Demolition Waste Glass Usage in the Construction Industry
Abstract
:1. Introduction
2. Methods
2.1. Bibliometric Method
2.2. Qualitative Method
3. Results
3.1. Waste Classification
- Dangerous (asbestos, tar, etc.);
- Inert (concrete, bricks, plaster, asphalt, rock, sand, etc.);
- Non-inert (wood, metal, plastics, glass, paper, etc.);
- Nature-made waste (earthquakes, floods, tsunamis, hurricanes) [15].
- New residential construction;
- New non-residential construction;
- Residential demolition;
- Non-residential demolition;
- Residential refurbishment;
- Non-residential refurbishment.
3.2. Glass Classification
- Soda-lime glass (Container, float, sheet, light bulbs, and temperature ovenware glass. The sheet glass can be found in demolition glass. The sheet glass’ chemical composition is SiO2 71–73%, Al2O3 0.5–1.5%, Na2O 12–15%, MgO 1.5–3.5%, CaO 8–10%);
- Borosilicate glass (Sub-types of this glass are chemical apparatus; pharmaceutical; tungsten sealing. This type of glass contains B2O3 in amounts of 13–15%);
- Lead glasses (Sub-types of this glass are color TV funnels, neon tubing, electronic parts, and optical dense flint. This type of glass contains PbO in the amount of 23–65%);
- Barium glasses (Sub-types of this glass are color TV panels and optical dense barium crowns. This type of glass contains BaO in the amount of 2%, PbO in the amount of 2-41%, 10% SrO for color TV panels, and 9% of ZnO for optical dense barium crowns);
- Aluminosilicate glasses (Sub-types of this glass are combustion tubes, fiberglass, and resistor substrates. This type of glass contains Al2O3 in the amount of 16–24.5%).
3.3. Waste Reuse Applications
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (7)
3.3.1. Waste Glass in Aggregate and Cement Replacement in Concrete
3.3.2. Waste Glass in Gypsum Composite
3.3.3. Waste Glass in Pavement Solutions
3.3.4. Waste Glass in Geopolymer Mortars
3.3.5. Waste Glass in Foam Glass
3.3.6. Waste Glass in Glass Ceramics
3.3.7. Waste Glass as Soil Replacement
3.4. Circular Economy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Generation of Waste by Waste Category, Hazardousness and NACE Rev. 2. Activity. Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/default/table?lang=en (accessed on 29 October 2023).
- Treatment of Waste by Waste Category, Hazardousness and Waste Management Operation. Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wastrt__custom_8199412/default/table?lang=en (accessed on 29 October 2023).
- Economic Study on Recycling of Building Glass in Europe. Glass for Europe. Available online: https://www.glassforeurope.com/wp-content/uploads/2018/04/Economic-study-on-recycling-of-building-glass-in-Europe-Deloitte.pdf (accessed on 29 October 2023).
- Waste and Recycling. European Commission Site. Available online: https://environment.ec.europa.eu/topics/waste-and-recycling_en (accessed on 1 October 2023).
- Chandru, U.; Bahurudeen, A.; Senthilkumar, R. Systematic comparison of different recycled fine aggregates from construction and demolition wastes in OPC concrete and PPC concrete. J. Build. Eng. 2023, 75, 106768. [Google Scholar] [CrossRef]
- Butler, J.H.; Hooper, P.D. Chapter 15—Glass waste. In Waste, 2nd ed.; Letcher, T.M., Vallero, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 307–322. [Google Scholar] [CrossRef]
- Waste Management Law. Available online: https://likumi.lv/ta/en/en/id/221378-waste-management-law (accessed on 7 October 2023).
- Report on the Management of Construction and Demolition Waste in EU. European Commission Site. Available online: https://environment.ec.europa.eu/system/files/2020-12/2011_CDW_Report_0.pdf (accessed on 22 October 2023).
- Brar, T.S.; Kamal, M.A.; Emerson, P. Recycling of construction and demolition waste material for energy savings in India. Key Eng. Mater. 2015, 632, 107–117. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; Di Maio, F.; Sprecher, B.; Yang, X.; Tukker, A. An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Sci. Total Environ. 2022, 803, 149892. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, M.H.; Ranjith, P.G.; Hui Duan, W.; Haque, A.; Chen, B.K. Extensive use of waste glass in one-part alkali-activated materials: Towards sustainable construction practices. Waste Manag. 2021, 130, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Robert, D.; Baez, E.; Setunge, S. A new technology of transforming recycled glass waste to construction components. Constr. Build. Mater. 2021, 313, 125539. [Google Scholar] [CrossRef]
- Vigil de la Villa Mencía, R.; Frías, M.; Ramírez, S.M.; Carrasco, L.F.; Giménez, R.G. Concrete/glass construction and demolition waste (CDW) synergies in ternary eco-cement-paste mineralogy. Materials 2022, 15, 4661. [Google Scholar] [CrossRef] [PubMed]
- Bristogianni, T.; Oikonomopoulou, F. Glass up-casting: A review on the current challenges in glass recycling and a novel approach for recycling “as-is” glass waste into volumetric glass components. Glass Struct. Eng. 2023, 8, 255–302. [Google Scholar] [CrossRef]
- Nawaz, A.; Chen, J.; Su, X. Exploring the trends in construction and demolition waste (C&DW) research: A scientometric analysis approach. Sustain. Energy Technol. Assess. 2023, 55, 102953. [Google Scholar] [CrossRef]
- Soto-Paz, J.; Arroyo, O.; Torres-Guevara, L.E.; Parra-Orobio, B.A.; Casallas-Ojeda, M. The circular economy in the construction and demolition waste management: A comparative analysis in emerging and developed countries. J. Build. Eng. 2023, 78, 107724. [Google Scholar] [CrossRef]
- Nandal, M.; Sood, H.; Kumar Gupta, P.; Zia Ul Haq, M. Morphological and physical characterization of construction and demolition waste. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- McMellan, G.; Shand, E. Glass Engineering Handbook, 3rd ed.; McGraw-Hill: New York, NY, USA, 1984; p. 471. [Google Scholar]
- Bažant Zdeněk, P.; Zi, G.; Meyer, C. Fracture mechanics of ASR in concretes with waste glass particles of different sizes. J. Eng. Mech. 2000, 126, 226–232. [Google Scholar] [CrossRef]
- Jin, W.; Meyer, C.; Baxter, S. “Glascrete”—Concrete with glass aggregate. ACI Struct. J. 2000, 97, 208–2013. [Google Scholar]
- Ducman, V.; Mladenovič, A.; Šuput, J.S. Lightweight aggregate based on waste glass and its alkali–silica reactivity. Cem. Concr. Res. 2002, 32, 223–226. [Google Scholar] [CrossRef]
- Park, S.-B.; Lee, B.-C. Studies on expansion properties in mortar containing waste glass and fibers. Cem. Concr. Res. 2004, 34, 1145–1152. [Google Scholar] [CrossRef]
- Topçu, İ.B.; Canbaz, M. Properties of concrete containing waste glass. Cem. Concr. Res. 2004, 34, 267–274. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Gnappi, G.; Moriconi, G.; Montenero, A. Reuse of ground waste glass as aggregate for mortars. Waste Manag. 2005, 25, 197–201. [Google Scholar] [CrossRef]
- Terro, M.J. Properties of concrete made with recycled crushed glass at elevated temperatures. Build. Environ. 2006, 41, 633–639. [Google Scholar] [CrossRef]
- Batayneh, M.; Marie, I.; Asi, I. Use of selected waste materials in concrete mixes. Waste Manag. 2007, 27, 1870–1876. [Google Scholar] [CrossRef]
- Taha, B.; Nounu, G. Properties of concrete contains mixed colour waste recycled glass as sand and cement replacement. Constr. Build. Mater. 2008, 22, 713–720. [Google Scholar] [CrossRef]
- Ismail, Z.Z.; Al-Hashmi, E.A. Recycling of waste glass as a partial replacement for fine aggregate in concrete. Waste Manag. 2009, 29, 655–659. [Google Scholar] [CrossRef]
- Limbachiya, M.C. Bulk engineering and durability properties of washed glass sand concrete. Constr. Build. Mater. 2009, 23, 1078–1083. [Google Scholar] [CrossRef]
- de Castro, S.; de Brito, J. Evaluation of the durability of concrete made with crushed glass aggregates. J. Clean. Prod. 2013, 41, 7–14. [Google Scholar] [CrossRef]
- Lee, G.; Poon, C.S.; Wong, Y.L.; Ling, T.C. Effects of recycled fine glass aggregates on the properties of dry–mixed concrete blocks. Constr. Build. Mater. 2013, 38, 638–643. [Google Scholar] [CrossRef]
- Tan, K.H.; Du, H. Use of waste glass as sand in mortar: Part I—Fresh, mechanical and durability properties. Cem. Concr. Compos. 2013, 35, 109–117. [Google Scholar] [CrossRef]
- Zheng, K. 11—Recycled glass concrete. In Eco-Efficient Concrete; Pacheco-Torgal, F., Jalali, S., Labrincha, J., John, V.M., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 241–270. [Google Scholar] [CrossRef]
- Abdallah, S.; Fan, M. Characteristics of concrete with waste glass as fine aggregate replacement. Int. J. Eng. Tech. Res. 2014, 2, 11–17. Available online: https://www.erpublication.org/published_paper/IJETR021927.pdf (accessed on 23 November 2023).
- Adaway, M.; Wang, Y. Recycled glass as a partial replacement for fine aggregate in structural concrete—Effects on compressive strength. Electron. J. Struct. Eng. 2015, 14, 116–122. [Google Scholar] [CrossRef]
- Spiesz, P.; Rouvas, S.; Brouwers, H.J.H. Utilization of waste glass in translucent and photocatalytic concrete. Constr. Build. Mater. 2016, 128, 436–448. [Google Scholar] [CrossRef]
- Gorospe, K.; Booya, E.; Ghaednia, H.; Das, S. Effect of various glass aggregates on the shrinkage and expansion of cement mortar. Constr. Build. Mater. 2019, 210, 301–311. [Google Scholar] [CrossRef]
- Khan, M.N.N.; Saha, A.K.; Sarker, P.K. Reuse of waste glass as a supplementary binder and aggregate for sustainable cement-based construction materials: A review. J. Build. Eng. 2020, 28, 101052. [Google Scholar] [CrossRef]
- Alducin-Ochoa, J.M.; Martín-del-Río, J.J.; Torres-González, M.; Flores-Alés, V.; Hernández-Cruz, D. Performance of mortars based on recycled glass as aggregate by accelerated decay tests (ADT). Constr. Build. Mater. 2021, 300, 124057. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Siddique, R.; Mendis, P.; Zhuge, Y.; Wong, H.S.; Lokuge, W.; Aravinthan, T.; Schubel, P. Recycling of landfill wastes (tyres, plastics and glass) in construction—A review on global waste generation, performance, application and future opportunities. Resour. Conserv. Recycl. 2021, 173, 105745. [Google Scholar] [CrossRef]
- Çelik, A.İ.; Özkılıç, Y.O.; Zeybek, Ö.; Karalar, M.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Bejinariu, C. Mechanical behavior of crushed waste glass as replacement of aggregates. Materials 2022, 15, 8093. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.F.; Rehman, Z.u.; Kuruc, M.; Medveď, I.; Bačinskas, D.; Čurpek, J.; Čekon, M.; Ijaz, N.; Ansari, W.S. Lightweight concrete from a perspective of sustainable reuse of waste byproducts. Constr. Build. Mater. 2022, 319, 126061. [Google Scholar] [CrossRef]
- Ahmad, S.; Upadhyay, S.; Umar, A.; Al-Osta, M.A. Effect of recycled crushed glass and recycled coarse aggregate on the properties of self-compacting concrete. Case Stud. Constr. Mater. 2023, 19, e02532. [Google Scholar] [CrossRef]
- Shao, Y.; Lefort, T.; Moras, S.; Rodriguez, D. Studies on concrete containing ground waste glass. Cem. Concr. Res. 2000, 30, 91–100. [Google Scholar] [CrossRef]
- Dyer Thomas, D.; Dhir Ravindra, K. Chemical reactions of glass cullet used as cement component. J. Mater. Civ. Eng. 2001, 13, 412–417. [Google Scholar] [CrossRef]
- Shayan, A.; Xu, A. Value-added utilisation of waste glass in concrete. Cem. Concr. Res. 2004, 34, 81–89. [Google Scholar] [CrossRef]
- Shi, C.; Wu, Y.; Riefler, C.; Wang, H. Characteristics and pozzolanic reactivity of glass powders. Cem. Concr. Res. 2005, 35, 987–993. [Google Scholar] [CrossRef]
- Shayan, A.; Xu, A. Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs. Cem. Concr. Res. 2006, 36, 457–468. [Google Scholar] [CrossRef]
- Shi, C.; Zheng, K. A review on the use of waste glasses in the production of cement and concrete. Resour. Conserv. Recycl. 2007, 52, 234–247. [Google Scholar] [CrossRef]
- Schwarz, N.; Neithalath, N. Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration. Cem. Concr. Res. 2008, 38, 429–436. [Google Scholar] [CrossRef]
- Idir, R.; Cyr, M.; Tagnit-Hamou, A. Use of fine glass as ASR inhibitor in glass aggregate mortars. Constr. Build. Mater. 2010, 24, 1309–1312. [Google Scholar] [CrossRef]
- Chidiac, S.E.; Mihaljevic, S.N. Performance of dry cast concrete blocks containing waste glass powder or polyethylene aggregates. Cem. Concr. Compos. 2011, 33, 855–863. [Google Scholar] [CrossRef]
- Liu, M. Incorporating ground glass in self-compacting concrete. Constr. Build. Mater. 2011, 25, 919–925. [Google Scholar] [CrossRef]
- Ali, E.E.; Al-Tersawy, S.H. Recycled glass as a partial replacement for fine aggregate in self compacting concrete. Constr. Build. Mater. 2012, 35, 785–791. [Google Scholar] [CrossRef]
- Matos, A.M.; Sousa-Coutinho, J. Durability of mortar using waste glass powder as cement replacement. Constr. Build. Mater. 2012, 36, 205–215. [Google Scholar] [CrossRef]
- Kara, P.; Korjakins, A. High Efficiency Ecological Concrete. Key Eng. Mater. 2014, 604, 157–160. [Google Scholar] [CrossRef]
- Bignozzi, M.C.; Saccani, A.; Barbieri, L.; Lancellotti, I. Glass waste as supplementary cementing materials: The effects of glass chemical composition. Cem. Concr. Compos. 2015, 55, 45–52. [Google Scholar] [CrossRef]
- Kim, J.; Yi, C.; Zi, G. Waste glass sludge as a partial cement replacement in mortar. Constr. Build. Mater. 2015, 75, 242–246. [Google Scholar] [CrossRef]
- Afshinnia, K.; Rangaraju, P.R. Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Constr. Build. Mater. 2016, 117, 263–272. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Aboshama, A.Y. Utilization of waste glass powder in the production of cement and concrete. Constr. Build. Mater. 2016, 124, 866–877. [Google Scholar] [CrossRef]
- Kara, P.; Csetényi, L.J.; Borosnyói, A. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures. IOP Conf. Ser. Mater. Sci. Eng. 2016, 123, 012057. [Google Scholar] [CrossRef]
- Omran, A.; Tagnit-Hamou, A. Performance of glass-powder concrete in field applications. Constr. Build. Mater. 2016, 109, 84–95. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Pugazhmani, G.; Sripragadeesh, R.; Muthu, D.; Venkatasubramanian, C. Experimental study on the mechanical and durability properties of concrete with waste glass powder and ground granulated blast furnace slag as supplementary cementitious materials. Constr. Build. Mater. 2017, 156, 739–749. [Google Scholar] [CrossRef]
- Elaqra, H.A.; Haloub, M.A.A.; Rustom, R.N. Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Constr. Build. Mater. 2019, 203, 75–82. [Google Scholar] [CrossRef]
- Hilton, B.; Bawden, K.; Winnebeck, K.; Chandrasiri, C.; Ariyachandra, E.; Peethamparan, S. The functional and environmental performance of mixed cathode ray tubes and recycled glass as partial replacement for cement in concrete. Resour. Conserv. Recycl. 2019, 151, 104451. [Google Scholar] [CrossRef]
- Bueno, E.T.; Paris, J.M.; Clavier, K.A.; Spreadbury, C.; Ferraro, C.C.; Townsend, T.G. A review of ground waste glass as a supplementary cementitious material: A focus on alkali-silica reaction. J. Clean. Prod. 2020, 257, 120180. [Google Scholar] [CrossRef]
- Esmaeili, J.; Oudah Al-Mwanes, A. A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Mater. Today Proc. 2021, 42, 1958–1965. [Google Scholar] [CrossRef]
- Gimenez-Carbo, E.; Soriano, L.; Roig-Flores, M.; Serna, P. Characterization of glass powder from glass recycling process waste and preliminary testing. Materials 2021, 14, 2971. [Google Scholar] [CrossRef]
- Baikerikar, A.; Mudalgi, S.; Ram, V.V. Utilization of waste glass powder and waste glass sand in the production of eco-friendly concrete. Constr. Build. Mater. 2023, 377, 131078. [Google Scholar] [CrossRef]
- Kriptavičius, D.; Girskas, G.; Ivanauskas, E.; Korjakins, A. Complex effect of Portland cement modified with natural zeolite and ground glass mixture on durability properties of concrete. Buildings 2023, 13, 2576. [Google Scholar] [CrossRef]
- Muhedin, D.A.; Ibrahim, R.K. Effect of waste glass powder as partial replacement of cement & sand in concrete. Case Stud. Constr. Mater. 2023, 19, e02512. [Google Scholar] [CrossRef]
- Serelis, E.; Vaitkevicius, V. Effect of waste glass powder and liquid glass on the physico-chemistry of aluminum-based ultra-lightweight concrete. Constr. Build. Mater. 2023, 390, 131615. [Google Scholar] [CrossRef]
- Zhang, L.; Mo, K.H.; Yap, S.P.; Gencel, O.; Ling, T.-C. Mechanical strength, water resistance and drying shrinkage of lightweight hemihydrate phosphogypsum-cement composite with ground granulated blast furnace slag and recycled waste glass. Constr. Build. Mater. 2022, 345, 128232. [Google Scholar] [CrossRef]
- Zhang, L.; Mo, K.H.; Yap, S.P.; Tan, T.H. Recycled waste glass as fine aggregate in eco-friendly gypsum-cement composite. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Arulrajah, A.; Disfani, M.M.; Haghighi, H.; Mohammadinia, A.; Horpibulsuk, S. Modulus of rupture evaluation of cement stabilized recycled glass/recycled concrete aggregate blends. Constr. Build. Mater. 2015, 84, 146–155. [Google Scholar] [CrossRef]
- Saberian, M.; Li, J.; Boroujeni, M.; Law, D.; Li, C.-Q. Application of demolition wastes mixed with crushed glass and crumb rubber in pavement base/subbase. Resour. Conserv. Recycl. 2020, 156, 104722. [Google Scholar] [CrossRef]
- Mohajerani, A.; Vajna, J.; Cheung, T.H.H.; Kurmus, H.; Arulrajah, A.; Horpibulsuk, S. Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 2017, 156, 443–467. [Google Scholar] [CrossRef]
- Mammeri, A.; Vaillancourt, M.; Shamsaei, M. Experimental and numerical investigation of using waste glass aggregates in asphalt pavement to mitigate urban heat islands. Clean Technol. Environ. Policy 2023, 25, 1935–1948. [Google Scholar] [CrossRef]
- Balan, L.A.; Anupam, B.R.; Sharma, S. Thermal and mechanical performance of cool concrete pavements containing waste glass. Constr. Build. Mater. 2021, 290, 123238. [Google Scholar] [CrossRef]
- Patel, N.; Amin, S.; Iqbal, R. Use of reclaimed asphalt pavement and recycled waste glass as partial aggregate replacements in concrete pavements. In Role of Circular Economy in Resource Sustainability; Ghadimi, P., Gilchrist, M.D., Xu, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 97–109. [Google Scholar] [CrossRef]
- Maurya, N.; Srivastav, Y.; Rawat, S.; Ranjan, Y.; Srivastava, R.; Shukla, B.K.; Varadharajan, S. Reinforcing civil infrastructure with waste glass-enhanced concrete: A comprehensive review of properties, performance and applications. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Gedik, A. An exploration into the utilization of recycled waste glass as a surrogate powder to crushed stone dust in asphalt pavement construction. Constr. Build. Mater. 2021, 300, 123980. [Google Scholar] [CrossRef]
- Vafaei, M.; Allahverdi, A. High strength geopolymer binder based on waste-glass powder. Adv. Powder Technol. 2017, 28, 215–222. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Ngo, T.; Kashani, A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. J. Clean. Prod. 2018, 193, 593–603. [Google Scholar] [CrossRef]
- Lu, J.-X.; Poon, C.S. Use of waste glass in alkali activated cement mortar. Constr. Build. Mater. 2018, 160, 399–407. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.-W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of glass wastes for the development of geopolymer composites—Durability, thermal and microstructural properties: A review. Constr. Build. Mater. 2019, 222, 673–687. [Google Scholar] [CrossRef]
- Zhang, B.; He, P.; Poon, C.S. Optimizing the use of recycled glass materials in alkali activated cement (AAC) based mortars. J. Clean. Prod. 2020, 255, 120228. [Google Scholar] [CrossRef]
- Gholampour, A.; Danish, A.; Ozbakkaloglu, T.; Yeon, J.H.; Gencel, O. Mechanical and durability properties of natural fiber-reinforced geopolymers containing lead smelter slag and waste glass sand. Constr. Build. Mater. 2022, 352, 129043. [Google Scholar] [CrossRef]
- Ali, H.A.; Sun, K.; Xuan, D.; Lu, J.-X.; Cyr, M.; Poon, C.S. Recycling of high-volume waste glass powder in alkali-activated materials: An efflorescence mitigation strategy. J. Build. Eng. 2023, 65, 105756. [Google Scholar] [CrossRef]
- Bernardo, E.; Cedro, R.; Florean, M.; Hreglich, S. Reutilization and stabilization of wastes by the production of glass foams. Ceram. Int. 2007, 33, 963–968. [Google Scholar] [CrossRef]
- Domínguez, A.; Domínguez, M.I.; Ivanova, S.; Centeno, M.A.; Odriozola, J.A. Recycling of construction and demolition waste generated by building infrastructure for the production of glassy materials. Ceram. Int. 2016, 42, 15217–15223. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Zhu, H.; Wu, Q.; Hu, Z.; Feng, Z.; Jia, Z. Preparation and properties of foam ceramic from nickel slag and waste glass powder. Ceram. Int. 2020, 46, 23623–23628. [Google Scholar] [CrossRef]
- Fan, Y.; Li, S.; Li, Y.; Liang, H.; Tang, M.; Huang, K.; Zhu, L. Recycling of municipal solid waste incineration fly ash in foam ceramic materials for exterior building walls. J. Build. Eng. 2021, 44, 103427. [Google Scholar] [CrossRef]
- Shishkin, A.; Aguedal, H.; Goel, G.; Peculevica, J.; Newport, D.; Ozolins, J. Influence of waste glass in the foaming process of open cell porous ceramic as filtration media for industrial wastewater. J. Clean. Prod. 2021, 282, 124546. [Google Scholar] [CrossRef]
- Kurtulus, C.; Kurtulus, R.; Kavas, T. Foam glass derived from ferrochrome slag and waste container glass: Synthesis and extensive characterizations. Ceram. Int. 2021, 47, 24997–25008. [Google Scholar] [CrossRef]
- Nguyen, M.; Sedlačík, M.; Sokolař, R.; Opravil, T. Preparation of inorganic foam glass-ceramic with utilization of waste diatomite as a raw material. Mater. Sci. Forum 2022, 1071, 222–228. [Google Scholar] [CrossRef]
- Long, Y.; Song, Y.; Huang, H.; Yang, Y.; Shen, D.; Geng, H.; Ruan, J.; Gu, F. Preparation of foam glass ceramics from hazardous waste vitrification slag with the addition of Na2CO3. Constr. Build. Mater. 2023, 404, 133225. [Google Scholar] [CrossRef]
- Hamidon, A.; Badarulzaman, N.A.; Muhamad Nor, M.A.A. Recycled glass potential as porous ceramic determine by spectroscopy analysis. Adv. Mater. Res. 2015, 1087, 457–459. [Google Scholar] [CrossRef]
- Shang, W.; Peng, Z.; Huang, Y.; Gu, F.; Zhang, J.; Tang, H.; Yang, L.; Tian, W.; Rao, M.; Li, G.; et al. Production of glass-ceramics from metallurgical slags. J. Clean. Prod. 2021, 317, 128220. [Google Scholar] [CrossRef]
- Cetin, S. Production of sintered glass-ceramic composites from low-cost materials. Ceram. Int. 2023, 49, 22386–22392. [Google Scholar] [CrossRef]
- Deng, S.; Li, C.; Guo, H.; Zhao, W.; Yan, B.; Li, P. Crystallization characteristics, microstructural evolution, and Cr migration mechanism of glass-ceramics synthesized entirely from low-carbon ferrochromium slag and waste glass. J. Hazard. Mater. 2023, 445, 130621. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, Y.; Pan, D.a.; Li, B.; Wang, W. Study on controllable preparation of high performance andradite based glass-ceramics by harmful iron-rich waste slag. Sci. Total Environ. 2023, 901, 165754. [Google Scholar] [CrossRef] [PubMed]
- Tihomirovs, P.; Korjakins, A. Recycled waste glass usage for construction materials. J. Phys. Conf. Ser. 2023, 2423, 012002. [Google Scholar] [CrossRef]
- Moghaddas Tafreshi, S.N.; Khanjani, A.A.; Dawson, A.R.; Faramarzi, A. Performance of recycled waste aggregate mixed with crushed glass over a weak subgrade. Constr. Build. Mater. 2023, 402, 133002. [Google Scholar] [CrossRef]
- Kumar, C.R.; Gadekari, R.S.; Vani, G.; Mini, K.M. Stabilization of black cotton soil and loam soil using reclaimed asphalt pavement and waste crushed glass. Mater. Today Proc. 2020, 24, 379–387. [Google Scholar] [CrossRef]
- Kusuma, R.I.; Mina, E.; Fathonah, W.; Fatwari, M.H.A. Utilization of waste steel slag, fly ash, glass bottle powder for swamp soil stabilization. Mater. Sci. Forum 2023, 1101, 109–114. [Google Scholar] [CrossRef]
- Chen, G.; Lee, H.; Young, K.L.; Yue, P.L.; Wong, A.; Tao, T.; Choi, K.K. Glass recycling in cement production—An innovative approach. Waste Manag. 2002, 22, 747–753. [Google Scholar] [CrossRef]
- Chandra Paul, S.; Šavija, B.; Babafemi, A.J. A comprehensive review on mechanical and durability properties of cement-based materials containing waste recycled glass. J. Clean. Prod. 2018, 198, 891–906. [Google Scholar] [CrossRef]
- Gołek, Ł. New insights into the use of glass cullet in cement composites—Long term examinations. Cem. Concr. Compos. 2022, 133, 104673. [Google Scholar] [CrossRef]
- Qaidi, S.; Najm, H.M.; Abed, S.M.; Özkılıç, Y.O.; Al Dughaishi, H.; Alosta, M.; Sabri, M.M.; Alkhatib, F.; Milad, A. Concrete containing waste glass as an environmentally friendly aggregate: A review on fresh and mechanical characteristics. Materials 2022, 15, 6222. [Google Scholar] [CrossRef]
- Epure, C.; Munteanu, C.; Istrate, B.; Harja, M.; Buium, F. Applications of recycled and crushed glass (RCG) as a substitute for natural materials in various fields—A review. Materials 2023, 16, 5957. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ling, T.-C.; Mo, K.H.; Shi, C. A critical review of waste glass powder—Multiple roles of utilization in cement-based materials and construction products. J. Environ. Manag. 2019, 242, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Zhou, Z.; Usanova, K.I.; Vatin, N.I.; El-Shorbagy, M.A. A step towards concrete with partial substitution of waste glass (WG) in concrete: A review. Materials 2022, 15, 2525. [Google Scholar] [CrossRef] [PubMed]
- Bessmertniy, V.S.; Puchka, O.; Bondarenko, M.; Gorety, V. The glass powders’ dispersion effect on the glass-reinforced concrete performance properties. Mater. Sci. Forum 2020, 1011, 85–91. [Google Scholar] [CrossRef]
- Oluleye, B.I.; Chan, D.W.M.; Saka, A.B.; Olawumi, T.O. Circular economy research on building construction and demolition waste: A review of current trends and future research directions. J. Clean. Prod. 2022, 357, 131927. [Google Scholar] [CrossRef]
- Wang, T.-K.; Wu, Z.; Luo, C. Multi-participant construction waste demolition and transportation decision-making system. Resour. Conserv. Recycl. 2021, 170, 105575. [Google Scholar] [CrossRef]
- Tushar, Q.; Salehi, S.; Santos, J.; Zhang, G.; Bhuiyan, M.A.; Arashpour, M.; Giustozzi, F. Application of recycled crushed glass in road pavements and pipeline bedding: An integrated environmental evaluation using LCA. Sci. Total Environ. 2023, 881, 163488. [Google Scholar] [CrossRef]
Author | h Index | g Index | m Index | Times Cited |
---|---|---|---|---|
Bernardo, E. | 42 | 56 | 2.100 | 3634 |
Poon, C. | 40 | 67 | 2.353 | 4571 |
Arulrajah, A. | 38 | 78 | 2.923 | 6110 |
Horpibulsuk, S. | 31 | 54 | 3.100 | 3437 |
Lancelotti, I. | 31 | 49 | 1.292 | 2581 |
Barbieri, L. | 30 | 49 | 1.250 | 2560 |
Zhang, Y. | 29 | 46 | 1.261 | 2568 |
Boccaccini, A. | 27 | 63 | 1.125 | 4153 |
Disfani, M. | 25 | 31 | 1.923 | 4186 |
Ling, T. | 24 | 26 | 1.846 | 2410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tihomirovs, P.; Kara De Maeijer, P.; Korjakins, A. Demolition Waste Glass Usage in the Construction Industry. Infrastructures 2023, 8, 182. https://doi.org/10.3390/infrastructures8120182
Tihomirovs P, Kara De Maeijer P, Korjakins A. Demolition Waste Glass Usage in the Construction Industry. Infrastructures. 2023; 8(12):182. https://doi.org/10.3390/infrastructures8120182
Chicago/Turabian StyleTihomirovs, Pavels, Patricia Kara De Maeijer, and Aleksandrs Korjakins. 2023. "Demolition Waste Glass Usage in the Construction Industry" Infrastructures 8, no. 12: 182. https://doi.org/10.3390/infrastructures8120182
APA StyleTihomirovs, P., Kara De Maeijer, P., & Korjakins, A. (2023). Demolition Waste Glass Usage in the Construction Industry. Infrastructures, 8(12), 182. https://doi.org/10.3390/infrastructures8120182