake Assessment of Buildings Using Fuzzy Logic. Earthq. Spec. 2006, 22, 865–885. [Google Scholar] [CrossRef]
- Standoli, G.; Giordano, E.; Milani, G.; Clementi, F. Model Updating of Historical Belfries Based on OMA Identification Techniques. Int. J. Archit. Herit. 2020, 15, 1–25. [Google Scholar] [CrossRef]
- Lenci, S.; Consolini, L.; Clementi, F. On the experimental determination of dynamical properties of laminated glass. Ann. Solid Struct. Mech. 2015, 7, 27–43. [Google Scholar] [CrossRef]
- Marcheggiani, L.; Clementi, F.; Formisano, A. Static and dynamic testing of highway bridges: A best practice example. J. Civ. Struct. Health Monit. 2020, 10, 43–56. [Google Scholar]
- Gentile, C.; Saisi, A. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr. Build. Mater. 2007, 21, 1311–1321. [Google Scholar] [CrossRef]
- Beskhyroun, S.; Navabian, N.; Wotherspoon, L.; Ma, Q. Dynamic behaviour of a 13-story reinforced concrete building under ambient vibration, forced vibration, and earthquake excitation. J. Build. Eng. 2020, 28, 101066. [Google Scholar] [CrossRef]
- Ferraioli, M.; Miccoli, L.; Abruzzese, D.; Mandara, A. Dynamic characterisation and seismic assessment of medieval masonry towers. Nat. Hazards 2017, 86, 489–515. [Google Scholar] [CrossRef]
- Gentile, C.; Saisi, A.; Cabboi, A. Structural identification of a masonry tower based on operational modal analysis. Int. J. Archit. Herit. 2015, 9, 98–110. [Google Scholar] [CrossRef]
- FEMA 356. Prestandard and Commentary for the Seismic Rehabilitation of Buildings; Federal Emergency Management Agency: Washington, DC, USA, 2000.
- EPPO. Code for Structural Interventions (KAN.EPE); Earthquake Protection and Planning Organization: Athens, Greece, 2017. [Google Scholar]
- Chatzieleftheriou, S.; Damikoukas, S. Optimal Sensor Installation to Extract the Mode Shapes of a Building–Rotational DOFs, Torsional Modes and Spurious Modes Detection. Technical report, Unquake (Structures & Sensors P.C.). 2021. Available online: https://www.researchgate.net/institution/Unquake/post/6130bc2ca1abfe50c1559a26_Download_White_Paper_Optimal_sensor_installation_to_extract_the_mode_shapes_of_a_building-Rotational_DOFs_torsional_modes_and_spurious_modes_detection (accessed on 1 March 2022).
- FEMA. Hazus—MH 2.1: Technical Manual; Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division: Washington, DC, USA, 2013.
- Esteghamati, M.Z.; Lee, J.; Musetich, M.; Flint, M.M. INSSEPT: An open-source relational database of seismic performance estimation to aid with early design of buildings. Earthq. Spec. 2020, 36, 2177–2197. [Google Scholar] [CrossRef]
- Omoya, M.; Ero, I.; Esteghamati, M.Z.; Burton, H.V.; Brandenberg, S.; Sun, H.; Yi, Z.; Kang, H.; Nweke, C.C. A relational database to support post-earthquake building damage and recovery assessment. Earthq. Spec. 2022, 38, 1549–1569. [Google Scholar] [CrossRef]
- Unquake. Unquake Accelerograph-Accelerometer Specifications. Available online: https://www.unquake.co (accessed on 1 March 2022).
- Whittaker, E.T. XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory. Proc. R. Soc. Edinb. 1915, 35, 181–194. [Google Scholar] [CrossRef]
- Blu Tack. Blu Tack®. 2020. Available online: http://www.blu-tack.co.uk/ (accessed on 1 March 2022).
- Bulajić, B.D.; Todorovska, M.I.; Manić, M.I.; Trifunac, M.D. Structural health monitoring study of the ZOIL building using earthquake records. Soil Dyn. Earthq. Eng. 2020, 133, 106105. [Google Scholar] [CrossRef]
- Trifunac, M.D.; Todorovska, M.I.; Manić, M.I.; Bulajić, B.D. Variability of the fixed-base and soil–structure system frequencies of a building—The case of Borik-2 building. Struct. Control. Health Monit. 2010, 17, 120–151. [Google Scholar] [CrossRef]
- ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings; Applied Technology Council (ATC): Redwood City, CA, USA, 1996. [Google Scholar]
- Fajfar, P.; Gašperšič, P. The N2 method for the seismic damage analysis of RC buildings. Earthq. Eng. Struct. Dyn. 1996, 25, 31–46. [Google Scholar] [CrossRef]
- Kreslin, M.; Fajfar, P. The extended N2 method considering higher mode effects in both plan and elevation. Bull. Earthq. Eng. 2012, 10, 695–715. [Google Scholar] [CrossRef]
- European Committee for Standardization (CEN). Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings); European Committee for Standardization (CEN): Brussels, Belgium, 2004. [Google Scholar]
- Uniform Building Code. Uniform Building Code (UBC-97); Whitter: Whitter, CA, USA, 1997. [Google Scholar]
- National Research Council of Canada (NRC/IRC). National Building Code of Canada; National Research Council of Canada (NRC/IRC): Ontario, OT, Canada, 2005. [Google Scholar]
- Chiauzzi, L.; Masi, A.; Mucciarelli, M.; Cassidy, J.; Kutyn, K.; Traber, J.; Ventura, C.; Yao, F. Estimate of Fundamental Period of Reinforced Concrete Buildings: Code Provisions vs. Experimental Measures in Victoria and Vancouver (BC, Canada). In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
No. | Design Year | Height (m) | (Hz) | (Hz) | (Hz) | Pds1 | Pds2 | Pds3 | Pds4 | Pds5 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | C3 | 1992 | 21.00 | 3.90 | 3.49 | 1.36 | 0.78 | 0.17 | 0.05 | 0.00 | 0.00 |
2 | C3 | 1991 | 17.80 | 3.90 | 3.37 | 1.54 | 0.56 | 0.28 | 0.14 | 0.01 | 0.00 |
3 | C3 | 1987 | 18.00 | 3.30 | 2.82 | 1.53 | 0.47 | 0.31 | 0.19 | 0.02 | 0.01 |
4 | C1 | 1970 | 28.00 | 2.00 | 1.62 | 1.10 | 0.55 | 0.21 | 0.19 | 0.04 | 0.01 |
5 | C1 | 1970 | 25.50 | 1.10 | 0.88 | 1.17 | 0.16 | 0.22 | 0.40 | 0.17 | 0.05 |
6 | C3 | 1987 | 7.50 | 6.23 | 4.80 | 2.94 | 0.62 | 0.22 | 0.13 | 0.03 | 0.00 |
7 | C3 | 1970 | 10.90 | 6.03 | 4.85 | 2.22 | 0.71 | 0.19 | 0.09 | 0.01 | 0.00 |
8 | C3 | 1981 | 10.70 | 5.83 | 4.68 | 2.25 | 0.68 | 0.21 | 0.10 | 0.01 | 0.00 |
9 | C3 | 1974 | 7.40 | 6.63 | 5.10 | 2.97 | 0.66 | 0.20 | 0.12 | 0.02 | 0.01 |
10 | C3 | 1967 | 13.00 | 3.87 | 3.17 | 1.95 | 0.45 | 0.29 | 0.22 | 0.03 | 0.01 |
11 | C3 | 1969 | 9.00 | 4.10 | 3.23 | 2.57 | 0.24 | 0.25 | 0.33 | 0.15 | 0.03 |
12 | C3 | 1965 | 20.70 | 2.77 | 2.47 | 1.37 | 0.43 | 0.32 | 0.21 | 0.03 | 0.01 |
13 | C3 | 1964 | 7.20 | 7.13 | 5.47 | 3.03 | 0.55 | 0.24 | 0.17 | 0.04 | 0.00 |
14 | C3 | 1971 | 13.40 | 5.60 | 4.60 | 1.90 | 0.57 | 0.26 | 0.15 | 0.02 | 0.00 |
15 | C3 | 1976 | 13.00 | 4.90 | 4.01 | 1.95 | 0.62 | 0.24 | 0.12 | 0.01 | 0.00 |
16 | C3 | 1968 | 9.60 | 4.53 | 3.59 | 2.44 | 0.46 | 0.27 | 0.21 | 0.05 | 0.01 |
17 | C3 | 1982 | 7.00 | 8.37 | 6.40 | 3.10 | 0.78 | 0.15 | 0.06 | 0.01 | 0.00 |
18 | C3 | 1984 | 17.60 | 3.34 | 2.88 | 1.55 | 0.47 | 0.31 | 0.19 | 0.02 | 0.01 |
19 | C3 | 1960 | 11.00 | 3.67 | 2.95 | 2.21 | 0.23 | 0.26 | 0.34 | 0.13 | 0.03 |
20 | - | 1972 | 12.00 | 4.63 | - | 2.07 | - | - | - | - | - |
21 | - | 1974 | 11.00 | 5.53 | - | 2.21 | - | - | - | - | - |
22 | - | 1959 | 12.00 | 5.43 | - | 2.07 | - | - | - | - | - |
23 | - | 1959 | 15.50 | 3.40 | - | 1.71 | - | - | - | - | - |
24 | - | 1984 | 11.10 | 6.90 | - | 2.19 | - | - | - | - | - |
25 | - | 1981 | 12.60 | 4.17 | - | 1.99 | - | - | - | - | - |
26 | - | 1976 | 13.00 | 2.50 | - | 1.95 | - | - | - | - | - |
27 | - | 1980 | 7.20 | 4.61 | - | 3.03 | - | - | - | - | - |
Type | Building No. 1 | Building No. 2 | |
---|---|---|---|
Material Properties | Concrete | = 8 MPa | = 31.0 MPa |
Steel Reinforcement | S400 | S400 | |
Seismic | Ductility Class | DCL | DC |
Ground acceleration (g) | 0.19 | 0.12 | |
Importance factor | 1 (2) | 1 (2) | |
Ground details | Category | B | B |
Foundation factor | 1.00 | 1.00 | |
(kN/m) | 200 | 200 | |
(kPa/cm) | 300 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damikoukas, S.; Chatzieleftheriou, S.; Lagaros, N.D. First Level Pre- and Post-Earthquake Building Seismic Assessment Protocol Based on Dynamic Characteristics Extracted In Situ. Infrastructures 2022, 7, 115. https://doi.org/10.3390/infrastructures7090115
Damikoukas S, Chatzieleftheriou S, Lagaros ND. First Level Pre- and Post-Earthquake Building Seismic Assessment Protocol Based on Dynamic Characteristics Extracted In Situ. Infrastructures. 2022; 7(9):115. https://doi.org/10.3390/infrastructures7090115
Chicago/Turabian StyleDamikoukas, Spyros, Stavros Chatzieleftheriou, and Nikos D. Lagaros. 2022. "First Level Pre- and Post-Earthquake Building Seismic Assessment Protocol Based on Dynamic Characteristics Extracted In Situ" Infrastructures 7, no. 9: 115. https://doi.org/10.3390/infrastructures7090115
APA StyleDamikoukas, S., Chatzieleftheriou, S., & Lagaros, N. D. (2022). First Level Pre- and Post-Earthquake Building Seismic Assessment Protocol Based on Dynamic Characteristics Extracted In Situ. Infrastructures, 7(9), 115. https://doi.org/10.3390/infrastructures7090115