The Influence of Recipe-Technological Factors on the Resistance to Chloride Attack of Variotropic and Conventional Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Particle Distribution Curves of the Modifying Additive
3.2. Evaluation of the Loss of Compressive Strength of Various Types of Concrete as a Result of Cyclic Chloride Attack
3.3. Study of the Microstructure of Various Types of Concrete Modified with Silica Fume
4. Conclusions
- (1)
- Vibro-centrifuged concretes have the highest resistance to cyclic aggressive chloride attack, which is primarily expressed by a lower percentage drop in compressive strength compared to vibrated (by 87%) and centrifuged concretes (by 24%);
- (2)
- The use of a microsilica modifying agent in the amount of 2–6% instead of part of the binder has a positive effect on the resistance of concrete to cyclic chloride attack. The most effective is the introduction of additives in the amount of 4%. Reducing the loss of strength of vibrated, centrifuged, and vibro-centrifuged concrete after 90 “dry-wet” cycles as a result of the use of a modifier of a rationally selected amount ranged from 45% to 55%, depending on the type of technology for producing a composite. In variotropic concretes, the effect of introducing microsilica on increasing resistance to chloride attack is not inferior to the effect of introducing microsilica in conventional concrete;
- (3)
- A complex recipe-technological effect of increasing the resistance to chloride attack of concrete by creating a variotropic structure (technological factor) and by using a modifying additive of microsilica (recipe factor), exceeding the effect of the use of microsilica in conventional vibrated concrete, has been proved. The complex effect, expressed as a decrease in strength loss as a result of cyclic chloride attack, amounted to 188%, that is, almost two times;
- (4)
- The structure of the composite, as a result of a complex formulation and technological solution, has become denser and stronger due to the formation of a larger amount of cement gel. As a result, the strength and durability of concrete increased under cyclic chloride exposure.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burduhos-Nergis, D.D. Special Issue “Advanced Engineering Cementitious Composites and Concrete Sustainability”. Materials 2023, 16, 2582. [Google Scholar] [CrossRef] [PubMed]
- Poursaee, A.; Ross, B. The Role of Cracks in Chloride-Induced Corrosion of Carbon Steel in Concrete—Review. Corros. Mater. Degrad. 2022, 3, 258–269. [Google Scholar] [CrossRef]
- Gopu, G.; Joseph, S. Corrosion Behavior of Fiber-Reinforced Concrete—A Review. Fibers 2022, 10, 38. [Google Scholar] [CrossRef]
- Ukpata, J.; Ogirigbo, O.; Black, L. Resistance of Concretes to External Chlorides in the Presence and Absence of Sulphates: A Review. Appl. Sci. 2023, 13, 182. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Elshaeva, D.; Chernil’nik, A. Physical and Mechanical Characteristics of Variotropic Concrete during Cyclic and Continuous Sulfate Attack. Appl. Sci. 2023, 13, 4386. [Google Scholar] [CrossRef]
- Wang, C. Explicitly Assessing the Durability of RC Structures Considering Spatial Variability and Correlation. Infrastructures 2021, 6, 156. [Google Scholar] [CrossRef]
- Su, D.; Pang, J.; Huang, X. Experimental Study on the Influence of Rubber Content on Chloride Salt Corrosion Resistance Performance of Concrete. Materials 2021, 14, 4706. [Google Scholar] [CrossRef]
- Zhu, R.; Pang, J.; Wang, T.; Huang, X. Experimental Research on Chloride Erosion Resistance of Rubber Concrete. Adv. Civ. Eng. 2020, 2020, 3972405. [Google Scholar] [CrossRef]
- Elsayed, M.; Tayeh, B.; Taha, Y.; El-Azim, A. Experimental investigation on the behaviour of crumb rubber concrete columns exposed to chloride–sulphate attack. Structures 2022, 46, 246–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M.; Chen, G.; Han, W. Experimental study of the effects of graphene nanoplatelets on microstructure and compressive properties of concrete under chloride ion corrosion. Constr. Build. Mater. 2022, 360, 129564. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, S.; Wang, T.; Guo, S.; Ren, R. Effect of High-Dispersible Graphene on the Strength and Durability of Cement Mortars. Materials 2021, 14, 915. [Google Scholar] [CrossRef]
- Chousidis, N.; Zacharopoulou, A.; Batis, G.; Zeris, C. Effect of Carbon Nanotubes (CNTs) on Chloride Penetration Resistance and Physical-Mechanical Properties of Cementitious Materials. Mater. Proc. 2021, 6, 9934. [Google Scholar] [CrossRef]
- Liu, X.; Liu, R.; Xie, X.; Zuo, J.; Lyu, K.; Shah, S. Chloride corrosion resistance of cement mortar with recycled concrete powder modified by nano-silica. Constr. Build. Mater. 2023, 364, 129907. [Google Scholar] [CrossRef]
- Liang, X.; Qi, W.; Fang, Z.; Zhang, S.; Fan, Y.; Shah, S. Study on the Relationship between Chloride Ion Penetration and Resistivity of NAC-Cement Concrete. Buildings 2022, 12, 2044. [Google Scholar] [CrossRef]
- Hassan, M.; Elahi, A.; Asad, M. Performance of Fibre Reinforced Self Compacting Concrete against Chloride Attack. Eng. Proc. 2022, 22, 5. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Monteiro, P. The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete. Compos. B Eng. 2018, 139, 84–96. [Google Scholar] [CrossRef]
- Luo, Y.; Niu, D.; Su, L. Chloride Diffusion Property of Hybrid Basalt–Polypropylene Fibre-Reinforced Concrete in a Chloride–Sulphate Composite Environment under Drying–Wetting Cycles. Materials 2021, 14, 1138. [Google Scholar] [CrossRef]
- Ghorbani, S.; Taji, I.; Tavakkolizadeh, M.; Davodi, A.; Brito, J. Improving corrosion resistance of steel rebars in concrete with marble and granite waste dust as partial cement replacement. Constr. Build. Mater. 2018, 185, 110–119. [Google Scholar] [CrossRef]
- Sullivan, M.S.; Chorzepa, M.G.; Durham, S.A. Characterizing the Performance of Ternary Concrete Mixtures Involving Slag and Metakaolin. Infrastructures 2020, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Subpa-asa, P.; Nito, N.; Fujiwara, S.; Date, S. Evaluation of the Prediction and Durability on the Chloride Penetration in Cementitious Materials with Blast Furnace Slag as Cement Addition. Constr. Mater. 2022, 2, 5. [Google Scholar] [CrossRef]
- Zhong, X.; Li, J.; Xu, J.; Wang, K.; Zhu, B.; Liu, Y.; Ni, K. Deterioration of Mechanical Properties of Axial Compression Concrete Columns with Corroded Stirrups Coupling on Load and Chloride. Appl. Sci. 2023, 13, 2423. [Google Scholar] [CrossRef]
- Lee, K.-M.; Yoon, Y.-S.; Yang, K.-H.; Yoo, B.-Y.; Kwon, S.-J. Corrosion Behavior in RC Member with Different Cover Depths under Cyclic Chloride Ingress Conditions for 2 Years. Appl. Sci. 2022, 12, 13002. [Google Scholar] [CrossRef]
- Cui, F.; Song, L.; Wang, X.; Li, M.; Hu, P.; Deng, S.; Zhang, X.; Li, H. Seismic Fragility Analysis of the Aging RC Columns under the Combined Action of Freeze–Thaw Cycles and Chloride-Induced Corrosion. Buildings 2022, 12, 2223. [Google Scholar] [CrossRef]
- Chen, G.; Wang, M.; Cui, C.; Zhang, Q. Corrosion-Fatigue Life Prediction of the U-Shaped Beam in Urban Rail Transit under a Chloride Attack Environment. Materials 2022, 15, 5902. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, Y.; Qian, H.; Wu, P.; Wu, Y.; Liu, F. Chloride Ion Corrosion Resistance of Innovative Self-Healing SMA Fiber-Reinforced Engineering Cementitious Composites under Dry-Wet Cycles for Ocean Structures. Buildings 2023, 13, 518. [Google Scholar] [CrossRef]
- Kumar, M.; Mini, K.; Rangarajan, M. Ultrafine GGBS and calcium nitrate as concrete admixtures for improved mechanical properties and corrosion resistance. Constr. Build. Mater. 2018, 182, 249–257. [Google Scholar] [CrossRef]
- Dheyaaldin, M.; Mosaberpanah, M.; Alzeebaree, R. The Effect of Nano-Silica and Nano-Alumina with Polypropylene Fiber on the Chemical Resistance of Alkali-Activated Mortar. Sustainability 2022, 14, 16688. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Wang, N.; Wu, C.; Zhang, X.; Wang, D.; Ma, Z. Combined Freeze-Thaw and Chloride Attack Resistance of Concrete Made with Recycled Brick-Concrete Aggregate. Materials 2021, 14, 7267. [Google Scholar] [CrossRef]
- Arreola-Sanchez, M.; Alonso-Guzman, E.; Martinez-Molina, W.; Torres-Acosta, A.; Chavez-Garcia, H.; Ponce-Ortega, J. Reinforced Concrete Structure Performance in Marine Structures: Analyzing Durability Indexes to Obtain More Accurate Corrosion Initiation Time Predictions. Materials 2021, 14, 7662. [Google Scholar] [CrossRef]
- Valencia-Saavedra, W.; Aguirre-Guerrero, A.; Gutiérrez, R. Assessment of the Corrosion of Steel Embedded in an Alkali-Activated Hybrid Concrete Exposed to Chlorides. Molecules 2022, 27, 5296. [Google Scholar] [CrossRef]
- Farzad, M.; Fancy, S.F.; Lau, K.; Azizinamini, A. Chloride Penetration at Cold Joints of Structural Members with Dissimilar Concrete Incorporating UHPC. Infrastructures 2019, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-M.; Hong, S.; Yang, H.; Jung, D.-H. Numerical Modeling of Chloride Transport in Concrete under Cyclic Exposure to Chloride. Materials 2022, 15, 5966. [Google Scholar] [CrossRef]
- Zacchei, E.; Nogueira, C. Numerical Solutions for Chloride Diffusion Fluctuation in RC Elements from Corrosion Probability Assessments. Buildings 2022, 12, 1211. [Google Scholar] [CrossRef]
- Zacchei, E.; Bastidas-Arteaga, E. Multifactorial Chloride Ingress Model for Reinforced Concrete Structures Subjected to Unsaturated Conditions. Buildings 2022, 12, 107. [Google Scholar] [CrossRef]
- El Hajj, B.; Castanier, B.; Schoefs, F.; Bastidas-Arteaga, E. Stochastic Multiphasic Multivariate State-Based Degradation and Maintenance Meta-Models for RC Structures Subject to Chloride Ingress. Infrastructures 2023, 8, 36. [Google Scholar] [CrossRef]
- Robles, K.; Yee, J.-J.; Kee, S.-H. Electrical Resistivity Measurements for Nondestructive Evaluation of Chloride-Induced Deterioration of Reinforced Concrete—A Review. Materials 2022, 15, 2725. [Google Scholar] [CrossRef]
- Sun, C.; Sun, M.; Liu, J.; Dong, Z.; Fan, L.; Duan, J. Anti-Corrosion Performance of Migratory Corrosion Inhibitors on Reinforced Concrete Exposed to Varying Degrees of Chloride Erosion. Materials 2022, 15, 5138. [Google Scholar] [CrossRef]
- Malan, J.D.; van Rooyen, A.S.; van Zijl, G.P.A.G. Chloride Induced Corrosion and Carbonation in 3D Printed Concrete. Infrastructures 2022, 7, 1. [Google Scholar] [CrossRef]
- GOST R 58894-2020 Silica Fume for Concretes and Mortars. Specifications. Available online: https://docs.cntd.ru/document/1200173805 (accessed on 1 May 2023).
- GOST R 57345-2016/EN 206-1:2013 Concrete. General Specifications. Available online: https://docs.cntd.ru/document/1200142845 (accessed on 1 May 2023).
- VSN 1-90 Fabrication Requirements for Centrifugal-Cast Support Pillars for Contact Lines, Communications Lines, and Lock-Out Systems. Available online: https://meganorm.ru/Index2/1/4294851/4294851029.htm (accessed on 1 May 2023).
- GOST R 57813-2017/EN 12350-6:2009 Testing Fresh Concrete—Part 6. Density. Available online: https://docs.cntd.ru/document/1200157335 (accessed on 1 May 2023).
- GOST R 57809-2017/EN 12350-2:2009 Testing Fresh Concrete—Part 2. Slump Test. Available online: https://docs.cntd.ru/document/1200157288 (accessed on 1 May 2023).
- Stel’makh, S.A.; Shcherban’, E.M.; Kholodnyak, M.G.; Nasevich, A.S.; Yanovskaya, A.V. Device for the Manufacture of Products from Vibrocentrifuged Concrete. Russian. Federation Patent 197,610, 29 January 2020. Available online: https://patentimages.storage.googleapis.com/99/a7/e4/7331df00d4bdba/RU197610U1.pdf (accessed on 1 May 2023).
- Beskopylny, A.N.; Shcherban, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Chernil’nik, A.; El’shaeva, D. Influence of Variatropy on the Evaluation of Strength Properties and Structure Formation of Concrete under Freeze-Thaw Cycles. J. Compos. Sci. 2023, 7, 58. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Chernil’nik, A.; El’shaeva, D.; Pogrebnyak, A. Influence of Variotropy on the Change in Concrete Strength under the Impact of Wet–Dry Cycles. Appl. Sci. 2023, 13, 1745. [Google Scholar] [CrossRef]
- GOST 10180 Concretes. Methods for Strength Determination Using Reference Specimens. Available online: http://docs.cntd.ru/document/1200100908 (accessed on 1 May 2023).
- Moskvin, V.M.; Ivanov, F.M.; Alekseev, S.N.; Guzeev, E.A. Corrosion of Concrete and Reinforced Concrete, Methods of Their Protection; Stroyizdat: Moscow, Russia, 1980; 536p, Available online: https://search.rsl.ru/ru/record/01001015979 (accessed on 2 May 2023).
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; El’shaeva, D.; Kotenko, M. The Investigation of Compacting Cement Systems for Studying the Fundamental Process of Cement Gel Formation. Gels 2022, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Zaychenko, N.M.; Ali, S.A.S.K.; Sakhoshko, E.V. Influence of organic mineral modifier on the base of condensated microsilica and (PNS+PCE) superplasticizers on the properties and of cement paste stone microstructure. Mod. Ind. Civ. Constr. 2009, 5, 187–195. [Google Scholar]
- Olginskii, A.G. Peculiarities of Contact Formation in Cement Concrete with Mineral Microfiller. Proc. DonNACEA 2004, 1, 134–140. [Google Scholar]
- Beskopylny, A.N.; Meskhi, B.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Veremeenko, A.; Akopyan, V.; Shilov, A.V.; Chernil’nik, A.; Beskopylny, N. Numerical Simulation of the Bearing Capacity of Variotropic Short Concrete Beams Reinforced with Polymer Composite Reinforcing Bars. Polymers 2022, 14, 3051. [Google Scholar] [CrossRef] [PubMed]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Evtushenko, A.; Varavka, V.; Beskopylny, N. Nano-Modified Vibrocentrifuged Concrete with Granulated Blast Slag: The Relationship between Mechanical Properties and Micro-Structural Analysis. Materials 2022, 15, 4254. [Google Scholar] [CrossRef]
- Beskopylny, A.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B. Nano modifying additive micro silica influence on integral and differential characteristics of vibrocentrifuged concrete. J. Build. Eng. 2022, 51, 104235. [Google Scholar] [CrossRef]
- Akhverdov, I.N. Reinforced Concrete Pressure Centrifuged Pipes; Stroyizdat: Moscow, Russia, 1967; 164p, Available online: https://search.rsl.ru/ru/record/01005953134 (accessed on 2 May 2023).
- Kliukas, R.; Lukoševičienė, O.; Jaras, A.; Jonaitis, B. The Mechanical Properties of Centrifuged Concrete in Reinforced Concrete Structures. Appl. Sci. 2020, 10, 3570. [Google Scholar] [CrossRef]
- Feng, B.; Zhu, Y.-H.; Xie, F.; Chen, J.; Liu, C.-B. Experimental Investigation and Design of Hollow Section, Centrifugal Concrete-Filled GFRP Tube Columns. Buildings 2021, 11, 598. [Google Scholar] [CrossRef]
- Ghanei, A.; Eskandari-Naddaf, H.; Ozbakkaloglu, T.; Davoodi, A. Electrochemical and statistical analyses of the combined effect of air-entraining admixture and micro-silica on corrosion of reinforced concrete. Constr. Build. Mater. 2020, 262, 120768. [Google Scholar] [CrossRef]
- Valipour, M.; Pargar, F.; Shekarchi, M.; Khani, S.; Moradian, M. In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment. Constr. Build. Mater. 2013, 46, 63–70. [Google Scholar] [CrossRef]
- Ahmad, S.; Al-Amoudi, O.S.B.; Khan, S.M.S.; Maslehuddin, M. Effect of silica fume inclusion on the strength, shrinkage and durability characteristics of natural pozzolan-based cement concrete. Case Stud. Constr. Mater. 2022, 17, e01255. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, Z.; Wang, Z.; He, J.; Niu, D. Erosion behavior of ions in lining concrete incorporating fly ash and silica fume under the combined action of load and flowing groundwater containing composite salt. Case Stud. Constr. Mater. 2022, 17, e01659. [Google Scholar] [CrossRef]
Component | Indicator | Actual Value |
---|---|---|
Portland cement CEM I 52.5 N | Specific surface area (m2/kg) | 340 |
Normal consistency of cement paste (%) | 27 | |
Grinding fineness (residue on sieve No. 008) (%) | 3.2 | |
Setting time (min) - start - end | 170 240 | |
Bending strength (MPa) | 8.1 (28 days) | |
Compressive strength (MPa) | 54.3 (28 days) | |
Tricalcium silicate (%) | 67 | |
Dicalcium silicate (%) | 15 | |
Tricalcium aluminate (%) | 8 | |
Tetracalcium aluminoferrite (%) | 10 | |
Crushed sandstone | Crushability (%) | 11.8 |
The content of lamellar and needle-shaped grains (%) | 9.4 | |
The content of dust and clay particles (%) | 0.2 | |
Content of weak grains (%) | 2.2 | |
Bulk density (kg/m3) | 1428 | |
Quartz sand | Fineness modulus Mf | 1.9 |
The content of dust and clay particles (%) | 1.3 | |
Clay content in lumps (%) | 0.08 | |
Bulk density (kg/m3) | 1503 |
Element | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | C | S |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 93 | 0.64 | 0.69 | 1.58 | 1.01 | 0.61 | 1.23 | 0.98 | 0.26 |
Mixture Type | Cement (kg/m3) | Water (kg/m3) | Sand (kg/m3) | Crushed Stone (kg/m3) | Microsilica (kg/m3) | Plasticizer (% by Weight of Binder) |
---|---|---|---|---|---|---|
Control V | 395 | 210 | 792 | 1045 | - | 0 |
V-2 | 387 | 210 | 792 | 1045 | 7.9 | 0.2 |
V-4 | 379 | 210 | 792 | 1045 | 15.8 | 0.4 |
V-6 | 371 | 210 | 792 | 1045 | 23.7 | 0.6 |
V-8 | 363 | 210 | 792 | 1045 | 31.6 | 0.8 |
Control C/VC | 477 | 205 | 537 | 1155 | - | 0 |
C/VC-2 | 468 | 205 | 537 | 1155 | 9.4 | 0.2 |
C/VC-4 | 458 | 205 | 537 | 1155 | 19.1 | 0.4 |
C/VC-6 | 448 | 205 | 537 | 1155 | 28.6 | 0.6 |
C/VC-8 | 439 | 205 | 537 | 1155 | 38.2 | 0.8 |
Mixture Type | Density (kg/m3) | Slump Workability (cm) |
---|---|---|
Control V | 2448 | 1.5 |
V-2 | 2443 | 1.7 |
V-4 | 2440 | 2.0 |
V-6 | 2436 | 2.1 |
V-8 | 2430 | 2.6 |
Control C/VC | 2378 | 1.6 |
C/VC-2 | 2375 | 1.8 |
C/VC-4 | 2370 | 2.1 |
C/VC-6 | 2368 | 2.2 |
C/VC-8 | 2363 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Varavka, V.; Chernil’nik, A.; Elshaeva, D.; Ananova, O. The Influence of Recipe-Technological Factors on the Resistance to Chloride Attack of Variotropic and Conventional Concrete. Infrastructures 2023, 8, 108. https://doi.org/10.3390/infrastructures8070108
Shcherban’ EM, Stel’makh SA, Beskopylny AN, Mailyan LR, Meskhi B, Varavka V, Chernil’nik A, Elshaeva D, Ananova O. The Influence of Recipe-Technological Factors on the Resistance to Chloride Attack of Variotropic and Conventional Concrete. Infrastructures. 2023; 8(7):108. https://doi.org/10.3390/infrastructures8070108
Chicago/Turabian StyleShcherban’, Evgenii M., Sergey A. Stel’makh, Alexey N. Beskopylny, Levon R. Mailyan, Besarion Meskhi, Valery Varavka, Andrei Chernil’nik, Diana Elshaeva, and Oxana Ananova. 2023. "The Influence of Recipe-Technological Factors on the Resistance to Chloride Attack of Variotropic and Conventional Concrete" Infrastructures 8, no. 7: 108. https://doi.org/10.3390/infrastructures8070108
APA StyleShcherban’, E. M., Stel’makh, S. A., Beskopylny, A. N., Mailyan, L. R., Meskhi, B., Varavka, V., Chernil’nik, A., Elshaeva, D., & Ananova, O. (2023). The Influence of Recipe-Technological Factors on the Resistance to Chloride Attack of Variotropic and Conventional Concrete. Infrastructures, 8(7), 108. https://doi.org/10.3390/infrastructures8070108