Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications
Abstract
:1. Introduction
2. Geopolymers
2.1. Components of Geopolymers
2.1.1. Aluminosilicate (AS)
- (1)
- Fly ash (FA)
- (2)
- Ground Granulated Blast Furnace Slag (GGBS)
- (3)
- Metakaolin (MK)
- (4)
- Alternative precursors
2.1.2. Alkaline Activators
- (1)
- Sodium Hydroxide (NaOH)
- (2)
- Potassium Hydroxide (KOH)
- (3)
- Sodium Silicate (Na2SO3)
3. Raw Materials and Mix Design
4. Results and Discussion
4.1. Concrete and Mortar
4.2. Soil
4.3. Pavement
4.4. Carbon and Ecological Footprints of Geopolymers
5. Potential of Geopolymer Concrete Applications in Construction
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prospects, M. Global Construction Trends. 2022. Available online: https://www.marketprospects.com/articles/global-construction-industry-trends (accessed on 1 January 2023).
- PCA How Cement Is Made. 2019. Available online: https://www.cement.org/cement-concrete/how-cement-is-made (accessed on 26 April 2023).
- Hendriks, C.A.; Worrell, E.; De Jager, D.; Blok KRiemer, P. Emission reduction of greenhouse gases from the cement industry. In Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, 30 August–2 September 1998; IEA GHG R&D Programme: Interlaken, Austria, 1998. [Google Scholar]
- Neupane, K. Evaluation of environmental sustainability of one-part geopolymer binder concrete. Clean. Mater. 2022, 6, 100138. [Google Scholar] [CrossRef]
- Direct CO2 Intensity of Cement Production in the Net Zero Scenario, 2015–2030. 2021. Available online: https://www.iea.org/reports/cement (accessed on 21 December 2022).
- Van Oss, H.G.; Padovani, A.C. Cement manufacture and the environment part II: Environmental challenges and opportunities. J. Ind. Ecol. 2003, 7, 93–126. [Google Scholar]
- Farooq, F.; Jin, X.; Faisal Javed, M.; Akbar, A.; Izhar Shah, M.; Aslam, F.; Alyousef, R. Geopolymer concrete as sustainable material: A state of the art review. Constr. Build. Mater. 2021, 306, 124762. [Google Scholar] [CrossRef]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Carreño-Gallardo, C.; Tejeda-Ochoa, A.; Perez-Ordonez, O.I.; Ledezma-Sillas, J.E.; Lardizabal-Gutierrez, D.; Prieto-Gomez, C.; Valenzuela-Grado, J.A.; Hernandez, F.R.; Herrera-Ramirez, J.M. In the CO2 emission remediation by means of alternative geopolymers as substitutes for cements. J. Environ. Chem. Eng. 2018, 6, 4878–4884. [Google Scholar] [CrossRef]
- Mehta, K.P. Reducing the environmental impact of concrete. Concr. Int. 2001, 23, 61–66. [Google Scholar]
- Suhendro, B. Toward green concrete for better sustainable environment. Procedia Eng. 2014, 95, 305–320. [Google Scholar] [CrossRef]
- Negahban, E. Investigation of Geopolymer Concrete for Pavement Applications; Swinburne University of Technology: Melbourne, Australia, 2022. [Google Scholar]
- ICR. Global Cement Report, 13th ed.; CemNet: Dorking, UK; International Cement Review: Dorking, UK, 2019. [Google Scholar]
- Schneider, M.; Romer, M.; Tschudin MBolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Müller, N.a.J.H. A Blueprint for a Climate-Friendly Cement Industry: How to Turn around the Trend of Cement Related Emissions in the Developing World; World Wide Fund for Nature: Gland, Switzerland, 2008; p. 101. [Google Scholar]
- Berry, M.; Cross, D.; Stephens, J. Changing the Environment: An Alternative “ Green ” Concrete Produced without Portland Cement. In Proceedings of the 2009 World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 4–7 May 2009. [Google Scholar]
- Alam, O.; Qiao, X. An in-depth review on municipal solid waste management, treatment and disposal in Bangladesh. Sustain. Cities Soc. 2020, 52, 101775. [Google Scholar] [CrossRef]
- Patwa, A.; Parde, D.; Dohare, D.; Vijay, R.; Kumar, R. Solid waste characterization and treatment technologies in rural areas: An Indian and international review. Environ. Technol. Innov. 2020, 20, 101066. [Google Scholar] [CrossRef]
- Kang, S.; Zhao, Y.; Wang, W.; Zhang, T.; Chen, T.; Yi, H.; Rao, F.; Song, S. Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent. Appl. Surf. Sci. 2018, 448, 203–211. [Google Scholar] [CrossRef]
- Harbec, D.; Zidol, A.; Tagnit-Hamou, A.; Gitzhofer, F. Mechanical and durability properties of high performance glass fume concrete and mortars. Constr. Build. Mater. 2017, 134, 142–156. [Google Scholar] [CrossRef]
- Pacewska, B.; Wilińska, I. Usage of supplementary cementitious materials: Advantages and limitations. J. Therm. Anal. Calorim. 2020, 142, 371–393. [Google Scholar] [CrossRef]
- Fantilli, A.P.; Jóźwiak-Niedźwiedzka, D. Special Issue: Supplementary Cementitious Materials in Concrete, Part I. Materials 2021, 14, 2291. [Google Scholar] [CrossRef] [PubMed]
- Amin, A. Application of Supplementary Cementitious Materials in Precast Concrete Industry. In Sustainability of Concrete with Synthetic and Recycled Aggregates; Hosam, M.S., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 8. [Google Scholar]
- Jiang, X.; Zhang, Y.; Zhang, Y.; Ma, J.; Xiao, R.; Guo, F.; Bai, Y.; Huang, B. Influence of size effect on the properties of slag and waste glass-based geopolymer paste. J. Clean. Prod. 2023, 383, 135428. [Google Scholar] [CrossRef]
- Xiao, R.; Huang, B.; Zhou, H.; Ma, Y.; Jiang, X. A state-of-the-art review of crushed urban waste glass used in OPC and AAMs (geopolymer): Progress and challenges. Clean. Mater. 2022, 4, 100083. [Google Scholar] [CrossRef]
- Davidovits, J. 30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs. In Proceedings of the Geopolymer 2002 Conference, Melbourne, Australia, 28–29 October 2002. [Google Scholar]
- Huang, G.; Ji, Y.; Li, J.; Hou, Z.; Jin, C. Use of slaked lime and Portland cement to improve the resistance of MSWI bottom ash-GBFS geopolymer concrete against carbonation. Constr. Build. Mater. 2018, 166, 290–300. [Google Scholar] [CrossRef]
- Kurtoglu, A.E.; Alzeebaree, R.; Aljumaili, O.; Nis, A.; Gulsan, M.E.; Humur, G.; Cevik, A. Mechanical and durability properties of fly ash and slag based geopolymer concrete. Adv. Concr. Constr. 2018, 6, 345. [Google Scholar]
- Mehta, A.; Siddique, R. Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties. J. Clean. Prod. 2018, 205, 49–57. [Google Scholar] [CrossRef]
- Venkatesan, R.P.; Pazhani, K.C. Strength and durability properties of geopolymer concrete made with Ground Granulated Blast Furnace Slag and Black Rice Husk Ash. KSCE J. Civ. Eng. 2016, 20, 2384–2391. [Google Scholar] [CrossRef]
- Adak, D.; Sarkar, M.; Mandal, S. Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr. Build. Mater. 2017, 135, 430–439. [Google Scholar] [CrossRef]
- Jiang, X.; Xiao, R.; Zhang, M.; Hu, W.; Bai, Y.; Huang, B. A laboratory investigation of steel to fly ash-based geopolymer paste bonding behavior after exposure to elevated temperatures. Constr. Build. Mater. 2020, 254, 119267. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R. Sulfuric acid resistance of fly ash based geopolymer concrete. Constr. Build. Mater. 2017, 146, 136–143. [Google Scholar] [CrossRef]
- Nuaklong, P.; Sata, V.; Chindaprasirt, P. Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Constr. Build. Mater. 2018, 161, 365–373. [Google Scholar] [CrossRef]
- Pouhet, R.; Cyr, M. Formulation and performance of flash metakaolin geopolymer concretes. Constr. Build. Mater. 2016, 120, 150–160. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Qiu, G.H.; Kodur, V.; Yuan, Z.S. Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cem. Concr. Compos. 2020, 106, 103483. [Google Scholar] [CrossRef]
- Xie, T.; Ozbakkaloglu, T. Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. 2015, 41, 5945–5958. [Google Scholar] [CrossRef]
- Zabihi, S.M.; Tavakoli, H.; Mohseni, E. Engineering and microstructural properties of fiber-reinforced rice husk–ash based geopolymer concrete. J. Mater. Civ. Eng. 2018, 30, 04018183. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989, 35, 429–441. [Google Scholar] [CrossRef]
- Provis, J.L.; Bernal, S.A. Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- de Oliveira, L.B.; de Azevedo, A.R.G.; Marvila, M.T.; Pereira, E.C.; Fediuk, R.; Vieira, C.M.F. Durability of geopolymers with industrial waste. Case Stud. Constr. Mater. 2022, 16, e00839. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S. Geopolymers: Structures, Processing, Properties and Industrial Applications; Elsevier: New York, NY, USA, 2009. [Google Scholar]
- Unis Ahmed, H.; Mahmood, L.J.; Muhammad, M.A.; Faraj, R.H.; Qaidi, S.M.A.; Hamah Sor, N.; Mohammed, A.S.; Mohammed, A.A. Geopolymer concrete as a cleaner construction material: An overview on materials and structural performances. Clean. Mater. 2022, 5, 100111. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A. An overview of the chemistry of alkali-activated cement-based binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Elsevier: Amsterdam, The Netherlands, 2015; pp. 19–47. [Google Scholar]
- Hardjito, D.; Rangan, B.V. Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete; Resaerch report; Curtin University of Technology Perth: Bentley, Australia, 2005. [Google Scholar]
- van Jaarsveld, J.G.S.; van Deventer, J.S.J.; Lukey, G.C. The characterisation of source materials in fly ash-based geopolymers. Mater. Lett. 2003, 57, 1272–1280. [Google Scholar] [CrossRef]
- Fu, C.; Ye, H.; Zhu, K.; Fang, D.; Zhou, J. Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers. Cem. Concr. Compos. 2020, 114, 103721. [Google Scholar] [CrossRef]
- Ambily, P.S.; Ravisankar, K.; Umarani, C.; Dattatreya, J.K.; Iyer, N.R. Development of ultra-high-performance geopolymer concrete. Mag. Concr. Res. 2014, 66, 82–89. [Google Scholar] [CrossRef]
- Shi, C.; Jiménez, A.F.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Petermann, J.C.; Saeed, A.; Hammons, M.I. Alkali-Activated Geopolymers: A Literature Review; Applied Research Associates Inc.: Panama City, FL, USA, 2010. [Google Scholar]
- Rangan, B.V. 11—Engineering Properties of Geopolymer Concrete in Geopolymers; Provis, J.L., van Deventer, J.S.J., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 211–226. [Google Scholar]
- Cheah, C.B.; Samsudin, M.H.; Ramli, M.; Part, W.K.; Tan, L.E. The use of high calcium wood ash in the preparation of Ground Granulated Blast Furnace Slag and Pulverized Fly Ash geopolymers: A complete microstructural and mechanical characterization. J. Clean. Prod. 2017, 156, 114–123. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Vallepu, R.; Terai, T.; Palomo, A.; Ikeda, K. Synthesis and thermal behavior of different aluminosilicate gels. J. Non-Cryst. Solids 2006, 352, 2061–2066. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Wang, D.-m.; Liu, Z.; Xie, F.-z. Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content. Constr. Build. Mater. 2018, 187, 674–680. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Singh, N.B. Fly ash-based geopolymer binder: A future construction material. Minerals 2018, 8, 299. [Google Scholar] [CrossRef]
- Provis, J.L.; Lukey, G.C.; van Deventer, J.S. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem. Mater. 2005, 17, 3075–3085. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C.; Spangenberg, J.; Mehrali, M. Hardening evolution of geopolymers from setting to equilibrium: A review. Cem. Concr. Compos. 2020, 114, 103729. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, G.; Htet, K.W.; Kwon, M.; Liu, C.; Xu, Y.; Tao, M. Freeze-thaw durability of red mud slurry-class F fly ash-based geopolymer: Effect of curing conditions. Constr. Build. Mater. 2019, 215, 381–390. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; van Deventer, J.S.J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- van Overmeir, A.L.; Figueiredo, S.C.; Šavija, B.; Bos, F.P.; Schlangen, E. Design and analyses of printable strain hardening cementitious composites with optimized particle size distribution. Constr. Build. Mater. 2022, 324, 126411. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Labrincha, J.; Leonelli, C.; Palomo, A.; Chindaprasit, P. Handbook of Alkali-Activated Cements, Mortars and Concretes; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Nath, P. Study of fly ash based geopolymer concrete cured in ambient condition. In School of Civil and Mechanical Engineering; Curtin University: Perth, Australia, 2014. [Google Scholar]
- Kadhim, A.; Sadique, M.; Al-Mufti, R.; Hashim, K. Developing one-part alkali-activated metakaolin/natural pozzolan binders using lime waste. Adv. Cem. Res. 2021, 33, 342–356. [Google Scholar] [CrossRef]
- Granizo, N.; Palomo, A.; Fernandez-Jiménez, A. Effect of temperature and alkaline concentration on metakaolin leaching kinetics. Ceram. Int. 2014, 40, 8975–8985. [Google Scholar] [CrossRef]
- Khalid, H.R.; Lee, N.K.; Park, S.M.; Abbas, N.; Lee, H.K. Synthesis of geopolymer-supported zeolites via robust one-step method and their adsorption potential. J. Hazard. Mater. 2018, 353, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.R.; Foletto, E.L.; Dotto, G.L.; Jahn, S.L. Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions. Ceram. Int. 2018, 44, 416–423. [Google Scholar] [CrossRef]
- Lee, N.; Khalid, H.R.; Lee, H.-K. Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment. Microporous Mesoporous Mater. 2016, 229, 22–30. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Wongsa, A.; Siriwattanakarn, A.; Nuaklong, P.; Sata, V.; Sukontasukkul, P.; Chindaprasirt, P. Use of recycled aggregates in pressed fly ash geopolymer concrete. Environ. Prog. Sustain. Energy 2020, 39, e13327. [Google Scholar] [CrossRef]
- Provis, J.L.; Yong, S.L.; Duxson, P. 5—Nanostructure/Microstructure of Metakaolin Geopolymers in Geopolymers; Provis, J.L., van Deventer, J.S.J., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 72–88. [Google Scholar]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; Macphee, D.E. Compatibility studies between, N-A-S-H and C-A-S-H gels. Study in the ternary diagram, Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Nagajothi, S.; Elavenil, S. Effect of GGBS Addition on Reactivity and Microstructure Properties of Ambient Cured Fly Ash Based Geopolymer Concrete. Silicon 2021, 13, 507–516. [Google Scholar] [CrossRef]
- Al Nageim, H.; Dulaimi, A.; Ruddock, F.; Seton, L. Development of a new cementitious filler for use in fast-curing cold binder course in pavement application. In Proceedings of the 38th International Conference on Cement Microscopy, Lyon, France, 17–21 April 2016; pp. 167–180. [Google Scholar]
- Terzano, R.; Spagnuolo, M.; Medici, L.; Tateo, F.; Ruggiero, P. Characterization of different coal fly ashes for their application in the synthesis of zeolite X as cation exchanger for soil remediation. Fresenius Environ. Bull. 2005, 14, 263–267. [Google Scholar]
- Castel, A.; Foster, S.J. Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement. Cem. Concr. Res. 2015, 72, 48–53. [Google Scholar] [CrossRef]
- Couto Mantese, G.; Capaldo Amaral, D. Comparison of industrial symbiosis indicators through agent-based modeling. J. Clean. Prod. 2017, 140, 1652–1671. [Google Scholar] [CrossRef]
- Dulaimi, A.; Al Nageim, H.; Ruddock, F.; Seton, L. Assessment the Performance of Cold Bituminous Emulsion Mixtures with Cement and Supplementary Cementitious Material for Binder Course Mixture. In Proceedings of the 38th International Conference on Cement Microscopy, Lyon, France, 17–21 April 2016; pp. 283–296. [Google Scholar]
- Poudenx, P. The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation. Transp. Res. Part A Policy Pract. 2008, 42, 901–909. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Bouazza, M. The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon). Fuel 2013, 109, 400–408. [Google Scholar] [CrossRef]
- Mahvash, S.; López-Querol, S.; Bahadori-Jahromi, A. Effect of class F fly ash on fine sand compaction through soil stabilization. Heliyon 2017, 3, e00274. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Ogata, F.; Nakamura, T.; Kawasaki, N. Synthesis of novel zeolites produced from fly ash by hydrothermal treatment in alkaline solution and its evaluation as an adsorbent for heavy metal removal. J. Environ. Chem. Eng. 2020, 8, 103687. [Google Scholar] [CrossRef]
- Schönegger, D.; Gómez-Brandón, M.; Mazzier, T.; Insam, H.; Hermanns, R.; Leijenhorst, E.; Bardelli, T.; Juárez, M.F.-D. Phosphorus fertilising potential of fly ash and effects on soil microbiota and crop. Resour. Conserv. Recycl. 2018, 134, 262–270. [Google Scholar] [CrossRef]
- Dulaimi, A.; Al-Busaltan, S.; Sadique, M. The development of a novel, microwave assisted, half-warm mixed asphalt. Constr. Build. Mater. 2021, 301, 124043. [Google Scholar] [CrossRef]
- Ahmad, J.; Kontoleon, K.J.; Majdi, A.; Naqash, M.T.; Deifalla, A.F.; Ben Kahla, N.; Isleem, H.F.; Qaidi, S.M. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability 2022, 14, 8783. [Google Scholar] [CrossRef]
- Dulaimi, A.; Shanbara, H.K.; Al-Rifaie, A. The mechanical evaluation of cold asphalt emulsion mixtures using a new cementitious material comprising ground-granulated blast-furnace slag and a calcium carbide residue. Constr. Build. Mater. 2020, 250, 118808. [Google Scholar] [CrossRef]
- He, J.; Zhang, J.; Yu, Y.; Zhang, G. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: A comparative study. Constr. Build. Mater. 2012, 30, 80–91. [Google Scholar] [CrossRef]
- Irfan Khan, M.; Khan, H.U.; Azizli, K.; Sufian, S.; Man, Z.; Siyal, A.A.; Muhammad, N.; Faiz ur Rehman, M. The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin. Appl. Clay Sci. 2017, 146, 152–161. [Google Scholar] [CrossRef]
- Paiva, H.; Velosa, A.; Cachim, P.; Ferreira, V.M. Effect of pozzolans with different physical and chemical characteristics on concrete properties. Mater. Constr. 2016, 66, e083. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R. An overview of geopolymers derived from industrial by-products. Constr. Build. Mater. 2016, 127, 183–198. [Google Scholar] [CrossRef]
- Mir, N.; Khan, S.A.; Kul, A.; Sahin, O.; Sahmaran, M.; Koç, M. Construction and demolition waste-based geopolymers for built-environment: An environmental sustainability assessment. Mater. Today Proc. 2022, 70, 358–362. [Google Scholar] [CrossRef]
- Sumesh, M.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H.; Alnahhal, M.F. Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–A review. Constr. Build. Mater. 2017, 148, 62–84. [Google Scholar] [CrossRef]
- Duan, W.; Zhuge, Y.; Chow, C.W.K.; Keegan, A.; Liu, Y.; Siddique, R. Mechanical performance and phase analysis of an eco-friendly alkali-activated binder made with sludge waste and blast-furnace slag. J. Clean. Prod. 2022, 374, 134024. [Google Scholar] [CrossRef]
- Lao, J.-C.; Xu, L.-Y.; Huang, B.-T.; Dai, J.-G.; Shah, S.P. Strain-hardening Ultra-High-Performance Geopolymer Concrete (UHPGC): Matrix design and effect of steel fibers. Compos. Commun. 2022, 30, 101081. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, M.; Li, X.; Wang, J.; Wang, Z.; Li, L.; Lyu, X. Alkali-hydrothermal activation of mine tailings to prepare one-part geopolymer: Activation mechanism, workability, strength, and hydration reaction. Ceram. Int. 2022, 48, 30407–30417. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Liu, T.; Wan, Q.; Zheng, D. Immobilization of vanadium and nickel in spent fluid catalytic cracking (SFCC) catalysts-based geopolymer. J. Clean. Prod. 2022, 332, 130112. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, C.; Huang, B.; Lu, X. Development of alkali activated cementitious material from sewage sludge ash: Two-part and one-part geopolymer. J. Clean. Prod. 2023, 384, 135547. [Google Scholar] [CrossRef]
- Oyebisi, S.; Olutoge, F.; Kathirvel, P.; Oyaotuderekumor, I.; Lawanson, D.; Nwani, J.; Ede, A.; Kaze, R. Sustainability assessment of geopolymer concrete synthesized by slag and corncob ash. Case Stud. Constr. Mater. 2022, 17, e01665. [Google Scholar] [CrossRef]
- Oluwafemi, J.; Ofuyatan, O.; Adedeji, A.; Bankole, D.; Justin, L. Reliability assessment of ground granulated blast furnace slag/cow bone ash-based geopolymer concrete. J. Build. Eng. 2023, 64, 105620. [Google Scholar] [CrossRef]
- Ruiz, G.; Aguilar, R.; Nakamatsu, J.; Kim, S. Synthesis of a geopolymer binders using spent fluid catalytic cracking (FCC) catalyst. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012009. [Google Scholar] [CrossRef]
- Salami, B.A.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M. Durability performance of palm oil fuel ash-based engineered alkaline-activated cementitious composite (POFA-EACC) mortar in sulfate environment. Constr. Build. Mater. 2017, 131, 229–244. [Google Scholar] [CrossRef]
- Rovnaník, P.; Řezník, B.; Rovnaníková, P. Blended Alkali-activated Fly Ash/Brick Powder Materials. Procedia Eng. 2016, 151, 108–113. [Google Scholar] [CrossRef]
- Du, C.; Yang, Q. Experimental study of the feasibility of using calcium carbide residue as an alkaline activator for clay-plant ash geopolymer. Constr. Build. Mater. 2021, 301, 124351. [Google Scholar] [CrossRef]
- Hoy, M.; Horpibulsuk, S.; Arulrajah, A.; Mohajerani, A. Strength and microstructural study of recycled asphalt pavement: Slag geopolymer as a pavement base material. J. Mater. Civ. Eng. 2018, 30, 04018177. [Google Scholar] [CrossRef]
- Vijaya Rangan, B. Fly Ash-Based Geopolymer Concrete. 2021. Available online: http://www.yourbuilding.org/display/yb/Fly+Ash-Based+Geopolymer+Concrete (accessed on 20 January 2023).
- Rangan, B.V.; Hardjito, D.; Wallah, S.E.; Sumajouw, D. Studies on fly ash-based geopolymer concrete. In Proceedings of the World Congress Geopolymer, Saint Quentin, France, 28 June–1 July 2005. [Google Scholar]
- Togibasa, O.; Mumfaijah, M.; Allo, Y.K.; Dahlan, K.; Ansanay, Y.O. The Effect of Chemical Activating Agent on the Properties of Activated Carbon from Sago Waste. Appl. Sci. 2021, 11, 11640. [Google Scholar] [CrossRef]
- Mohamedkhair, A.K.; Aziz, M.A.; Shah, S.S.; Shaikh, M.N.; Jamil, A.K.; Qasem, M.A.A.; Buliyaminu, I.A.; Yamani, Z.H. Effect of an activating agent on the physicochemical properties and supercapacitor performance of naturally nitrogen-enriched carbon derived from Albizia procera leaves. Arab. J. Chem. 2020, 13, 6161–6173. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G. Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. 2008, 30, 986–991. [Google Scholar] [CrossRef]
- Jais, F.M.; Chee, C.Y.; Ismail, Z.; Ibrahim, S. Experimental design via NaOH activation process and statistical analysis for activated sugarcane bagasse hydrochar for removal of dye and antibiotic. J. Environ. Chem. Eng. 2021, 9, 104829. [Google Scholar] [CrossRef]
- Garcia Lodeiro, I.; Cristelo, N.; Palomo, A.; Fernández-Jiménez, A. Use of industrial by-products as alkaline cement activators. Constr. Build. Mater. 2020, 253, 119000. [Google Scholar] [CrossRef]
- Hafizuddin, M.S.; Lee, C.L.; Chin, K.L.; H’ng, P.S.; Khoo, P.S.; Rashid, U. Fabrication of Highly Microporous Structure Activated Carbon via Surface Modification with Sodium Hydroxide. Polymers 2021, 13, 3954. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhang, F.; Dou, Y.; Zhai, Y.; Wang, J.; Liu, H.; Xia, Y.; Tu, B.; Zhao, D. A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J. Mater. Chem. 2012, 22, 93–99. [Google Scholar] [CrossRef]
- Siregar, G.M.; Syahputra, R.F.; Farma, R. KOH Activation with Microwave Irradiation and its Effect on the Physical Properties of Orange Peel Activated Carbon. J. Phys. Conf. Ser. 2021, 2049, 012025. [Google Scholar]
- Fernández-Jiménez, A.; Palomo, A.; Criado, M. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cem. Concr. Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. [Google Scholar] [CrossRef]
- Kwek, S.Y.; Awang, H.; Cheah, C.B. Influence of Liquid-to-Solid and Alkaline Activator (Sodium Silicate to Sodium Hydroxide) Ratios on Fresh and Hardened Properties of Alkali-Activated Palm Oil Fuel Ash Geopolymer. Materials 2021, 14, 4253. [Google Scholar] [CrossRef]
- Liu, M.; Hu, B.; Zhang, C.; Wang, Q.; Sun, Z.; He, P.; Chen, Y.; Chen, D.; Zhu, J. Effect of sodium silicate on the flotation separation of chalcopyrite and galena using sodium sulfite and sulfonated lignin as depressant. Miner. Eng. 2022, 182, 107563. [Google Scholar] [CrossRef]
- Provis, J.L.; Rees, C.A. 7—Geopolymer synthesis kinetics in Geopolymers; Provis, J.L., van Deventer, J.S.J., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 118–136. [Google Scholar]
- Provis, J.L.; Deventer, J.S.J.v. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kan, L.-l.; Wang, W.-s.; Liu, W.-d.; Wu, M. Development and characterization of fly ash based PVA fiber reinforced Engineered Geopolymer Composites incorporating metakaolin. Cem. Concr. Compos. 2020, 108, 103521. [Google Scholar] [CrossRef]
- Rathinam, K.; Sakthivel, S.; Vigneshwaran, S.; Vinayagamoorthy, M.; Kumar, N. Properties of nano silica modified cement less geopolymer composite mortar using fly ash, GGBS. Mater. Today Proc. 2022, 62, 535–542. [Google Scholar] [CrossRef]
- Migunthanna, J.; Rajeev, P.; Sanjayan, J. Investigation of waste clay brick as partial replacement of geopolymer binders for rigid pavement application. Constr. Build. Mater. 2021, 305, 124787. [Google Scholar] [CrossRef]
- Akhtar, N.; Ahmad, T.; Husain, D.; Majdi, A.; Alam, M.T.; Husain, N.; Wayal, A.K.S. Ecological footprint and economic assessment of conventional and geopolymer concrete for sustainable construction. J. Clean. Prod. 2022, 380, 134910. [Google Scholar] [CrossRef]
- Jumaa, N.H.; Ali, I.M.; Nasr, M.S.; Falah, M.W. Strength and microstructural properties of binary and ternary blends in fly ash-based geopolymer concrete. Case Stud. Constr. Mater. 2022, 17, e01317. [Google Scholar] [CrossRef]
- Alrefaei, Y.; Dai, J.-G. Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Constr. Build. Mater. 2018, 184, 419–431. [Google Scholar] [CrossRef]
- Kan, L.; Wang, F.; Zhang, Z.; Kabala, W.; Zhao, Y. Mechanical properties of high ductile alkali-activated fiber reinforced composites with different curing ages. Constr. Build. Mater. 2021, 306, 124833. [Google Scholar] [CrossRef]
- Beltrame, N.A.M.; Angulski da Luz, C.; Perardt, M.; Hooton, R.D. Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates. Constr. Build. Mater. 2020, 238, 117710. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhang, M. Effect of sand content on engineering properties of fly ash-slag based strain hardening geopolymer composites. J. Build. Eng. 2021, 34, 101951. [Google Scholar] [CrossRef]
- Choi, S.-J.; Choi, J.-I.; Song, J.-K.; Lee, B.Y. Rheological and mechanical properties of fiber-reinforced alkali-activated composite. Constr. Build. Mater. 2015, 96, 112–118. [Google Scholar] [CrossRef]
- Al-Rkaby, A.H.; Odeh, N.A.; Sabih, A.; Odah, H. Geotechnical characterization of sustainable geopolymer improved soil. J. Mech. Behav. Mater. 2022, 31, 484–491. [Google Scholar] [CrossRef]
- Othman, S.; Abbas, J.M. Stabilization soft Clay Soil using Metakaolin based Geopolymer. Diyala J. Eng. Sci. 2021, 14, 131–140. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Tuntawoot, N.; Thumrongvut, J.; Wonglakorn, N.; Chongutsah, S.; Tabyang, W. Compressive Strength of Marginal Lateritic Soil Stabilized with Bottom Ash Geopolymer as a Pavement Material. Int. J. Eng. Technol. 2019, 11, 177–180. [Google Scholar] [CrossRef]
- Swain, K. Stabilization of Soil Using Geopolymer and Biopolymer; National Institute Of Technology: Rourkela, India, 2015. [Google Scholar]
- Hanegbi, N.; Katra, I. A clay-based geopolymer in loess soil stabilization. Appl. Sci. 2020, 10, 2608. [Google Scholar] [CrossRef]
- Radovic, M.; Puppala, A.J. Development of Geopolymers Based Cement and Soil Stabilizers for Transportation Infrastructure; Transportation Consortium of South-Central States: Taylor Hall; Louisiana State University: Baton Rouge, LA, USA, 2019. [Google Scholar]
- Wang, S.; Su, J.; Wu, Z.; Ma, W.; Li, Y.; Hui, H. Silty Clay Stabilization Using Metakaolin-Based Geopolymer Binder. Front. Phys. 2021, 9, 769786. [Google Scholar] [CrossRef]
- Noolu, V.; Rao, G.M.; Chavali, R.V.P. Strength and durability characteristics of GGBS geopolymer stabilized black cotton soil. Mater. Today Proc. 2021, 43, 2373–2376. [Google Scholar] [CrossRef]
- Sargent, P.; Hughes, P.N.; Rouainia, M.; White, M.L. The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Eng. Geol. 2013, 152, 96–108. [Google Scholar] [CrossRef]
- Cristelo, N.; Glendinning, S.; Teixeira Pinto, A. Deep soft soil improvement by alkaline activation. Proc. Inst. Civ. Eng.-Ground Improv. 2011, 164, 73–82. [Google Scholar] [CrossRef]
- Hamid, A.; Alfaidi, H.; Baaj, H.; El-Hakim, M. Evaluating fly ash-based geopolymers as a modifier for asphalt binders. Adv. Mater. Sci. Eng. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Yue, J.; Nie, X.; Wang, Z.; Liu, J.; Huang, Y. Research on the Pavement Performance of Slag/Fly Ash-Based Geopolymer-Stabilized Macadam. Appl. Sci. 2022, 12, 10000. [Google Scholar] [CrossRef]
- Khalil, W.I.; Frayyeh, Q.J.; Ahmed, M.F. Characteristics of eco-friendly metakaolin based geopolymer concrete pavement bricks. Eng. Technol. J. 2020, 38, 1706–1716. [Google Scholar] [CrossRef]
- Gargav, A.; Chauhan, J.S. Role of Geopolymer Concrete for the Construction of Rigid Pavement. Int. J. Eng. Dev. Res. 2016, 4, 473–476. [Google Scholar]
- Tahir, M.F.M.; Abdullah, M.M.A.B.; Rahim, S.Z.A.; Mohd Hasan, M.R.; Sandu, A.V.; Vizureanu, P.; Ghazali, C.M.R.; Kadir, A.A. Mechanical and Durability Analysis of Fly Ash Based Geopolymer with Various Compositions for Rigid Pavement Applications. Materials 2022, 15, 3458. [Google Scholar] [CrossRef] [PubMed]
- Sofri, L.A.; Abdullah, M.M.A.B.; Sandu, A.V.; Imjai, T.; Vizureanu, P.; Hasan, M.R.M.; Almadani, M.; Aziz, I.H.A.; Rahman, F.A. Mechanical Performance of Fly Ash Based Geopolymer (FAG) as Road Base Stabilizer. Materials 2022, 15, 7242. [Google Scholar] [CrossRef] [PubMed]
- Li, V.C. Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure; Engineered Cementitious Composites (ECC); Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wille, K.; El-Tawil, S.; Naaman, A.E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cem. Concr. Compos. 2014, 48, 53–66. [Google Scholar] [CrossRef]
- Kondepudi, K.; Subramaniam, K.V.L.; Nematollahi, B.; Bong, S.H.; Sanjayan, J. Study of particle packing and paste rheology in alkali activated mixtures to meet the rheology demands of 3D Concrete Printing. Cem. Concr. Compos. 2022, 131, 104581. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, C.; Guo, Z.; Zhang, M. Engineered cementitious composite with characteristic of low drying shrinkage. Cem. Concr. Res. 2009, 39, 303–312. [Google Scholar] [CrossRef]
- Ye, N.; Yang, J.; Liang, S.; Hu, Y.; Hu, J.; Xiao, B.; Huang, Q. Synthesis and strength optimization of one-part geopolymer based on red mud. Constr. Build. Mater. 2016, 111, 317–325. [Google Scholar] [CrossRef]
- Peng, M.X.; Wang, Z.H.; Xiao, Q.G.; Song, F.; Xie, W.; Yu, L.C.; Huang, H.W.; Yi, S.J. Effects of alkali on one-part alkali-activated cement synthesized by calcining bentonite with dolomite and Na2CO3. Appl. Clay Sci. 2017, 139, 64–71. [Google Scholar] [CrossRef]
- Moukannaa, S.; Loutou, M.; Benzaazoua, M.; Vitola, L.; Alami, J.; Hakkou, R. Recycling of phosphate mine tailings for the production of geopolymers. J. Clean. Prod. 2018, 185, 891–903. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, Y.; Bao, S. Preparation of geopolymers from vanadium tailings by mechanical activation. Constr. Build. Mater. 2017, 145, 236–242. [Google Scholar] [CrossRef]
- Tian, X.; Xu, W.; Song, S.; Rao, F.; Xia, L. Effects of curing temperature on the compressive strength and microstructure of copper tailing-based geopolymers. Chemosphere 2020, 253, 126754. [Google Scholar] [CrossRef] [PubMed]
- Tchadjié, L.N.; Djobo, J.N.Y.; Ranjbar, N.; Tchakouté, H.K.; Kenne, B.B.D.; Elimbi, A.; Njopwouo, D. Potential of using granite waste as raw material for geopolymer synthesis. Ceram. Int. 2016, 42, 3046–3055. [Google Scholar] [CrossRef]
- Kouamo Tchakoute, H.; Elimbi, A.; Diffo Kenne, B.B.; Mbey, J.A.; Njopwouo, D. Synthesis of geopolymers from volcanic ash via the alkaline fusion method: Effect of Al2O3/Na2O molar ratio of soda–volcanic ash. Ceram. Int. 2013, 39, 269–276. [Google Scholar] [CrossRef]
- Long, W.-J.; Xiao, B.-X.; Gu, Y.-C.; Xing, F. Micro- and macro-scale characterization of nano-SiO2 reinforced alkali activated slag composites. Mater. Charact. 2018, 136, 111–121. [Google Scholar] [CrossRef]
- Deb, P.S.; Sarker, P.K.; Barbhuiya, S. Effects of nano-silica on the strength development of geopolymer cured at room temperature. Constr. Build. Mater. 2015, 101, 675–683. [Google Scholar] [CrossRef]
- Wong, C.L.; Mo, K.H.; Alengaram, U.J.; Yap, S.P. Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powder. J. Build. Eng. 2020, 32, 101655. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, T.; Zhang, Y.; Cai, Z.; Yuan, Y. Preparation of spent fluid catalytic cracking catalyst-metakaolin based geopolymer and its process optimization through response surface method. Constr. Build. Mater. 2020, 264, 120727. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Y.; Xu, F.; Song, X.; Ye, J.; Duan, P.; Zhang, Z. Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Compos. Part B Eng. 2020, 183, 107689. [Google Scholar] [CrossRef]
- Khadka, S.D.; Jayawickrama, P.W.; Senadheera, S.; Segvic, B. Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum. Transp. Geotech. 2020, 23, 100327. [Google Scholar] [CrossRef]
- Khan, H.A.; Castel, A.; Khan, M.S. Corrosion investigation of fly ash based geopolymer mortar in natural sewer environment and sulphuric acid solution. Corros. Sci. 2020, 168, 108586. [Google Scholar] [CrossRef]
- Lahoti, M.; Tan, K.H.; Yang, E.-H. A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 2019, 221, 514–526. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, R.; Li, R.; Wang, Y.; Cheng, Z.; Li, F.; Ma, Z.J. Frost resistance of fiber-reinforced blended slag and Class F fly ash-based geopolymer concrete under the coupling effect of freeze-thaw cycling and axial compressive loading. Constr. Build. Mater. 2020, 250, 118831. [Google Scholar] [CrossRef]
- Zhao, R.; Yuan, Y.; Cheng, Z.; Wen, T.; Li, J.; Li, F.; Ma, Z.J. Freeze-thaw resistance of Class F fly ash-based geopolymer concrete. Constr. Build. Mater. 2019, 222, 474–483. [Google Scholar] [CrossRef]
- Chen, K.; Wu, D.; Xia, L.; Cai, Q.; Zhang, Z. Geopolymer concrete durability subjected to aggressive environments–A review of influence factors and comparison with ordinary Portland cement. Constr. Build. Mater. 2021, 279, 122496. [Google Scholar] [CrossRef]
- Yang, T.; Yao, X.; Zhang, Z. Quantification of chloride diffusion in fly ash–slag-based geopolymers by X-ray fluorescence (XRF). Constr. Build. Mater. 2014, 69, 109–115. [Google Scholar] [CrossRef]
- Gunasekara, C.; Law, D.; Bhuiyan, S.; Setunge, S.; Ward, L. Chloride induced corrosion in different fly ash based geopolymer concretes. Constr. Build. Mater. 2019, 200, 502–513. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Gupta, R.; Mishra, D.; Sanghi, S.; Verma, S.; Amritphale, S.S. Corrosion and fire protective behavior of advanced phosphatic geopolymeric coating on mild steel substrate. Silicon 2020, 12, 487–500. [Google Scholar] [CrossRef]
- Law, D.W.; Adam, A.A.; Molyneaux, T.K.; Patnaikuni, I.; Wardhono, A. Long term durability properties of class F fly ash geopolymer concrete. Mater. Struct. 2015, 48, 721–731. [Google Scholar] [CrossRef]
- Alabi, S.A.; Mahachi, J. Chloride ion penetration performance of recycled concrete with different geopolymers. Mater. Today Proc. 2021, 38, 762–766. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Zhou, W.; Luo, W.; Shen, C. An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure. Mater. Des. 2015, 74, 125–137. [Google Scholar] [CrossRef]
- Marvila, M.T.; Azevedo, A.R.G.; Delaqua, G.C.G.; Mendes, B.C.; Pedroti, L.G.; Vieira, C.M.F. Performance of geopolymer tiles in high temperature and saturation conditions. Constr. Build. Mater. 2021, 286, 122994. [Google Scholar] [CrossRef]
- Choi, Y.C.; Park, B. Effects of high-temperature exposure on fractal dimension of fly-ash-based geopolymer composites. J. Mater. Res. Technol. 2020, 9, 7655–7668. [Google Scholar] [CrossRef]
- Mermerdaş, K.; İpek, S.; Mahmood, Z. Visual inspection and mechanical testing of fly ash-based fibrous geopolymer composites under freeze-thaw cycles. Constr. Build. Mater. 2021, 283, 122756. [Google Scholar] [CrossRef]
- Jin, M.; Wang, Z.; Lian, F.; Zhao, P. Freeze-thaw resistance and seawater corrosion resistance of optimized tannery sludge/metakaolin-based geopolymer. Constr. Build. Mater. 2020, 265, 120730. [Google Scholar] [CrossRef]
- Rashad, A.M.; Sadek, D.M. Behavior of alkali-activated slag pastes blended with waste rubber powder under the effect of freeze/thaw cycles and severe sulfate attack. Constr. Build. Mater. 2020, 265, 120716. [Google Scholar] [CrossRef]
- Canakci, H.; Güllü, H.; Alhashemy, A. Performances of using geopolymers made with various stabilizers for deep mixing. Materials 2019, 12, 2542. [Google Scholar] [CrossRef]
- Mozumder, R.A.; Laskar, A.I. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Comput. Geotech. 2015, 69, 291–300. [Google Scholar] [CrossRef]
- Rios, S.; Ramos, C.; Viana da Fonseca, A.; Cruz, N.; Rodrigues, C. Mechanical and durability properties of a soil stabilised with an alkali-activated cement. Eur. J. Environ. Civ. Eng. 2019, 23, 245–267. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.; El-Korchi, T.; Zhang, G.; Tao, M. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 2013, 47, 1468–1478. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Shahin, M.A.; Sarker, P. Use of Fly-Ash Geopolymer Incorporating Ground Granulated Slag for Stabilisation of Kaolin Clay Cured at Ambient Temperature. Geotech. Geol. Eng. 2019, 37, 721–740. [Google Scholar] [CrossRef]
- Odeh, N.A.; Al-Rkaby, A.H.J. Strength, Durability, and Microstructures characterization of sustainable geopolymer improved clayey soil. Case Stud. Constr. Mater. 2022, 16, e00988. [Google Scholar] [CrossRef]
- Jittabut, P. Physical properties and thermal conductivity of soil geopolymer block. J. Phys. Conf. Ser. 2019, 1380, 012038. [Google Scholar] [CrossRef]
- Zain-ul-abdein, M.; Ahmed, F.; Channa, I.A.; Makhdoom, M.A.; Ali, R.; Ehsan, M.; Aamir, A.; Ul Haq, E.; Nadeem, M.; Shafi, H.Z.; et al. Synthesis of Geopolymer from a Novel Aluminosilicate-Based Natural Soil Precursor Using Electric Oven Curing for Improved Mechanical Strength. Materials 2022, 15, 7757. [Google Scholar] [CrossRef] [PubMed]
- Liyana, J.; Al Bakri, A.M.; Hussin, K.; Ruzaidi, C.M.; Azura, A.R. Azura, Effect of Fly Ash/Alkaline Activator Ratio and Sodium Silicate/NaOHRatio on Fly Ash Geopolymer Coating Strength. Eng. Mater. 2014, 594–595, 146–150. [Google Scholar]
- Singh, S.; Kant Sharma, S.; Abdul Akbar, M. Developing zero carbon emission pavements with geopolymer concrete: A comprehensive review. Transp. Res. Part D Transp. Environ. 2022, 110, 103436. [Google Scholar] [CrossRef]
- Ojha, A.; Gupta, L. Comparative study on mechanical properties of conventional and geo-polymer concrete with recycled coarse aggregate. Mater. Today Proc. 2020, 28, 1403–1406. [Google Scholar] [CrossRef]
- Rahman, S.S.; Khattak, M.J. Feasibility of Reclaimed Asphalt Pavement Geopolymer Concrete as a Pavement Construction Material. Int. J. Pavement Res. Technol. 2022. [Google Scholar] [CrossRef]
- Flower, D.J.M.; Sanjayan, J.G. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 2007, 12, 282–288. [Google Scholar] [CrossRef]
- CIRCULAR-ECOLOGY Embodied Carbon Calculator for Concrete Launched. 2020. Available online: https://circularecology.com/news/embodied-carbon-calculator-for-concrete-launched (accessed on 1 January 2023).
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Heath, A.; Paine, K.; McManus, M. Minimising the global warming potential of clay based geopolymers. J. Clean. Prod. 2014, 78, 75–83. [Google Scholar] [CrossRef]
- Hayden, A. Ecological Footprint; Encyclopedia Britannica: Chicago, IL, USA, 2019. [Google Scholar]
- GFN. Ecological Footprint. 2022. Available online: https://www.footprintnetwork.org/our-work/ecological-footprint/ (accessed on 2 February 2023).
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.N.S. Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Constr. Build. Mater. 2019, 196, 26–42. [Google Scholar] [CrossRef]
- Diaz-Loya, E.I.; Allouche, E.N.; Vaidya, S. Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater. J. 2011, 108, 300. [Google Scholar]
- Deb, P.S.; Nath, P.; Sarker, P.K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. (1980–2015) 2014, 62, 32–39. [Google Scholar] [CrossRef]
- Fang, G.; Ho, W.K.; Tu, W.; Zhang, M. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr. Build. Mater. 2018, 172, 476–487. [Google Scholar] [CrossRef]
- Ahmari, S.; Zhang, L.; Zhang, J. Effects of activator type/concentration and curing temperature on alkali-activated binder based on copper mine tailings. J. Mater. Sci. 2012, 47, 5933–5945. [Google Scholar] [CrossRef]
Reference | Material Type | Chemical Composition | |||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Fe2O3 | MgO | Na2O | SO3 | TiO2 | ||
[96] | DWTS | 33.07 | 48.21 | 2.94 | 6.74 | 1.48 | 0.28 | 1.70 | 0.51 |
[97] | SF | 96.9 | 0.15 | 0.53 | 0.06 | 1.10 | - | 0.12 | - |
[98] | MTs ATs | 70.29 | 16.12 | 1.79 | 1.31 | 0.38 | 3.35 | 0.16 | 0.17 |
[99] | SFCC | 37.63 | 55.29 | 0.84 (CeO2) | 0.58 | - | 0.15 | - | - |
[100] | SSA | 44.40 | 15.14 | 18.75 | 7.86 | 3.00 | 1.96 | 3.01 | 0.91 |
[67] | NP | 46.6 | 30.4 | 4.5 | 3.8 | 4.2 | 3.9 | - | 0.6 |
[101] | CCA | 62.34 | 9.55 | 12.65 | 10.16 | 1.33 | 0.55 | 1.3 | 0.61 |
[24] | WGP | 70.30 | 2.20 | 10.64 | 0.82 | 0.96 | 11.21 | 0.33 | - |
[102] | CBA | 14.65 | 13.96 | 62.24 | 2.94 | 1.95 | 0.75 | 0.93 | - |
[67] | LKD | 14.6 | 0.2 | 80.1 | 0.1 | 0.6 | 3.8 | - | 0.3 |
[103] | FCC | 49.61 | 46.23 | 0.09 | 0.70 | 0.19 | 0.70 | - | 0.70 |
[104] | POFA | 66.91 | 6.44 | 5.56 | 5.72 | 3.13 | 0.19 | 0.33 | - |
[105] | BP | 57.67 | 14.91 | 9.81 | 5.02 | 3.47 | 1.45 | 1.86 | - |
[106] | PA | 59.06 | 6.05 | 15.02 | 5.22 | 2.04 | 0.24 | 1.72 | - |
[107] | RAP | 3.15 | 4.78 | 40.98 | 0.10 | 36.80 | - | 0.89 | - |
Ref. | Type | Binder (Weight Ratio) | Activator | L/b, W/s, S/L, or W/b | Additive (Add/b) | Aggregate Type (Agg/b) | Curing Regime |
---|---|---|---|---|---|---|---|
[124] | Concrete | FA (0.97) + MK (0.03) | NaOH + Na2SiO3 (3.2, 3.3) | L/b (0.53) | PVA (1.5) type (12/39) (1600 MPa) | Silica sand (0.26, 0.3) | 80 °C (2 h) + 20 °C and 70% RH (2 d, 6 d, 27 d) |
[125] | Mortar | GGBS (0.1) FA (0.9) | NaOH (1) + Na2SiO3 (2.5) | L/b (0.4:1) | NS (0, 0.1, 0.2, 0.3, 0.4) | River sand (1:1.5) | Ambient curing (28 d) |
[96] | Mortar | DWTS (0, 0.2, 0.4, 0.6, 0.8) + GGBS (1, 0.8, 0.6, 0.4, 0.2) | NaOH + Na2SiO3 | L/b (0.67, 1, 1.5) | - | Sand (2.75) | 60 °C for 24 h and 23 °C for 28 d |
[97] | Concrete | FA (0.20, 0.40, 0.55) + GGBS (0.37, 0.60, 0.80) + SF (0, 0.08) | Na2SiO3 (anhydrous) + water-glass | W/s (0.2) | Borax (0.051) steel (2.0, 3.0, 4.0) type (13/200) (2000 MPa) | Silica sand (0.65) | 90 °C (3 d) + air curing at 23 °C (1 d) |
[98] | Paste | MTs (0.535) ATs/slag (0.4/0.6) | NaOH | W/s (0.4) | - | - | 20 ± 1 °C and RH ≥ 90%, then demolded and cured at 1, 3, 7, and 28 d |
[126] | Mortar | WCB + GGBS + FA (0.9) | H2O | L/b (0.1), W/b (0.4) | - | Sand (2.75) | 25 °C ± 2 °C and RH 50% ± 2% at 7, 28, and 90 d |
[99] | Paste | SFCC + MK (0.1:0, 0.9:0.1, 0.8:0.2, 0.7:0.3, 0.6:0.4, 0.5:0.5) | Na2SiO3 + H2O | S/L (0, 05, 1, 1.5, 2, 2.5, 3) | - | - | 60 °C for 6 h, followed by curing at room temperature for 7 d |
[127] | Concrete | FA | NaOH + Na2SiO3 | W/b (0.32) | - | Sand, coarse aggregate | Ambient temperature for 7 and 28 d |
[100] | Paste | GGBS (0.5) SSA (0.5) | NaOH + Na2SiO3 | W/b (0.35) | - | - | Ambient temperature for 7 and 28 d |
[128] | Concrete | FA | Na2SiO3 :NaOH (0.4, 0.45, 0.5) | SP (12 kg/m3) NC (0, 1, 0, 1) NT (0, 0, 1.25, 1.25) | Fine (720 kg/m3), coarse aggregate (1100 kg/m3) | Ambient temperature for 7 and 28 d | |
[129] | Mortar | FA (0, 0.5) + GGBS (0.5, 1.0) | Na2SiO3 (anhydrous) | W/s (0.4) | PE (0–2.0) type (13/17) (3000 MPa) + steel (0–2.0) type (13/180) (2850 MPa) | Silica sand (0, 0.03) | Water curing (27 d) |
[130] | Mortar | FA (0.1) + GGBS (0.9) | NaOH + Na2SiO3 (3.2) | L/b (0.54) | PE (2.0) type (12/24) (3000 MPa) | Silica sand (0.3) | 80 °C (2 h) + 20 °C and 70% RH (0–119 d) |
[101] | Concrete (two grades of strength, C 30 and 40 MPa) | GGBS CCA (0–100 wt% of GGBS by CCA) | Na2SiO3 + NaOH (2.5:1) | - | - | Fine (720 kg/m3), coarse aggregate (1045 kg/m3) | Immersed in a water curing tank for 28 d |
[102] | Concrete | GGBS + CBA (1:0, 0.8:0.2, 0.6:0.4, 0.4:0.6, 0.2:0.8, 0:1) | Na2SiO3 + NaOH (2.5:1) | SP | River sand (681.56 kg/m3) and granite (1034.73 kg/m3) | Ambient curing for 7, 14, 28, 56, and 90 d | |
[4] | Concrete (two grades of strength, C 30 and 40 MPa) | FA (0.5), GGBS (0.32) | Na2SiO3 (0.09) + Na2CO3 (0.09) | - | WR (0, 1.91, 1.74 kg/m3) HWR(0, 0.9, 0.77 kg/m3) | Coarse sand fine sand | Ambient curing (28 d) |
[131] | Paste | GGBS (generated by charcoal and NaOH (0.05)) | Na2SO4 (0.05) and MgSO4 (0.05) | W/s (0.45) | - | - | 7 d (before immersion in either Na2SO4 or mgso4 solution) and 49 and 91 d (after immersion in Na2SO4 or mgso4 solution) |
[67] | Paste | MK:LKD (0.5:0.5, 0.75:0.25, 0.25:0.75) MK:LKD:NP (0.25:0.65:0.1) MK:LKD:NP (0.4:0.4:0.2) | LKD, NP | - | - | - | 50 °C for 7 d and then cured in normal water at 20 °C until 28 d |
[132] | Concrete | FA (0.8) + GGBS (0.2) | NaOH (10) + Na2SiO3 (2.0) | L/b (0.4, 0.45) | SP (0.01) PVA (1.0, 1.5, 1.75, 2.0) + RTS (0, 0.25, 0.5) | Silica sand (0.1, 0.4) | 20 °C and 60% or 95% RH (6 d, 27 d) |
[103] | Paste | FCC | Na2SiO3 + NaOH (7.5 M, 10 M, 12.5 M and 15 M) | L/b (0.8 to 2.0) | - | - | 1 d at 65 °C and 6 d at room temperature |
[133] | Concrete | GGBS (0.94, 1.0) + SF (0, 0.06) | Ca(OH)2 + Na2SO4, Ca(OH)2 | W/s (0.21–0.45) | SP (0.0039–0.40) + VMA (0, 0.002, 0.01) + defoamer (0, 0.001, 0.1) PVA (1.0, 1.3) PE (1.5, 1.75, 2.0) | - | Air curing at 23 °C (26 d), water curing at 23 °C (1–88 d) |
[114] | Paste | GGBS FA | NaOH | L/b FA (0.3) L/b GGBS (0.4) | - | - | GGBS for 20 h in a climatic chamber (99% RH, 21 °C) and FA for 20 h in an oven at 85 °C, with RH 99%, followed by curing at room temperature for 2 d or 28 d |
[104] | Concrete | POFA (1.0) | NaOH (8) + Na2SiO3 (3.3) | L/b (0.50–0.65) | SP (0, 0.05, 0.10) | Dune sand (1.8) | 65 °C (1 d) + air curing at 25 °C (126 d) |
Ref. | Soil Type | Binder (Weight Ratio) | Activator | L/b, W/s, S/L, or W/b | Curing Regime |
---|---|---|---|---|---|
[134] | Poorly graded clean sand (SP) | FA (partial replacement with dry soil for 5 min of 0.1, 0.15, 0.2) | NaOH + Na2SiO3 | L/b (0.4, 0.6) | Kept for 24 h before being soaked in water for 28 d |
[135] | Clay | MK (0.08, 0.1, 0.12, 0.14) | Na2SiO3 + NaOH (0.5:1) | S/L (0.38) | 23 °C to completion for 1 d, 3 d, 7 d, 14 d, and 28 d |
[136] | Lateritic soil (MLS) | MLS:BA (0.7:0.3, 0.5:0.5, 0.3:0.7) | Na2SiO3:NaOH (0:1, 0.1:0.9, 0.7:0.3, 0.5:0.5, 0.3:0.7, 0.8:0.2) | S/L (0.05–0.2) | At room temperature for 7 d |
[137] | Bentonite soil (CH) Dispersive soil (CL-ML) | FA (0.05, 0.1, 0.15) PA | Na2SiO3 + NaOH (2:1) | L/b (0.1:0.4) | 3, 7, and 14 d (wrapped in cling film and left at 32–35 °C and 50–60% RH) |
[138] | Loess | 1. MK (0, 0.025, 0.05, 0.075, 0.10, 0.2, 0.25, 0.3) 2. MK (0.3) | 1. Na2SiO3 + NaOH 2. Na2SiO3 + CaO (0.01, 0.05, 0.1, 0.15, 0.2) | - | Dried for 28 d |
[139] | High-plasticity clay (CH) Low-plasticity clay (CL) | MK (0.04, 0.1, 0.15) | NaOH (0.2–0.4) + KOH (0.2–0.45) | W/s (0.1–0.5) | 0 (6 h), 7, and 14 d wet–dry cycle (submerged in water for 5 h, then placed in an oven at 70 °C for 48 h) |
[140] | Silty clay | MK (0.06, 0.08, 0.1, 0.12) | CaO +NaHCO3 (1:1) | L/b (0.03, 0.05, 0.07, 0.09, 0.11) | Curing for 1 d, 3 d, and 7 d |
[141] | Black cotton soil (BC) | GGBS (0.1, 0.2, 0.3, 0.4, 0.5) | NaOH (3–12 M) | Wrapped in plastic film for curing of 28 d wet–dry cycle (submerged in water for 5 h, then placed in an oven at 71 ± 3 c for 42 h) | |
[106] | Marine soft clay (CL) | PA (0, 0.03, 0.06, 0.08, 0.11, 0.14) | CCR (0.06, 0.08, 0.1, 0.12, 0.14, 0.16) NaOH (0.1) | W/s (0.615) | RH ≥ 97%; 20 ± 0.5 °C for 7, 14, 28 d |
[142] | Silty sand | FA and GGBS (0.1) | NaOH + Na2SiO3 | RH ≥ 97%; 20 ± 0.5 °C for 7, 14, 28 d | |
[143] | Sandy clay | FA (0.2–0.4) | NaOH + Na2SiO3 | L/b (0.4, 0.5) | At room temperature for 28 d |
Ref. | Binder (Weight Ratio) | Activator | L/b, W/s, or W/b | Additive (Add/b) | Aggregate Type (Agg/b) | Curing Regime |
---|---|---|---|---|---|---|
[144] | FA (0.03, 0.06, 0.09 by mass of the asphalt binder) | NaOH + Na2SiO3 (1:0.5) | L/b (0.) | - | - | For 24 h, 6 d, and 13 d at room temperature, then in oven at 40 °C for 24 h |
[145] | GGBS- FA (0.02:0.08, 0.03:0.12, 0.04:0.16, 0.05:0.2) cement-FA (0.03:0.12, 0.04:0.14) | GGBS-based geopolymer composed of slag and alkaline activator cement | - | - | - | (20 ± 3) °C and RH > 90% for 7 d |
[12] | FA:GGBS (0.4:0.6, 0.6:0.4, 0.4:0.5, 0.63:0.35, 0.45:0.45) | Na2SiO3:NaOH (1.5, 2, 2.5) | L/b (0.4, 0.45, 0.5) | SF (0.4) | River sand (600 kg/m3) A nonreactive basalt aggregate (360 kg/m3) (1:1.5:3, binder to fine and coarse aggregates) | 23 ± 2 °C and RH of 50 ± 4% for air drying for 7, 56, 112 d |
[146] | MK:WBP (0.85:0.15) | Na2SiO3:NaOH (2) | L/b (0.65) | SP (0.02, 0.1) | Natural sand (475 kg/m3) natural crushed gravel (ca) (1240 kg/m3) BA:CA (0.1) PL:CA (0.1) WBP:BA:CA (0.1:0.15) WBP:PL:CA (0.15:0.1) | After 24 h, the demolded samples were covered with thick nylon and kept inside an electrical oven at 50 °C for 45 h till test time |
[147] | FA | Na2SiO3:NaOH | L/b (0.4) W/b (0.2) | - | Narmada river sand (547 kg/m3) Crushed basalt stone (1277 kg/m3) (1: 1.3: 3.2, binder to fine and coarse aggregates) | Thermally cured at 60 °C for 24 h, then at ambient temperature for 7, 14, 21, and 28 d |
[148] | OPC (1) FA (1) | NaOH (8, 10, 12 M) Na2SiO3:NaOH (1.5, 2, 2.5, 3) | W/c (0.4) S/L (1.5, 2, 2.5, 3) | - | Fine aggregates (1.84) Coarse aggregates (2.65) | At room temperature for 28 d |
[149] | FA (0.2, 0.15) | Na2SiO3:NaOH (2.5) | L/s (0.5) W/s (0.05, 0.35) | - | Crushed aggregate Coarse and fine aggregates/whole mixture by mass (0.8, 0.85) | At room temperature 7, 28, and 90 d of curing |
[107] | RAP:GGBS (0.8:0.2, 0.9:0.1) | NaOH:Na2SiO3 (1:0, 0.7:0.3, 0.6:0.4, 0.5:0.5) | L/b (0.09–0.16) | - | - | At room temperature for 7 and 28 d |
Ref. | Inert Precursors | Pretreatment Method | Supplementary Materials | Alkaline Activator | Curing Temperature | Compressive Strength |
---|---|---|---|---|---|---|
[154] | Red mud | Alkali fusion at 800 °C for 1 h | 25 wt% of silica fume | - | Ambient temperature | 28 d: ~31.5 MPa |
[155] | Bentonite | Alkali fusion at 1100 °C for 3 h | - | - | 80 °C for 72 h, ambient temperature | 28 d: ~38.3 MPa |
[156] | Phosphate tailings | - | 50 wt% of metakaolin | NaOH | 80 °C for 24 h, ambient temperature | 14 d: ~53.0 MPa |
[157] | Vanadium tailings | Mechanical activation | 50 wt% of metakaolin | Na2SiO3 | Ambient temperature | 14 d: ~25.0 MPa |
[158] | Copper tailings | - | 10 wt% of fly ash | Na2SiO3 +NaOH | 80 °C for 48 h, ambient temperature | 28 d: ~36.9 MPa |
[159] | Granite waste | Alkali fusion at 550 °C for 2 h | 40 wt% of metakaolin | Na2SiO3 | Ambient temperature | 28 d: ~40.5 MPa |
[160] | Volcanic ash | Alkali fusion at 550 °C for 1 h | 30 wt% of metakaolin | Na2SiO3 | Ambient temperature | 28 d: ~41.5 MPa |
Geopolymer | OPC | |||||
---|---|---|---|---|---|---|
Ingredients kg (per kg of binder) | Fly ash | GGBS | Sodium silicate | Sodium carbonate | Total | |
0.5 | 0.32 | 0.09 | 0.09 | 1.0 | ||
Carbon emission (kg CO2-e/kg) | 0.0135 | 0.0457 | 0.0803 | 0.0225 | 0.162 | 0.86 |
Embodied energy (MJ/kg) | 0.05 | 0.1056 | 1.611 | 0.1215 | 1.888 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jwaida, Z.; Dulaimi, A.; Mashaan, N.; Othuman Mydin, M.A. Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications. Infrastructures 2023, 8, 98. https://doi.org/10.3390/infrastructures8060098
Jwaida Z, Dulaimi A, Mashaan N, Othuman Mydin MA. Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications. Infrastructures. 2023; 8(6):98. https://doi.org/10.3390/infrastructures8060098
Chicago/Turabian StyleJwaida, Zahraa, Anmar Dulaimi, Nuha Mashaan, and Md Azree Othuman Mydin. 2023. "Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications" Infrastructures 8, no. 6: 98. https://doi.org/10.3390/infrastructures8060098
APA StyleJwaida, Z., Dulaimi, A., Mashaan, N., & Othuman Mydin, M. A. (2023). Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications. Infrastructures, 8(6), 98. https://doi.org/10.3390/infrastructures8060098