Innovative Pavement Solutions: A Comprehensive Review from Conventional Asphalt to Sustainable Colored Alternatives
Abstract
:1. Introduction
1.1. Rationale for This Review Study
1.2. Significance of Sustainable Colored Pavements
1.3. Objectives and Scope of This Review
2. An Overview of Conventional Asphalt Pavements
2.1. Brief History of Asphaltic Pavements
2.2. Composition and Construction Methods
2.3. Performance Attributes and Constraints
2.4. Environmental Impacts
3. The Need for Sustainable Solutions for Pavements
3.1. Environmental Aspects
3.2. Social and Economic Advantages Offered by Sustainable Pavements
3.3. Latest Advancements and Innovative Techniques
4. Introducing Colored Pavements
4.1. Definition of Colored Pavement
- The yellow pavement color is only designated for flush or elevated median islands that separate traffic flow in opposite directions and for the left-hand shoulder of roads on divided highways, one-way streets, or ramps.
- The color of the pavement on flush or elevated channelizing islands, where traffic travels on each side in the same general path or on right-hand shoulders, shall be white.
4.2. Description and Types of Colored Pavements
4.3. History of Development and First Application
4.4. Construction Methods and Applications of Colored Pavements
- Surface treatment using colored crushed stone;
- Application of colored epoxy resin coating;
- Colored asphalt with black bitumen;
- Colored asphalt with clear binders that are unaltered (without polymer);
- Colored asphalt with clear binders that are treated with polymer.
4.5. Construction Techniques
4.6. Functional and Aesthetic Benefits
4.7. Financial Comparison with Conventional Pavements
5. Performance Evaluation of Colored Sustainable Pavements
5.1. Comparison of Conventional Versus Colored Pavements
5.2. Mechanical Properties and Performance under Normal and Severe Conditions
5.3. Durability and Lifespan of Colored Pavements
5.4. Real-World Application from the Existing Literature, Including Global Implementation Examples
5.5. Challenges in Adopting Colored Pavements
6. Future Trends and Directions
6.1. Recent Advancements in Materials and Construction Techniques
6.2. Amalgamation of Smart Technologies
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Field, C.B.; Barros, V.R. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Chinowsky, P.S.; Price, J.C.; Neumann, J.E. Assessment of climate change adaptation costs for the US road network. Glob. Environ. Chang. 2013, 23, 764–773. [Google Scholar] [CrossRef]
- IPCC. Adopted. In Climate Change 2014 Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Tighe, S.L.; Smith, J.; Mills, B.; Andrey, J. Using the MEPDG to assess climate change impacts on southern Canadian roads. In Proceedings of the 7th International Conference on Managing Pavement Assets, Calgary, AB, Canada, 23–28 June 2008. [Google Scholar]
- Underwood, B.S.; Guido, Z.; Gudipudi, P.; Feinberg, Y. Increased costs to US pavement infrastructure from future temperature rise. Nat. Clim. Chang. 2017, 7, 704–707. [Google Scholar] [CrossRef]
- Van Dam, T.J.; Harvey, J.; Muench, S.T.; Smith, K.D.; Snyder, M.B.; Al-Qadi, I.L.; Ozer, H.; Meijer, J.; Ram, P.; Roesler, J.R.; et al. Towards Sustainable Pavement Systems: A Reference Document; No. FHWA-HIF-15-002; Federal Highway Administration: Washington, DC, USA, 2015. [Google Scholar]
- Ozer, H.; Yang, R.; Al-Qadi, I.L. Quantifying sustainable strategies for the construction of highway pavements in Illinois. Transp. Res. Part D Transp. Environ. 2017, 51, 1–13. [Google Scholar] [CrossRef]
- Jiang, R.; Wu, P. Estimation of environmental impacts of roads through life cycle assessment: A critical review and future directions. Transp. Res. Part D Transp. Environ. 2019, 77, 148–163. [Google Scholar] [CrossRef]
- Santos, J.; Ferreira, A.; Flintsch, G. A life cycle assessment model for pavement management: Road pavement construction and management in Portugal. Int. J. Pavement Eng. 2015, 16, 315–336. [Google Scholar] [CrossRef]
- Alkemade, R.; van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; ten Brink, B. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef]
- Findlay, C.S.; Bourdages, J. Response time of wetland biodiversity to road construction on adjacent lands. Conserv. Biol. 2000, 14, 86–94. [Google Scholar] [CrossRef]
- Wu, P.; Song, Y.; Shou, W.; Chi, H.; Chong, H.-Y.; Sutrisna, M. A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings. Renew. Sustain. Energy Rev. 2017, 68, 370–379. [Google Scholar] [CrossRef]
- Anupam, B.R.; Sahoo, U.C.; Chandrappa, A.K.; Rath, P. Emerging technologies in cool pavements: A review. Constr. Build. Mater. 2021, 299, 123892. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, Y.C.L.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Badin, G.; Ahmad, N.; Ali, H.M.; Ahmad, T.; Jameel, M.S. Effect of addition of pigments on thermal characteristics and the resulting performance enhancement of asphalt. Constr. Build. Mater. 2021, 302, 124212. [Google Scholar] [CrossRef]
- Benrazavi, R.S.; Dola, K.B.; Ujang, N.; Benrazavi, N.S. Effect of pavement materials on surface temperatures in tropical environment. Sustain. Cities Soc. 2016, 22, 94–103. [Google Scholar] [CrossRef]
- Sha, A.; Liu, Z.; Jiang, W.; Qi, L.; Hu, L.; Jiao, W.; Barbieri, D.M. Advances and development trends in eco-friendly pavements. J. Road Eng. 2021, 1, 1–42. [Google Scholar] [CrossRef]
- Barbieri, D.M.; Lou, B.; Wang, F.; Hoff, I.; Wu, S.; Li, J.; Vignisdottir, H.R.; Bohne, R.A.; Anastasio, S.; Kristensen, T. Assessment of carbon dioxide emissions during production, construction and use stages of asphalt pavements. Transp. Res. Interdiscip. Perspect. 2021, 11, 100436. [Google Scholar] [CrossRef]
- Plati, C. Sustainability factors in pavement materials, design, and preservation strategies: A literature review. Constr. Build. Mater. 2019, 211, 539–555. [Google Scholar] [CrossRef]
- Huang, Y.H. Pavement Analysis and Design; Pearson Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- Pranav, S.; Agganwal, S.; Yang, E.-H.; Sarkar, A.K.; Singh, A.P.; Lahoti, M. Alternative materials for wearing course of concrete pavements: A critical review. Constr. Build. Mater. 2020, 236, 117609. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, L.; Wang, S. A novel solar reflective coating with functional gradient multilayer structure for cooling asphalt pavements. Constr. Build. Mater. 2019, 210, 13–21. [Google Scholar] [CrossRef]
- Qin, Y.; Hiller, J.E. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014, 85, 389–399. [Google Scholar] [CrossRef]
- Hossain, M.I.; Mehta, R.; Shaik, N.A.; Islam, M.R.; Tarefder, R.A. Rutting Potential of an Asphalt Pavement Exposed to High Temperatures. In Proceedings of the International Conference on Transportation and Development, Houston, TX, USA, 26–29 June 2016; Available online: https://ascelibrary.org/doi/abs/10.1061/9780784479926.107 (accessed on 23 April 2024).
- Du, Y.; Chen, J.; Han, Z.; Liu, W. A review on solutions for improving rutting resistance of asphalt pavement and test methods. Constr. Build. Mater. 2018, 168, 893–905. [Google Scholar] [CrossRef]
- Tsoka, S.; Theodosiou, T.; Tsikaloudaki, K.; Flourentzou, F. Modeling the performance of cool pavements and the effect of their aging on outdoor surface and air temperatures. Sustain. Cities Soc. 2018, 42, 276–288. [Google Scholar] [CrossRef]
- Xue, Q.; Liu, L.; Zhao, Y.; Chen, Y.-J.; Li, J.-S. Dynamic behavior of asphalt pavement structure under temperature-stress coupled loading. Appl. Therm. Eng. 2013, 53, 1–7. [Google Scholar] [CrossRef]
- Qin, Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Mantalovas, K.; Di Mino, G. The Sustainability of Reclaimed Asphalt as a Resource for Road Pavement Management through a Circular Economic Model. Sustainability 2019, 11, 2234. [Google Scholar] [CrossRef]
- Barakat, B.; Jaoude, A.A.; Mantalovas, K.; Dunn, I.P.; Acuto, F.; Yazoghli-Marzouk, O.; Mino, G.D.; Srour, I. Examining the critical factors that influence the success of construction and demolition waste reverse logistics operations. Int. J. Environ. Impacts 2022, 5, 236–248. [Google Scholar] [CrossRef]
- Mantalovas, K.; Carrión, A.J.D.B.; Blanc, J.; Chailleux, E.; Hornych, P.; Planche, J.; Porot, L.; Pouget, S.; Williams, C.; Presti, D.L. Interpreting Life Cycle Assessment Results of Bio-Recycled Asphalt Pavements for More Informed Decision-Making; Pavement, Roadway, and Bridge Life Cycle Assessment; CRC Press: Boca Raton, FL, USA, 2020; pp. 313–323. [Google Scholar] [CrossRef]
- Pratico, F.G.; Giunta, M.; Mistretta, M.; Gulotta, T.M. Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads. Sustainability 2020, 12, 704. [Google Scholar] [CrossRef]
- Vizzari, D.; Gennesseaux, E.; Lavaud, S.; Bouron, S.; Chailleux, E. Pavement energy harvesting technologies: A critical review. RILEM Tech. Lett. 2021, 6, 93–104. Available online: https://letters.rilem.net/index.php/rilem/article/view/131 (accessed on 16 May 2024). [CrossRef]
- Aziz, M.M.A.; Rahman, M.T.; Hainin, M.R.; Abu Bakar, W.A.W. An overview on alternative binders for flexible pavement. Constr. Build. Mater. 2015, 84, 315–319. [Google Scholar] [CrossRef]
- Du, Y.; Han, Z.; Chen, J.; Liu, W. A novel strategy of inducing solar absorption and accelerating heat release for cooling asphalt pavement. Sol. Energy 2018, 159, 125–133. [Google Scholar] [CrossRef]
- Pisello, A.L. State of the art on the development of cool coatings for buildings and cities. Sol. Energy 2017, 144, 660–680. [Google Scholar] [CrossRef]
- Santamouris, M.; Gaitani, N.; Spanou, A.; Saliari, M.; Giannopoulou, K.; Vasilakopoulou, K.; Kardomateas, T. Using cool paving materials to improve microclimate of urban areas—Design realization and results of the flisvos project. Build. Environ. 2012, 53, 128–136. [Google Scholar] [CrossRef]
- Rossi, F.; Castellani, B.; Presciutti, A.; Morini, E.; Anderini, E.; Filipponi, M.; Nicolini, A. Experimental evaluation of urban heat island mitigation potential of retro-reflective pavement in urban canyons. Energy Build. 2016, 126, 340–352. [Google Scholar] [CrossRef]
- Ji, X.; Zheng, N.; Niu, S.; Meng, S.; Xu, Q. Development of a rutting prediction model for asphalt pavements with the use of an accelerated loading facility. Road Mater. Pavement Des. 2016, 17, 15–31. [Google Scholar] [CrossRef]
- Du, Y.; Shi, Q.; Wang, S. Highly oriented heat-induced structure of asphalt pavement for reducing pavement temperature. Energy Build. 2014, 85, 23–31. [Google Scholar] [CrossRef]
- Du, Y.; Shi, Q.; Wang, S. Bidirectional heat induced structure of asphalt pavement for reducing pavement temperature. Appl. Therm. Eng. 2015, 75, 298–306. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.; Hu, X.; Wang, P.; Liu, Q. Effect of freezing-thawing and ageing on thermal characteristics and mechanical properties of conductive asphalt concrete. Constr. Build. Mater. 2017, 140, 239–247. [Google Scholar] [CrossRef]
- Akbari, H.; Bretz, S.; Kurn, D.M.; Hanford, J. Peak power and cooling energy savings of high-albedo roofs. Energy Build. 1997, 25, 117–126. [Google Scholar] [CrossRef]
- Berdahl, P.; Bretz, S.E. Preliminary survey of the solar reflectance of cool roofing materials. Energy Build. 1997, 25, 149–158. [Google Scholar] [CrossRef]
- Berg, R.; Quinn, W. Use of light colored surface to reduce seasonal thaw penetration beneath embankments on permafrost. In Proceedings of the Second International Symposium on Cold Regions Engineering, Fairbanks, AK, USA, 12–14 August 1978; Available online: https://scholar.google.com/scholar?q=R.%20Berg%2C%20W.%20Quinn%2C%20Use%20of%20light%20colored%20surface%20to%20reduce%20seasonal%20thaw%20penetration%20beneath%20embankments%20on%20permafrost%2C%20in%3A%20Proceedings%20of%20the%20second%20international%20symposium%20on%20cold%20regions%20engineering.%20University%20of%20Alaska%2C%201978%2C%20pp.%2086%E2%80%9399 (accessed on 25 May 2024).
- Santamouris, M. Energy and Climate in the Urban Built Environment; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Zhu, H. Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect. Appl. Therm. Eng. 2017, 113, 739–748. [Google Scholar] [CrossRef]
- Serreze, M.C. Albedo. In Environmental Geology; Encyclopedia of Earth Science; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Shi, H.; Yang, Z.; Feng, Y. Present situation and progress of solar heat reflective thermal insulating coatings. Paint. Coat. Ind. 2010, 40, 70–74. [Google Scholar]
- Synnefa, A.; Karlessi, T.; Gaitani, N.; Santamouris, M.; Assimakopoulos, D.N.; Papakatsikas, C. Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Build. Environ. 2011, 46, 38–44. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Livada, I. A study of the thermal performance of reflective coatings for the urban environment. Sol. Energy 2006, 80, 968–981. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Das, A. Structural Design of Asphalt Pavements: Principles and Practices in Various Design Guidelines. Transp. Dev. Econ. 2015, 1, 25–32. [Google Scholar] [CrossRef]
- Association, V.A. The History of Asphalt. Available online: https://vaasphalt.org/the-history-of-asphalt/ (accessed on 9 June 2024).
- Gautam, P.K.; Kalla, P.; Jethoo, A.S.; Agrawal, R.; Singh, H. Sustainable use of waste in flexible pavement: A review. Constr. Build. Mater. 2018, 180, 239–253. [Google Scholar] [CrossRef]
- Mulungye, R.M.; Owende, P.M.O.; Mellon, K. Finite element modelling of flexible pavements on soft soil subgrades. Mater. Des. 2007, 28, 739–756. [Google Scholar] [CrossRef]
- Dakshanamurthy, V.; Raman, V. A simple method of identifying an expansive soil. Soils Found. 1973, 13, 97–104. [Google Scholar] [CrossRef]
- Wu, Z.; Flintsch, G.; Ferreira, A.; Picado-Santos, L.D. Framework for Multiobjective Optimization of Physical Highway Assets Investments; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Yoder, E.J.; Witczak, M.W. Principles of Pavement Design; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Das, A. Analysis of Pavement Structures; Taylor & Francis: London, UK, 2023. [Google Scholar] [CrossRef]
- Hu, A.; Bai, Q.; Chen, L.; Meng, S.; Li, Q.; Xu, Z. A review on empirical methods of pavement performance modeling. Constr. Build. Mater. 2022, 342, 127968. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, C. Asphalt Pavement Roughness Prediction Based on Gray GM(1,1|sin) Model. Int. J. Comput. Intell. Syst. 2019, 12, 897–902. [Google Scholar] [CrossRef]
- Terzi, S. Modeling the pavement serviceability ratio of flexible highway pavements by artificial neural networks. Constr. Build. Mater. 2007, 21, 590–593. [Google Scholar] [CrossRef]
- Marcelino, P.; Antunes, M.d.L.; Fortunato, E. Comprehensive performance indicators for road pavement condition assessment. Struct. Infrastruct. Eng. 2018, 14, 1433–1445. [Google Scholar] [CrossRef]
- Yang, J.; Gunaratne, M.; Lu, J.J.; Dietrich, B. Use of Recurrent Markov Chains for Modeling the Crack Performance of Flexible Pavements. J. Transp. Eng. 2005, 131, 861–872. [Google Scholar] [CrossRef]
- Yang, J.; Lu, J.J.; Gunaratne, M.; Dietrich, B. Comparison of Recurrent Markov Chains and Artificial Neural Networks. Transp. Res. Rec. J. Transp. Res. Board 2006, 1974, 18–25. [Google Scholar] [CrossRef]
- Al-Qadi, I.; Ozer, H.; Loizos, A.; Murrell, S. Innovation and Sustainability in Highway and Airfield Pavement Technology. In Proceedings of the Airfield and Highway Pavements, Chicago, IL, USA, 21–24 July 2019; American Society of Civil Engineers: Reston, VA, USA, 2019. [Google Scholar]
- Golroo, A.; Tighe, S.L. Development of Pervious Concrete Pavement Performance Models Using Expert Opinions. J. Transp. Eng. 2011, 138, 634–648. [Google Scholar] [CrossRef]
- Abaza, K.A. Optimal novel approach for estimating the pavement transition probabilities used in Markovian prediction models. Int. J. Pavement Eng. 2022, 23, 2809–2820. [Google Scholar] [CrossRef]
- Li, J.; Luhr, D.R.; Uhlmeyer, J.S. Pavement Performance Modeling Using Piecewise Approximation. Transp. Res. Rec. J. Transp. Res. Board 2010, 2153, 24–29. [Google Scholar] [CrossRef]
- Yao, L.; Dong, Q.; Jiang, J.; Ni, F. Establishment of Prediction Models of Asphalt Pavement Performance based on a Novel Data Calibration Method and Neural Network. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 66–82. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Lu, P. Impact analysis of traffic loading on pavement performance using support vector regression model. Int. J. Pavement Eng. 2021, 23, 3716–3728. [Google Scholar] [CrossRef]
- Yan, W.; Peng, W.; Huaiyu, X. Research of Pavement Performance Evaluation and Prediction System of Highway Based on Linear Regression Method. In Proceedings of the International Conference on Communication Systems and Network Technologies, Rajkot, India, 11–13 May 2012; Available online: https://ieeexplore.ieee.org/abstract/document/6200782 (accessed on 12 June 2024).
- Zhang, X.; Gao, H. Road maintenance optimization through a discrete-time semi-Markov decision process. Reliab. Eng. Syst. Saf. 2012, 103, 110–119. [Google Scholar] [CrossRef]
- Fang, M.; Han, C.; Xiao, Y.; Han, Z.; Wu, S.; Cheng, M. Prediction modelling of rutting depth index for asphalt pavement using de-noising method. Int. J. Pavement Eng. 2020, 21, 895–907. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Li, Q.; Fang, N.; Wang, P.; Ding, L.; Li, S. A hybrid model for prediction in asphalt pavement performance based on support vector machine and grey relation analysis. J. Adv. Transp. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Choi, S.; Do, M. Development of the Road Pavement Deterioration Model Based on the Deep Learning Method. Electronics 2019, 9, 3. [Google Scholar] [CrossRef]
- Guo, R.; Fu, D.; Sollazzo, G. An ensemble learning model for asphalt pavement performance prediction based on gradient boosting decision tree. Int. J. Pavement Eng. 2022, 23, 3633–3646. [Google Scholar] [CrossRef]
- Li, G.-D.; Yamaguchi, D.; Nagai, M.; Masuda, S. The prediction of asphalt pavement permanent deformation by T-GM(1,2) dynamic model. Int. J. Syst. Sci. 2008, 39, 959–967. [Google Scholar] [CrossRef]
- Ma, X.; Dong, Z.; Chen, F.; Xiang, H.; Cao, C.; Sun, J. Airport asphalt pavement health monitoring system for mechanical model updating and distress evaluation under realistic random aircraft loads. Constr. Build. Mater. 2019, 226, 227–237. [Google Scholar] [CrossRef]
- Haddad, A.J.; Chehab, G.R.; Saad, G.A. The use of deep neural networks for developing generic pavement rutting predictive models. Int. J. Pavement Eng. 2022, 23, 4260–4276. [Google Scholar] [CrossRef]
- Zeiada, W.; Abu Dabous, S.; Hamad, K.; Al-Ruzouq, R.; Khalil, M.A. Machine Learning for Pavement Performance Modelling in Warm Climate Regions. Arab. J. Sci. Eng. 2020, 45, 4091–4109. [Google Scholar] [CrossRef]
- Kaloop, M.R.; El-Badawy, S.M.; Ahn, J.; Sim, H.-B.; Hu, J.W.; Abd El-Hakim, R.T. A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness index of rigid pavements. Int. J. Pavement Eng. 2022, 23, 862–876. [Google Scholar] [CrossRef]
- Rosa, F.D.; Liu, L.; Gharaibeh, N.G. IRI Prediction Model for Use in Network-Level Pavement Management Systems. J. Transp. Eng. Part B Pavements 2017, 143, 04017001. [Google Scholar] [CrossRef]
- Hossain, M.I.; Gopisetti, L.S.P.; Miah, M.S. International Roughness Index Prediction of Flexible Pavements Using Neural Networks. J. Transp. Eng. Part B Pavements 2018, 145, 04018058. [Google Scholar] [CrossRef]
- Nguyen, H.-L.; Pham, B.T.; Son, L.H.; Thang, N.T.; Ly, H.-B.; Le, T.-T.; Ho, L.S.; Le, T.-H.; Bui, D.T. Adaptive Network Based Fuzzy Inference System with Meta-Heuristic Optimizations for International Roughness Index Prediction. Appl. Sci. 2019, 9, 4715. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Linares-Unamunzaga, A.; Rojí, E.; Gonzalo-Orden, H. IRI Performance Models for Flexible Pavements in Two-Lane Roads until First Maintenance and/or Rehabilitation Work. Coatings 2020, 10, 97. [Google Scholar] [CrossRef]
- Osorio-Lird, A.; Chamorro, A.; González, Á. Analysis of roughness performance of chloride-stabilised rural roads. Int. J. Pavement Eng. 2020, 22, 1720–1730. [Google Scholar] [CrossRef]
- Alimoradi, S.; Golroo, A.; Asgharzadeh, S.M. Development of pavement roughness master curves using Markov Chain. Int. J. Pavement Eng. 2022, 23, 453–463. [Google Scholar] [CrossRef]
- El-Khawaga, M.; El-Badawy, S.; Gabr, A. Comparison of Master Sigmoidal Curve and Markov Chain Techniques for Pavement Performance Prediction. Arab. J. Sci. Eng. 2020, 45, 3973–3982. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Gonzalo-Orden, H.; Findley, D.J.; Rojí, E. Modeling the international roughness index performance on semi-rigid pavements in single carriageway roads. Constr. Build. Mater. 2021, 272, 121665. [Google Scholar] [CrossRef]
- Guo, F.; Zhao, X.; Gregory, J.; Kirchain, R. A weighted multi-output neural network model for the prediction of rigid pavement deterioration. Int. J. Pavement Eng. 2022, 23, 2631–2643. [Google Scholar] [CrossRef]
- Yamany, M.S.; Abraham, D.M.; Labi, S. Comparative Analysis of Markovian Methodologies for Modeling Infrastructure System Performance. J. Infrastruct. Syst. 2021, 27, 04021003. [Google Scholar] [CrossRef]
- Rezaei, A.; Masad, E.; Chowdhury, A.; Harris, P. Predicting Asphalt Mixture Skid Resistance by Aggregate Characteristics and Gradation. Transp. Res. Rec. J. Transp. Res. Board 2009, 2104, 24–33. [Google Scholar] [CrossRef]
- Rezaei, A.; Masad, E.; Chowdhury, A. Development of a Model for Asphalt Pavement Skid Resistance Based on Aggregate Characteristics and Gradation. J. Transp. Eng. 2011, 137, 863–873. [Google Scholar] [CrossRef]
- Kassem, E.; Awed, A.; Masad, E.A.; Little, D.N. Development of Predictive Model for Skid Loss of Asphalt Pavements. Transp. Res. Rec. J. Transp. Res. Board 2013, 2372, 83–96. [Google Scholar] [CrossRef]
- Arce, O.D.G.; Zhang, Z. Skid resistance deterioration model at the network level using Markov chains. Int. J. Pavement Eng. 2021, 22, 118–126. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, G.; Cao, M. Neural network-based prediction of sideway force coefficient for asphalt pavement using high-resolution 3D texture data. Int. J. Pavement Eng. 2022, 23, 3157–3166. [Google Scholar] [CrossRef]
- Szatkowski, W.S.; Hosking, J.R. The Effect of Traffic and Aggregate on the Skidding Restistance of Bituminous Surfacing. Available online: https://scholar.google.com/scholar_lookup?title=The%20effect%20of%20traffic%20and%20aggregate%20on%20the%20skidding%20resistance%20of%20bituminous%20surfacings&publication_year=1972&author=W.S.%20Szatkowski&author=J.R.%20Hoskings (accessed on 26 June 2024).
- Roe, P.G.; Hartshorne, S.A. Polished Stone Value of Aggregates and In-Service Skidding Resistance; Thomas Telford: London, UK, 1999. [Google Scholar]
- Pérez-Acebo, H.; Gonzalo-Orden, H.; Rojí, E. Skid resistance prediction for new two-lane roads. Proc. Inst. Civ. Eng. Transp. 2019, 172, 264–273. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Gonzalo-Orden, H.; Findley, D.J.; Rojí, E. A skid resistance prediction model for an entire road network. Constr. Build. Mater. 2020, 262, 120041. [Google Scholar] [CrossRef]
- Cardoso, S.H.; Marcon, A.F. Pavement performance models for the state of Santa Catarina. In Proceedings of the Fourth International Conference on Managing Pavements, Durban, South Africa, 17–21 May 1998; University of Pretoria: Pretoria, South Africa, 1998. [Google Scholar]
- Chu, C.Y.; Durango-Cohen, P.L. Estimation of infrastructure performance models using state-space specifications of time series models. Transp. Res. Part C Emerg. Technol. 2007, 15, 17–32. [Google Scholar] [CrossRef]
- Zhang, L.J.; Xu, F.Y. Expressway Pavement-Performance Indexes Prediction Based on Gray Model GM(1, 1, λ). Transp. Syst. Plan. Dev. Manag. 2012, 1–9. [Google Scholar] [CrossRef]
- Vyas, V.; Singh, A.P.; Srivastava, A. Prediction of asphalt pavement condition using FWD deflection basin parameters and artificial neural networks. Road Mater. Pavement Des. 2021, 22, 2748–2766. [Google Scholar] [CrossRef]
- Karballaeezadeh, N.; Ghasemzadeh Tehrani, H.; Mohammadzadeh Shadmehri, D.; Shamshirband, S. Estimation of flexible pavement structural capacity using machine learning techniques. Front. Struct. Civ. Eng. 2020, 14, 1083–1096. [Google Scholar] [CrossRef]
- Abaza, K.A. Empirical-Markovian approach for estimating the flexible pavement structural capacity: Caltrans method as a case study. Int. J. Transp. Sci. Technol. 2021, 10, 156–166. [Google Scholar] [CrossRef]
- Osorio-Lird, A.; Chamorro, A.; Videla, C.; Tighe, S.; Torres-Machi, C. Application of Markov chains and Monte Carlo simulations for developing pavement performance models for urban network management. Struct. Infrastruct. Eng. 2018, 14, 1169–1181. [Google Scholar] [CrossRef]
- Ben-Akiva, M.; Ramaswamy, R. An Approach for Predicting Latent Infrastructure Facility Deterioration. Transp. Sci. 1993, 27, 174–193. [Google Scholar] [CrossRef]
- Hong, H.P.; Wang, S.S. Stochastic Modeling of Pavement Performance. Int. J. Pavement Eng. 2003, 4, 235–243. [Google Scholar] [CrossRef]
- Abaza, K.A. Deterministic Performance Prediction Model for Rehabilitation and Management of Flexible Pavement. Int. J. Pavement Eng. 2004, 5, 111–121. [Google Scholar] [CrossRef]
- Hong, F.; Prozzi, J.A. Estimation of Pavement Performance Deterioration Using Bayesian Approach. J. Infrastruct. Syst. 2006, 12, 77–86. [Google Scholar] [CrossRef]
- Tabatabaee, N.; Ziyadi, M.; Shafahi, Y. Two-Stage Support Vector Classifier and Recurrent Neural Network Predictor for Pavement Performance Modeling. J. Infrastruct. Syst. 2012, 19, 266–274. [Google Scholar] [CrossRef]
- Tabatabaee, N.; Ziyadi, M. Bayesian Approach to Updating Markov-Based Models for Predicting Pavement Performance. Transp. Res. Rec. J. Transp. Res. Board 2013, 2366, 34–42. [Google Scholar] [CrossRef]
- Tang, L.; Xiao, D. Monthly attenuation prediction for asphalt pavement performance by using GM (1, 1) model. Adv. Civ. Eng. 2019, 2019, 9274653. [Google Scholar] [CrossRef]
- Yang, J.D.; Lu, J.J.; Gunaratne, M.; Xiang, Q.J. Forecasting overall pavement condition with neural networks—Application on Florida highway network. Transp. Res. Rec. 2003, 1853, 3–12. [Google Scholar] [CrossRef]
- Pulugurta, H.; Shao, Q.; Chou, Y.J. Pavement condition prediction using Markov process. J. Stat. Manag. Syst. 2009, 12, 853–871. [Google Scholar] [CrossRef]
- Chan, P.K.; Oppermann, M.C.; Wu, S.-S. North Carolina’s Experience in Development of Pavement Performance Prediction and Modeling. Transp. Res. Rec. J. Transp. Res. Board 1997, 1592, 80–88. [Google Scholar] [CrossRef]
- Luo, Z. Pavement performance modelling with an auto-regression approach. Int. J. Pavement Eng. 2013, 14, 85–94. [Google Scholar] [CrossRef]
- Chen, D.; Mastin, N. Sigmoidal Models for Predicting Pavement Performance Conditions. J. Perform. Constr. Facil. 2015, 30, 04015078. [Google Scholar] [CrossRef]
- Amin, S.R.; Amador-Jiménez, L.E. Backpropagation Neural Network to estimate pavement performance: Dealing with measurement errors. Road Mater. Pavement Des. 2017, 18, 1218–1238. [Google Scholar] [CrossRef]
- Mohammadi, A.; Amador-Jimenez, L.; Elsaid, F. Simplified Pavement Performance Modeling with Only Two-Time Series Observations: A Case Study of Montreal Island. J. Transp. Eng. 2019, 145, 05019004. [Google Scholar] [CrossRef]
- Barua, L.; Zou, B.; Noruzoliaee, M.; Derrible, S. A gradient boosting approach to understanding airport runway and taxiway pavement deterioration. Int. J. Pavement Eng. 2021, 22, 1673–1687. [Google Scholar] [CrossRef]
- Karballaeezadeh, N.; Mohammadzadeh, S.D.; Moazemi, D.; Band, S.S.; Mosavi, A.; Reuter, U. Smart Structural Health Monitoring of Flexible Pavements Using Machine Learning Methods. Coatings 2020, 10, 1100. [Google Scholar] [CrossRef]
- Elhadidy, A.A.; Elbeltagi, E.E.; El-Badawy, S.M. Network-Based Optimization System for Pavement Maintenance Using a Probabilistic Simulation-Based Genetic Algorithm Approach. J. Transp. Eng. 2020, 146, 04020069. [Google Scholar] [CrossRef]
- Llopis-Castelló, D.; García-Segura, T.; Montalbán-Domingo, L.; Sanz-Benlloch, A.; Pellicer, E. Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration. Sustainability 2020, 12, 9717. [Google Scholar] [CrossRef]
- Abaza, K.A. Simplified Exhaustive Search Approach for Estimating the Nonhomogeneous Transition Probabilities for Infrastructure Asset Management. J. Infrastruct. Syst. 2021, 28, 04021048. [Google Scholar] [CrossRef]
- Wang, G.; Morian, D.; Frith, D. Cost-Benefit Analysis of Thin Surface Treatments in Pavement Treatment Strategies and Cycle Maintenance. J. Mater. Civ. Eng. 2012, 25, 1050–1058. [Google Scholar] [CrossRef]
- Mills, L.N.O.; Attoh-Okine, N.O.; McNeil, S. Developing Pavement Performance Models for Delaware. Transp. Res. Rec. J. Transp. Res. Board 2012, 2304, 97–103. [Google Scholar] [CrossRef]
- Olowosulu, A.T.; Kaura, J.M.; Murana, A.A.; Adeke, P.T. Development of framework for performance prediction of flexible road pavement in Nigeria using Fuzzy logic theory. Int. J. Pavement Eng. 2022, 23, 3809–3818. [Google Scholar] [CrossRef]
- Lethanh, N.; Adey, B.T. Use of exponential hidden Markov models for modelling pavement deterioration. Int. J. Pavement Eng. 2013, 14, 645–654. [Google Scholar] [CrossRef]
- Zeiada, W.; Hamad, K.; Omar, M.; Underwood, B.S.; Khalil, M.A.; Karzad, A.S. Investigation and modelling of asphalt pavement performance in cold regions. Int. J. Pavement Eng. 2019, 20, 986–997. [Google Scholar] [CrossRef]
- Attoh-Okine, N.O. Combining use of rough set and artificial neural networks in doweled-pavement-performance modeling—A hybrid approach. J. Transp. Eng. 2002, 128, 270–275. [Google Scholar] [CrossRef]
- Terzi, S. Modeling for pavement roughness using the ANFIS approach. Adv. Eng. Softw. 2013, 57, 59–64. [Google Scholar] [CrossRef]
- Khattak, M.J.; Landry, C.; Veazey, J.; Zhang, Z. Rigid and composite pavement index-based performance models for network pavement management system in the state of Louisiana. Int. J. Pavement Eng. 2013, 14, 612–628. [Google Scholar] [CrossRef]
- Marcelino, P.; Antunes, M.d.L.; Fortunato, E.; Gomes, M.C. Machine learning approach for pavement performance prediction. Int. J. Pavement Eng. 2021, 22, 341–354. [Google Scholar] [CrossRef]
- Haas, R.; Hudson, W.R.; Zaniewski, J.P. Modern Pavement Management; Krieger Publishing Company: Melbourne, FL, USA, 1994. [Google Scholar]
- Guide, R.D. American Association of State Highway and Transportation Officials. Available online: https://scholar.google.com/scholar?q=American%20Association%20of%20State%20Highway%20and%20Transportation%20Officials%20(AASHTO)%2C%20Pavement%20management%20guide%2C%202nd%20ed.%2C%20American%20Association%20of%20State%20Highway%20and%20Transportation%20Officials%2C%20Washington%2C%20D.C.%2C%202012 (accessed on 8 July 2024).
- Uddin, W. Pavement Management Systems. The Handbook of Highway Engineering; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Justo-Silva, R.; Ferreira, A.; Flintsch, G. Review on Machine Learning Techniques for Developing Pavement Performance Prediction Models. Sustainability 2021, 13, 5248. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Linares-Unamunzaga, A.; Abejón, R.; Rojí, E. Research Trends in Pavement Management during the First Years of the 21st Century: A Bibliometric Analysis during the 2000–2013 Period. Appl. Sci. 2018, 8, 1041. [Google Scholar] [CrossRef]
- Abdelaziz, N.; El-Hakim, R.T.A.; El-Badawy, S.M.; Afify, H.A. International Roughness Index prediction model for flexible pavements. Int. J. Pavement Eng. 2020, 21, 88–99. [Google Scholar] [CrossRef]
- Perez-Acebo, H.; Mindra, N.; Railean, A.; Roji, E. Rigid pavement performance models by means of Markov Chains with half-year step time. Int. J. Pavement Eng. 2019, 20, 830–843. [Google Scholar] [CrossRef]
- Du, Y.; Liu, C.; Wu, D.; Li, S. Application of Vehicle Mounted Accelerometers to Measure Pavement Roughness. Int. J. Distrib. Sens. Netw. 2016, 12, 8413146. [Google Scholar] [CrossRef]
- Aleadelat, W.; Ksaibati, K. Estimation of Pavement Serviceability Index Through Android-Based Smartphone Application for Local Roads. Transp. Res. Rec. 2017, 2639, 129–135. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 2017, 157, 322–330. [Google Scholar] [CrossRef]
- Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road Damage Detection and Classification Using Deep Neural Networks with Smartphone Images. Comput. -Aided Civ. Infrastruct. Eng. 2018, 33, 1127–1141. [Google Scholar] [CrossRef]
- Zakeri, H.; Moghadas Nejad, F.; Fahimifar, A. Image Based Techniques for Crack Detection, Classification and Quantification in Asphalt Pavement: A Review. Arch. Comput. Methods Eng. 2017, 24, 935–977. [Google Scholar] [CrossRef]
- Santero, N.J.; Masanet, E.; Horvath, A. Life-cycle assessment of pavements. Part I: Critical review. Resour. Conserv. Recycl. 2011, 55, 801–809. [Google Scholar] [CrossRef]
- Wang, T.; Lee, I.S.; Kendall, A.; Harvey, J.; Lee, E.B.; Kim, C. Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance. J. Clean. Prod. 2012, 33, 86–96. [Google Scholar] [CrossRef]
- Wang, T.; Lee, I.S.; Harvey, J.; Kendall, A.; Lee, E.B.; Kim, C. UCPRC Life Cycle Assessment Methodology and Initial Case Studies for Energy Consumption and GHG Emissions for Pavement Preservation Treatments with Different Rolling Resistance; Pavement Research Center UC Davis, UC Berkeley, University of California: Davis, CA, USA, 2012; Available online: https://escholarship.org/content/qt8k31f512/qt8k31f512.pdf?t=qilqvc (accessed on 8 July 2024).
- Huang, Y.; Bird, R.; Heidrich, O. Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. J. Clean. Prod. 2009, 17, 283–296. [Google Scholar] [CrossRef]
- Park, K.; Hwang, Y.; Seo, S.; Seo, H. Quantitative Assessment of Environmental Impacts on Life Cycle of Highways. J. Constr. Eng. Manag. 2003, 129, 25–31. [Google Scholar] [CrossRef]
- Horvath, A.; Hendrickson, C. Comparison of Environmental Implications of Asphalt and Steel-Reinforced Concrete Pavements. Transp. Res. Rec. J. Transp. Res. Board 1998, 1626, 105–113. [Google Scholar] [CrossRef]
- Kim, B.; Lee, H.; Park, H.; Kim, H. Framework for Estimating Greenhouse Gas Emissions Due to Asphalt Pavement Construction. J. Constr. Eng. Manag. 2012, 138, 1312–1321. [Google Scholar] [CrossRef]
- Kim, B.; Lee, H.; Park, H.; Kim, H. Greenhouse Gas Emissions from Onsite Equipment Usage in Road Construction. J. Constr. Eng. Manag. 2012, 138, 982–990. [Google Scholar] [CrossRef]
- Kim, B.; Lee, H.; Park, H.; Kim, H. Estimation of Greenhouse Gas Emissions from Land-Use Changes due to Road Construction in the Republic of Korea. J. Constr. Eng. Manag. 2013, 139, 339–346. [Google Scholar] [CrossRef]
- Hong, J.; Shen, G.Q.; Feng, Y.; Lau, W.S.-T.; Mao, C. Greenhouse gas emissions during the construction phase of a building: A case study in China. J. Clean. Prod. 2015, 103, 249–259. [Google Scholar] [CrossRef]
- Noland, R.B.; Hanson, C.S. Life-cycle greenhouse gas emissions associated with a highway reconstruction: A New Jersey case study. J. Clean. Prod. 2015, 107, 731–740. [Google Scholar] [CrossRef]
- Miliutenko, S.; Bjorklund, A.; Carlsson, A. Opportunities for environmentally improved asphalt recycling: The example of Sweden. J. Clean. Prod. 2013, 43, 156–165. [Google Scholar] [CrossRef]
- Miliutenko, S.; Akerman, J.; Bjorklund, A. Energy Use and Greenhouse Gas Emissions during the Life Cycle Stages of a Road Tunnel—The Swedish Case Norra Lanken. Eur. J. Transp. Infrastruct. Res. 2011, 12, 39–62. [Google Scholar] [CrossRef]
- MacLean, H.L.; Lave, L.B. Evaluating automobile fuel/propulsion system technologies. Prog. Energy Combust. Sci. 2003, 29, 1–69. [Google Scholar] [CrossRef]
- Santero, N.J.; Horvath, A. Global warming potential of pavements. Environ. Res. Lett. 2009, 4, 034011. [Google Scholar] [CrossRef]
- Kay, A.I.; Noland, R.B.; Rodier, C.J. Achieving reductions in greenhouse gases in the US road transportation sector. Energy Policy 2014, 69, 536–545. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.N.; Heidrich, O. A review of the use of recycled solid waste materials in asphalt pavements. Resour. Conserv. Recycl. 2007, 52, 58–73. [Google Scholar] [CrossRef]
- Zapata, P.; Gambatese, J.A. Energy Consumption of Asphalt and Reinforced Concrete Pavement Materials and Construction. J. Infrastruct. Syst. 2005, 11, 9–20. [Google Scholar] [CrossRef]
- Peng, B.; Cai, C.; Yin, G.; Li, W.; Zhan, Y. Evaluation system for CO2 emission of hot asphalt mixture. J. Traffic Transp. Eng. 2015, 2, 116–124. [Google Scholar] [CrossRef]
- Helms, H.; Lambrecht, U. The potential contribution of light-weighting to reduce transport energy consumption. Int. J. Life Cycle Assess. 2007, 12, 58–64. [Google Scholar] [CrossRef]
- Imen Zaabar, K.C. A Field Investigation of the Effect of Pavement Type on Fuel Consumption. In Proceedings of the Transportation and Development Institute Congress 2011: Integrated Transportation and Development for a Better Tomorrow, Chicago, IL, USA, 13–16 March 2011. [Google Scholar] [CrossRef]
- White, P.; Golden, J.S.; Biligiri, K.P.; Kaloush, K. Modeling climate change impacts of pavement production and construction. Resour. Conserv. Recycl. 2010, 54, 776–782. [Google Scholar] [CrossRef]
- Pouget, S.; Sauzeat, C.; Di Benedetto, H.; Olard, F. Viscous Energy Dissipation in Asphalt Pavement Structures and Implication for Vehicle Fuel Consumption. J. Mater. Civ. Eng. 2012, 24, 568–576. [Google Scholar] [CrossRef]
- Wang, X.; Duan, Z.; Wu, L.; Yang, D. Estimation of carbon dioxide emission in highway construction: A case study in southwest region of China. J. Clean. Prod. 2015, 103, 705–714. [Google Scholar] [CrossRef]
- Araújo, J.P.C.; Oliveira, J.R.; Silva, H.M. The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements. Transp. Res. Part D Transp. Environ. 2014, 32, 97–110. [Google Scholar] [CrossRef]
- WCED, Special Working Session World Commission on Environment and Development. 1987. Available online: https://scholar.google.com/scholar?q=WCED%2C%201987.%20Our%20Common%20Future.%20Report%20of%20the%20World%20Commission%20on%20Environment%20and%20Development.%20United%20Nations%2C%20Oslo (accessed on 25 July 2024).
- Wathne, L. Sustainability Opportunities with Pavements: Are We Focusing on the Right Stuff. In Proceedings of the International Conference on Sustainable Concrete Pavements: Pratices, Challenges and Directions, Sacramento, CA, USA, 15–17 September 2010; Available online: https://scholar.google.com/scholar?q=Wathne%2C%20L.%2C%202010.%20Sustainability%20Opportunities%20With%20Pavements%3A%20Are%20We%20Focusing%20on%20the%20Right%20Stuff%3F%20In%3A%20International%20Conference%20on%20Sustainable%20Concrete%20Pavements%3A%20Practices%2C%20Challenges%2C%20and%20Directions%2C%20Sacramento%2C%20California%2C%20USA (accessed on 25 July 2024).
- Impacts, E. Fuel Efficiency of Road Pavements. 2004. Available online: https://scholar.google.com/scholar?q=EAPA%2FEurobitume%2C%202004.%20Environmental%20Impacts%20and%20Fuel%20Efficiency%20of%20Road%20Pavements.%20EAPA%2FEurobitume%2C%20Industry%20Report (accessed on 27 July 2024).
- Pérez-Martínez, P.J. Energy consumption and emissions from the road transport in Spain: A conceptual approach. Transport 2012, 27, 383–396. [Google Scholar] [CrossRef]
- Thives, L.P.; Ghisi, E. Asphalt mixtures emission and energy consumption: A review. Renew. Sustain. Energy Rev. 2017, 72, 473–484. [Google Scholar] [CrossRef]
- Prasoon, R.; Chaturvedi, K.R. Life satisfaction: A literature review. Res. -Int. J. Manag. Humanit. Soc. Sci. 2016, 1, 25–32. [Google Scholar]
- Mattson, J.; Brooks, J.; Godavarthy, R.; Quadrifoglio, L.; Jain, J.; Simek, C.; Sener, I. Transportation, community quality of life, and life satisfaction in metro and non-metro areas of the United States. Wellbeing Space Soc. 2021, 2, 100056. [Google Scholar] [CrossRef]
- Erdogan, B.; Bauer, T.N.; Truxillo, D.M.; Mansfield, L.R. A Review of the Life Satisfaction Literature. J. Manag. 2012, 38, 1038–1083. [Google Scholar] [CrossRef]
- Palmore, E.; Luikart, C. Health and social factors related to life satisfaction. J. Health Soc. Behav. 1972, 13, 68–80. [Google Scholar] [CrossRef]
- Boyce, C.J.; Brown, G.D.A.; Moore, S.C. Rank of Income, Not Income, Affects Life Satisfaction. Psychol. Sci. 2010, 21, 471–475. [Google Scholar] [CrossRef]
- Office, J.E.; Chen, J.; Dan, H.; Ding, Y.; Gao, Y.; Guo, M.; Zhu, X. New innovations in pavement materials and engineering: A review on pavement engineering research 2021. J. Traffic Transp. Eng. 2021, 8, 815–999. [Google Scholar] [CrossRef]
- Plug, K. Coloured Asphalt Application and Practice. Technical Report. April 2023. Available online: https://www.researchgate.net/publication/367236562 (accessed on 27 July 2024).
- Solutions, R.P. What is Asphalt? the Secrets of this Essential Paving Material. By Royal Pavement Solutions 2024. Available online: https://royalpavementsolutions.com/2024/05/10/what-is-asphalt-the-secrets-of-this-essential-paving-material/ (accessed on 9 October 2024).
- Solutions, R.P. Asphalt Replacement vs. Resurfacing: Which Is Right for You? By Royal Pavement Solution 2024. Available online: https://royalpavementsolutions.com/2024/05/31/asphalt-replacement-vs-resurfacing-which-is-right-for-you/ (accessed on 9 October 2024).
- Gong, X.; Liu, Q.; Lv, Y.; Chen, S.; Wu, S.; Ying, H. A systematic review on the strategies of reducing asphalt pavement temperature. Case Stud. Constr. Mater. 2023, 18, e01852. [Google Scholar] [CrossRef]
- Dot, M Colored Pavements. Available online: https://epg.modot.org/index.php/620.6_Colored_Pavements (accessed on 28 July 2024).
- Bocci, M.; Grilli, A.; Cardone, F.; Virgili, A. Clear asphalt mixture for wearing course in tunnels: Experimental application in the province of bolzano. Procedia-Soc. Behav. Sci. 2012, 53, 115–124. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y. Laboratory Evaluation of Color Polymer Concrete Pavement with Synthetic Resin Binder for Exclusive Bus Lanes. Transp. Res. Rec. 2007, 1991, 124–132. [Google Scholar] [CrossRef]
- Santagata, F.A.; Canestrari, F.; Ferrotti, G.; Graziani, A. Experimental characterization of transparent synthetic binder mixes reinforced with cellulose fibres. In Proceedings of the 4th International SIIV Congress., Palermo, Italy, 12–14 September 2007; Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C35&q=Santagata%2C+F.+A.%2C+Canestrari%2C+F.%2C+Ferrotti%2C+G.%2C+%26+Graziani%2C+A.+%282007%2C+September%29.+Experimental+characterization+of+transparent+synthetic+binder+mixes+reinforced+with+cellulose+fibres.+In+Proceedings+of+the+4th+International+SIIV+Congress.+Palermo%2C+Italy.&btnG= (accessed on 28 July 2024).
- Badin, G.; Huang, Y.; Ahmad, N. Comparative Analysis of Thermally Investigated Pigment-Modified Asphalt Binders. Airfield Highw. Pavements 2023, 2023, 174–184. [Google Scholar]
- Badin, G.; Ahmad, N.; Ali, H.M. Experimental investigation into the thermal augmentation of pigmented asphalt. Phys. A Stat. Mech. Appl. 2020, 551, 123974. [Google Scholar] [CrossRef]
- Cheela, V.R.S.; John, M.; Biswas, W.; Sarker, P. Combating Urban Heat Island Effect—A Review of Reflective Pavements and Tree Shading Strategies. Buildings 2021, 11, 93. [Google Scholar] [CrossRef]
- Karlessi, T.; Santamouris, M.; Apostolakis, K.; Synnefa, A.; Livada, I. Development and testing of thermochromic coatings for buildings and urban structures. Sol. Energy 2009, 83, 538–551. [Google Scholar] [CrossRef]
- Pasetto, M.; Pasquini, E.; Giacomello, G.; Baliello, A. Innovative pavement surfaces as urban heat islands mitigation strategy: Chromatic, thermal and mechanical characterisation of clear/coloured mixtures. Road Mater. Pavement Des. 2019, 20, S533–S555. [Google Scholar] [CrossRef]
- Gaitani, N.; Spanou, A.; Saliari, M.; Synnefa, A.; Vassilakopoulou, K.; Papadopoulou, K.; Pavlou, K.; Santamouris, M.; Papaioannou, M.; Lagoudaki, A. Improving the microclimate in urban areas: A case study in the centre of Athens. Build. Serv. Eng. Res. Technol. 2011, 32, 53–71. [Google Scholar] [CrossRef]
- Pomerantz, M.; Akbari, H.; Harvey, J.T. The Benefits of Cooler Pavements on Durability and Visibility. 2000. Available online: https://scholar.google.com/scholar_lookup?title=The+Benefits+of+Cooler+Pavements+on+Durability+and+Visibility&author=Pomerantz,+M.&author=Akbari,+H.&author=Harvey,+J.&publication_year=2000 (accessed on 9 October 2024).
- Nathalie Piérard, J.D.V.; Vansteenkiste, S.; Vanelstraete, A. Coloured Asphalt Pavements: Mix Design and Laboratory Performance Testing|SpringerLink. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials; Springer: Dordrecht, The Netherlands; Available online: https://link.springer.com/chapter/10.1007/978-94-017-7342-3_23 (accessed on 5 August 2024).
- SealMaster. How to Color Asphalt Pavement. Pavements Prod. Equip. 2024. Available online: https://sealmaster.net/faq/color-asphalt-pavement/ (accessed on 9 October 2024).
- Petrukhina, N.N.; Bezrukov, N.P.; Antonov, S.V. Preparation and Use of Materials for Color Road Pavement and Marking. Russ. J. Appl. Chem. 2021, 94, 265–283. [Google Scholar] [CrossRef]
- Autelitano, F.; Giuliani, F. Colored bicycle lanes and intersection treatments: International overview and best practices. J. Traffic Transp. Eng. 2021, 8, 399–420. [Google Scholar] [CrossRef]
- British Standard BS 381C:1996 Colour Chart. Available online: https://www.e-paint.co.uk/BS381-colour-chart.asp (accessed on 12 October 2024).
- AS2700 Colour Chart|Dulux Protective Coatings. Available online: https://www.duluxprotectivecoatings.com.au/colours/as2700/ (accessed on 12 October 2024).
- Hård, A.; Sivik, L. Ncs—Natural Color System—A Swedish Standard For Color Notation. Color Res. Appl. 1981, 6, 129–138. [Google Scholar] [CrossRef]
- Transport for London. London Cycling Design Standards; Transport for London: London, UK, 2016. [Google Scholar]
- Autelitano, F.; Maternini, G.; Giuliani, F. Colorimetric and photometric characterisation of clear and coloured pavements for urban spaces. Road Mater. Pavement Des. 2021, 22, 1207–1218. [Google Scholar] [CrossRef]
- Boschetti, F.; Clark, A.; Levin, K.; Sanchez, J.; Saunders, L.; Franzen, H.; Adams, R.; Anaya, E.; de Nazelle, A.; Wegener, S.; et al. ASTA Handbook of Good Practice Case Studies for Promotion of Walking and Cycling. PASTA Consortium, European Union. 2017. Available online: https://www.pastaproject.eu/fileadmin/editor-upload/sitecontent/Publications/documents/2017-PASTA-Project_Handbook_WEB_02.pdf (accessed on 28 July 2024).
- Cycling in the Netherlands. Available online: https://scholar.google.com/scholar_lookup?title=Cycling%20in%20the%20Netherlands&publication_year=2007&author=Ministerie%20van%20Verkeer%20en%20Waterstaat%20(V%26W) (accessed on 9 October 2024).
- Koorey, G.; Mangundu, E. Effects on motor vehicle behavior of color and width of bicycle facilities at signalized intersections. In Proceedings of the Transportation Research Board 89th Annual Meeting, Washington, DC, USA, 10–14 January 2010; Available online: https://scholar.google.com/scholar_lookup?title=Effects%20on%20motor%20vehicle%20behavior%20of%20color%20and%20width%20of%20bicycle%20facilities%20at%20signalized%20intersections&publication_year=2010&author=G.%20Koorey&author=E.%20Mangundu (accessed on 2 August 2024).
- Memorandums, F.P. Interim Approval for Optional Use of an Intersection Bicycle Box (IA-18). Available online: https://mutcd.fhwa.dot.gov/resources/interim_approval/ia18/index.htm (accessed on 2 August 2024).
- Forester, J. Bicycle Transportation: A Handbook for Cycling Transportation Engineers; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Montesinos Zaragoza, G. Analysis of public transportation in seven European cities: Learnings for improving the transit network of Barcelona. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2019. [Google Scholar]
- Pierce, G. Building cycling infrastructure: A case study of provincial impact on municipal transportation and land-use policies in Hamilton, Ontario. Master’s Thesis, Department of City Planning, University of Manitoba, Winnipeg, MB, Canada, 2016. Available online: https://mspace.lib.umanitoba.ca/server/api/core/bitstreams/0e5e85f0-44b0-41fc-bc60-9db275b44a3b/content (accessed on 9 October 2024).
- Chavez-Rodriguez, M.F.; Carvajal, P.E.; Jaramillo, J.E.M.; Egüez, A.; Mahecha, R.E.G.; Schaeffer, R.; Aramburo, S.A. Fuel saving strategies in the Andes: Long-term impacts for Peru, Colombia and Ecuador. Energy Strategy Rev. 2018, 20, 35–48. [Google Scholar] [CrossRef]
- Mora, R.; Truffello, R.; Oyarzún, G. Equity and accessibility of cycling infrastructure: An analysis of Santiago de Chile. J. Transp. Geogr. 2021, 91, 102964. [Google Scholar] [CrossRef]
- Calming, T. Local Transport Note 1/07; Department for Transport, TSO (The Stationery Office): London, UK, 2007; Available online: https://scholar.google.com/scholar_lookup?title=Shared%20Use%20Routes%20for%20Pedestrians%20and%20Cyclists.%20Local%20Transport%20Note%20112&publication_year=2012&author=Department%20for%20Transport%20(DfT) (accessed on 5 August 2024).
- Plug, C.P.; Hagos, E.T. Clear binder in warm mix coloured asphalt, a high-quality, circular and safe application. Coloured Asph. Appl. 2023. Available online: https://oomsproducten.nl/wp-content/uploads/sites/2/2023/11/Publication-2023_Coloured-asphalt-application_version-Oct.2023.pdf (accessed on 9 October 2024).
- Synthetic Pigmentable Binder|COPRO. Available online: https://www.copro.eu/en/product-info/synthetic-pigmentable-binder (accessed on 5 August 2024).
- Plug, K.; de Bondt, A. Required mechanical properties of a clear binder for coloured asphalt concrete. In Proceedings of the 16th Asphalt Pavement Engineering and Infrastructure Conference, Liverpool, UK, 22–23 February 2017; Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C35&q=Plug%2C+C.P.%3B+Bondt%2C+A.H.+de%3B+Required+mechanical+properties+of+a+clear+binder+for+coloured+asphalt++concrete%3B+16th++LJMU++Pavement++Engineering++and++Infrastructure++Conference%2C+Liverpool%2C+UK%2C+2017.+&btnG= (accessed on 5 August 2024).
- Zheng, M.; Han, L.; Wang, F.; Mi, H.; Li, Y.; He, L. Comparison and analysis on heat reflective coating for asphalt pavement based on cooling effect and anti-skid performance. Constr. Build. Mater. 2015, 93, 1197–1205. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Goedkoop, M.; Guinée, J.; Heijungs, R.; Huijbregts, M.; Jolliet, O.; Margni, M.; De Schryver, A.; Humbert, S.; Laurent, A.; et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 2012, 18, 683–697. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management-Life Cycle Assessment-Principles and Framework. International Standard Organization: Beijing, China, 1997.
- Burghardt, T.E.; Pashkevich, A.; Żakowska, L. Influence of volatile organic compounds emissions from road marking paints on ground-level ozone formation: Case study of Kraków, Poland. Transp. Res. Procedia 2016, 14, 714–723. [Google Scholar] [CrossRef]
- Cruz, M.; Klein, A.; Steiner, V. Sustainability assessment of road marking systems. Transp. Res. Procedia 2016, 14, 869–875. [Google Scholar] [CrossRef]
- Zegeer, C.V. Pedestrian Facilities Users Guide: Providing Safety and Mobility; Diane Publishing: Collingdale, PA, USA, 2002. [Google Scholar]
- Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. Dyes and Pigments; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Haider, S.; Hafeez, I.; Zaidi, S.B.A.; Nasir, M.A.; Rizwan, M. A pure case study on moisture sensitivity assessment using tests on both loose and compacted asphalt mixture. Constr. Build. Mater. 2020, 239, 117817. [Google Scholar] [CrossRef]
- Guo, M.; Yao, X.; Du, X. Low temperature cracking behavior of asphalt binders and mixtures: A review. J. Road Eng. 2023, 3, 350–369. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, X.; Tan, K.; Wang, J. A review on the influencing factors of pavement surface temperature. Environ. Sci. Pollut. Res. 2022, 29, 67659–67674. [Google Scholar] [CrossRef]
- Tukiran, J.M.; Ariffin, J.; Ghani, A.N.A. Comparison on Colored Coating for Asphalt and Concrete Pavement Based on Thermal Performance and Cooling Effect. Science and Engineering. 2016. Available online: https://journals.utm.my/jurnalteknologi (accessed on 5 August 2024).
- Synnefa, A.; Karlessi, T.; Gaitani, N.; Santamouris, M.; Papakatsikas, C.; Aktis, S.A. Measurement of optical properties and thermal performance of coloured thin layer asphalt samples and evaluation of their impact on the urban environment. In Proceedings of the Countermeasures to Urban Heat Islands, Berkeley, CA, USA, 4–7 December 2023. [Google Scholar]
- He, X.; Li, C.C.; Lau, A.K.H.; Deng, Z.Z.; Mao, J.T.; Wang, M.H.; Liu, X.Y. An intensive study of aerosol optical properties in Beijing urban area. Atmos. Chem. Phys. 2009, 9, 8903–8915. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Brown, R.E.; Webber, C.; Homan, G.K. Savings estimates for the United States Environmental Protection Agency’s ENERGY STAR voluntary product labeling program. Energy Policy 2008, 36, 2098–2108. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H.; Berdahl, P.; Wood, K.; Skilton, W.; Petersheim, J. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products. Sol. Energy Mater. Sol. Cells 2010, 94, 946–954. [Google Scholar] [CrossRef]
- Li, Q.; Hu, T.; Luo, S.; Gao, L.; Wang, C.; Guan, Y. Evaluation of cooling effect and pavement performance for thermochromic material modified asphalt mixtures under solar radiation. Constr. Build. Mater. 2020, 261, 120589. [Google Scholar] [CrossRef]
- Hu, J.; Gao, Q.; Yu, X. Characterization of the optical and mechanical properties of innovative multifunctional thermochromic asphalt binders. J. Mater. Civ. Eng. 2015, 27, 04014171. [Google Scholar] [CrossRef]
- National Association of City Transportation Officials. Pavement Markings & Color|2016. Available online: https://nacto.org/publication/transit-street-design-guide/transit-lanes-transitways/lane-elements/pavement-markings-color/ (accessed on 9 October 2024).
- Ning, S.; Huan, S. Experimental Study on Color Durability of Color Asphalt Pavement. IOP Conf. Ser. Mater. Sci. Eng. 2017, 207, 012104. [Google Scholar] [CrossRef]
- Badin, G.; Ahmad, N.; Huang, Y.; Mahmood, Y. Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements. Infrastructures 2024, 9, 88. [Google Scholar] [CrossRef]
- Santamouris, M.; Xirafi, F.; Gaitani, N.; Spanou, A.; Saliari, M.; Vassilakopoulou, K. Improving the Microclimate in a Dense Urban Area Using Experimental and Theoretical Techniques—The Case of Marousi, Athens. Int. J. Vent. 2012, 11, 1–16. [Google Scholar] [CrossRef]
- Kyriakodis, G.E.; Santamouris, M. Using reflective pavements to mitigate urban heat island in warm climates-Results from a large scale urban mitigation project. Urban Clim. 2018, 24, 326–339. [Google Scholar] [CrossRef]
- Kolokotsa, D.D.; Giannariakis, G.; Gobakis, K.; Giannarakis, G.; Synnefa, A.; Santamouris, M. Cool roofs and cool pavements application in Acharnes, Greece. Sustain. Cities Soc. 2018, 37, 466–474. [Google Scholar] [CrossRef]
- Middel, A.; Turner, V.K.; Schneider, F.A.; Zhang, Y.; Stiller, M. Solar reflective pavements—A policy panacea to heat mitigation? Environ. Res. Lett. 2020, 15, 064016. [Google Scholar] [CrossRef]
- Furumai, H.; Kim, J.; Imbe, M.; Okui, H. Recent Application of Rainwater Storage and Harvesting in Japan. Available online: https://scholar.google.com/scholar?q=Furumai%2C%20Hiroaki%2C%20Kim%2C%20Jinyoung%2C%20Imbe%2C%20Masahiro%2C%20Okui%2C%20Hiroyuki%2C%202008.%20Recent%20application%20of%20rainwater%20storage%20and%20harvesting%20in%20Japan.%20In%3A%20The%203rd%20RWHM%20Workshop%2C%20vol.%2011 (accessed on 15 August 2024).
- Takahashi, K.; Yabuta, K. Road Temperature Mitigation Effect of “Road Cool” a Water-Retentive Material Using Blast Furnace Slag. JFE Technical Rep. 2009. Available online: https://scholar.google.com/scholar_lookup?title=Road%20temperature%20mitigation%20effect%20of%20road%20cool%2C%20a%20water-retentive%20material%20using%20blast%20furnace%20slag&publication_year=2009&author=Katsunori%20Takahashi&author=Kazuya%20Yabuta (accessed on 15 August 2024).
- Fintikakis, N.; Gaitani, N.; Santamouris, M.; Assimakopoulos, M.; Assimakopoulos, D.N.; Fintikaki, M.; Doumas, P. Bioclimatic design of open public spaces in the historic centre of Tirana, Albania. Sustain. Cities Soc. 2011, 1, 54–62. [Google Scholar] [CrossRef]
- Cheng, Y.-Y.; Lo, S.-L.; Ho, C.-C.; Lin, J.-Y.; Yu, S.L. Field Testing of Porous Pavement Performance on Runoff and Temperature Control in Taipei City. Water 2019, 11, 2635. [Google Scholar] [CrossRef]
- Yang, C.-C.; Siao, J.-H.; Yeh, W.-C.; Wang, Y.-M. A Study on Heat Storage and Dissipation Efficiency at Permeable Road Pavements. Materials 2021, 14, 3431. [Google Scholar] [CrossRef] [PubMed]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Santero, N.J.; Masanet, E.; Horvath, A. Life-cycle assessment of pavements Part II: Filling the research gaps. Resour. Conserv. Recycl. 2011, 55, 810–818. [Google Scholar] [CrossRef]
- Akbari, H.; Menon, S.; Rosenfeld, A. Global cooling: Increasing world-wide urban albedos to offset CO2. Clim. Chang. 2008, 94, 275–286. [Google Scholar] [CrossRef]
- Muñoz, I.; Campra, P.; Fernández-Alba, A.R. Including CO2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture. Int. J. Life Cycle Assess. 2010, 15, 672–681. [Google Scholar] [CrossRef]
- Yu, B.; Lu, Q. Estimation of albedo effect in pavement life cycle assessment. J. Clean. Prod. 2014, 64, 306–309. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D.; Seto, D. The long-term effect of increasing the albedo of urban areas. Environ. Res. Lett. 2012, 7, 024004. [Google Scholar] [CrossRef]
- Sieber, P.; Ericsson, N.; Hansson, P. Climate impact of surface albedo change in Life Cycle Assessment: Implications of site and time dependence. Environ. Impact Assess. Rev. 2019, 77, 191–200. [Google Scholar] [CrossRef]
- Blog, I. Construction Technologies in 2024: Current and Emerging Trends. 2024. Available online: https://blog.indovance.com/construction-technologies-in-2024-a-closer-look-at-the-current-and-emerging-contech-trends/ (accessed on 5 August 2024).
Date | Event |
---|---|
Ancient Times | Asphalt was utilized by Mesopotamians for waterproofing, Phoenicians employed it to seal ships, Egyptians utilized it as mortar to prevent erosion, and Moses’ basket was made waterproof by using asphalt. |
625 B.C | The earliest documented utilization of asphalt as a material for constructing roads was observed in Babylon. Asphalt was also utilized by the Greeks and Romans for a variety of applications. |
1595 | Europeans encountered naturally bituminous deposits in the new continent. Sir Walter Raleigh employed it for the purpose of ship recaulking. |
Early 1800s | Thomas Telford and John Loudon McAdam revolutionized road construction by introducing the use of crushed stone and tar, resulting in the development of “tarmacadam” pavements. |
1870 | Edmund J. DeSmedt, a chemist from Belgium, constructed the initial authentic asphalt pavement in the United States in Newark, New Jersey. The Cummer Company established the first concentrated facility for producing hot mix asphalt. Nathan B. Abbott was the first person to submit a patent on asphalt. |
1900 | Frederick J. Warren obtained a patent for the “Bitulithic” pavement, and Warren Brothers constructed the initial contemporary asphalt production in East Cambridge, Massachusetts. |
1907 | Production of refined petroleum asphalt exceeded that of natural asphalt. The process of mechanization and the introduction of new technologies in the production and laying of asphalt commenced. |
1942 | The advancements in asphalt materials for military plane runways were driven by the impact of World War II. |
1956 | The implementation of the Interstate Highways Act by Congress resulted in the advancement of larger and more advanced machinery for the purpose of road construction. |
1970 | The energy crisis prompted a rise in the utilization of recycled asphalt. Asphalt pavement emerged as the most extensively recycled material in the United States. |
1986 | The National Centre for Asphalt Technology (NCAT) was founded at Auburn University and has since become the primary organization for conducting research on asphalt. |
2002 | The Environmental Protection Agency (EPA) excluded asphalt facilities from the roster of significant contributors to dangerous airborne contaminants. |
Today | Asphalt pavement is the most recycled material in America, exceeding the recycling rates of newspaper, aluminum cans, and glass. |
Publication | Classification | Considered Factors | Pavement Performance Measures |
---|---|---|---|
[66,67] | Non-compressive performance measures | Surface distresses | Crack Index (CI) |
[68] | Alligator Deterioration Index (ADI) | ||
[69] | Pervious Concrete Distress Index (PCDI) | ||
[70] | Distress Rating (DR) | ||
[71] | Pavement Structural Condition Index (PSC) | ||
[72] | Pavement Distress Condition Index (PDCI) | ||
[72] | Transverse Cracks Rating Index (TCEI) | ||
[73] | Surface Distress Index (SDI) | ||
[74,75] | Ride quality | Ride Quality Index (RQI) | |
[74,76,77] | Rutting Depth Index (RDI) | ||
[72,78,79,80,81,82] | Rutting Depth (RD) | ||
[78,79,83,84,85,86,87,88,89,90,91,92,93,94] | International Roughness Index (IRI) | ||
[95,96,97] | Friction | International Friction Index (IFI) | |
[74] | Skidding Resistance Index (SRI) | ||
[98] | Skid Number (SN) | ||
[72,98,99] | Sideway Force Coefficient (SFC) | ||
[100,101,102,103] | Mean Summer SCRIM Coefficient (MSSC) | ||
[104,105,106] | Structural Capacity | Deflection | |
[74] | Pavement Structural Strength Index (PSSI) | ||
[107] | Surface Curvature Index (SCI) | ||
[108,109] | Structural Number (SN) | ||
[110] | Compressive performance measures | Surface distresses, ride quality | Urban Pavement Condition Index (UPCI) |
[64] | Pavement Serviceability Rating (PSR) | ||
[111,112,113,114,115,116] | Pavement Serviceability Index (PSI) | ||
[117] | Pavement Quality Index (PQI) | ||
[118,119,120,121,122] | Pavement Condition Rating (PCR) | ||
[93,123,124,125,126,127,128,129] | Pavement Condition Index (PCI) | ||
[130] | Overall Performance Index (OPI) | ||
[131] | Overall Pavement Condition (OPC) | ||
[132] | Future Pavement Surface Condition (FPSC) | ||
[133] | Composite Condition Index (CCI) |
Category | Solution | Description | Benefits |
---|---|---|---|
Sustainable Asphalt Solutions | WarmMix Asphalt [188] | Asphalt mixed and laid at a lower temperature | Reduced energy consumption Extended paving seasons Improved working condition |
Recycled Asphalt Pavement (RAP) [189] | Recycling old asphalt into new mixtures | Resource conservation Cost saving Environmental impact | |
Bio-Based Binders | Binders derived from renewable energy sources, such as plant oil | Renewability Lowered emissions Enhanced performance | |
Technological Advancement | Intelligent Compaction | Advanced rollers with sensors and GPS for real-time compaction data | Improved quality Efficiency Data collection |
Perpetual Pavement | Multi-layer approach to pavement design for indefinite lifespan | Long service life Reduced maintenance Sustainability | |
Self-Healing Asphalt [188] | Asphalt that can repair itself when minor cracks occur | Extended lifespan Cost-effective Enhanced durability | |
Smart and Connected Infrastructure | Smart Pavements | Pavements with integrated sensors and communication systems | Real-time monitoring Predictive maintenance Enhanced safety |
Electric Vehicle Charging Roads | Pavements with embedded wireless charging system for EVs | Convenience Sustainability | |
Solar Roadways | Pavements with integrated solar panels to generate renewable energy | Energy generation Reduced carbon footprints Innovative uses | |
Advanced Materials | Polymer-Modified Asphalt (PMA) | Asphalt enhanced with polymers | Increased durability Enhanced performance Weather resistance |
Nanotechnology in Asphalt | Use of nano-sized material to improve asphalt properties | Improved strength Increased service life Self-healing properties | |
Geopolymer Asphalt | Asphalt using industrial byproducts like fly ash or slag as binders | Sustainability Environmental impact |
Method | Description | Advantages | Disadvantages |
---|---|---|---|
Dry Pigment Addition | Adding dry pigment directly to the hot asphalt blacktop mix |
|
|
Acrylic-Based Color Coatings | Applying an acrylic-based color coating on top of the asphalt pavement |
|
|
Inorganic Pigments | Introducing inorganic pigments like oxides of chromium, manganese, iron oxide, and cobalt into binder formulation |
|
|
Incorporation of Light Mineral Components | Using light mineral fillers (sand, crushed stone, gravel) or colored minerals (granite crumb) |
|
|
Synthetic Binder Emulsion | Applying a thin colored coating made from emulsions of synthetic binders stabilized in water with fatty alcohols, alkylpolyamines, etc. |
|
|
Study | City | Nation | Continent | Color System | Hue | Code |
---|---|---|---|---|---|---|
[212] | Korea | Asia | Munsell- HV/C KS L*, a*, b* SRGB CMYK | Red | 5R ¾ 0075 30.25, 20.68, 8.56 105, 58, 59 0, 45, 44, 59 | |
[213] | Singapore | RAL | 3011-brown red | |||
[214] | USA | America | CIE 1931 | Green | Daytime chromaticity (x,y): (0.230, 0.754), (0.266, 0.500), (0.367, 0.500), (0.444, 0.555) Nighttime chromaticity (x,y): (0.230, 0.754), (0.336, 0.540), (0.450, 0.500), (0.479, 0.520) | |
[205] | Chile | RAL | Blue | 5012-light blue | ||
[215] | Iceland | Europe | NCS | Green | S 0506-G40Y | |
[216] | Zaragoza | Spain | RAL | Green | 6002-leaf green | |
[217] | Moscow | Russia | NCS | Ochre | S 3060-Y20R/S 3060-Y30R/S 3060-Y40R | |
Pink | S 4030-Y40R/S 4030-Y50R/S 4030-Y60R | |||||
Red | S 1580-Y80R | |||||
[218] | Italy | RAL | Red | 3003-ruby red | ||
[219] | Slovakia | RAL | Green | 6018-yellow green | ||
[220] | South Australia | Australia | Australia | G13-emerald green G27-homebush green | ||
[205] | Western Australia | G13-emerald (crossing in shared path) |
Sample | Concrete | Asphalt | ||
---|---|---|---|---|
Mean Surface Temperature (°C) | Mean Surface Temperature Reduction (°C) | Mean Surface Temperature (°C) | Mean Surface Temperature Reduction (°C) | |
Uncoated | 48.52 | 0.00 | 58.95 | 0.00 |
Green | 46.04 | 2.49 | 57.69 | 2.49 |
Brown | 44.26 | 4.26 | 56.45 | 4.26 |
Red | 43.72 | 4.81 | 55.85 | 4.81 |
Yellow | 39.99 | 8.54 | 48.09 | 8.54 |
White | 38.15 | 10.38 | 41.52 | 10.38 |
Sample | SR (%) | SRNIR (%) | SRUV (%) | SRVIS (%) |
---|---|---|---|---|
Conventional black asphalt | 4 | 4 | 4 | 3 |
Off-white thin-layer asphalt | 55 | 63 | 10 | 45 |
Yellow thin-layer asphalt | 440 | 51 | 8 | 26 |
Green thin-layer asphalt | 27 | 39 | 8 | 10 |
Beige thin-layer asphalt | 45 | 56 | 10 | 31 |
Red thin-layer asphalt | 27 | 40 | 6 | 11 |
Type of Cool Pavement | Base Material (BM) | Albedo of Base Material | Cool Pavement Application | Albedo of Cool Pavement | Area | City | Study |
---|---|---|---|---|---|---|---|
Evaporative | - | - | Water retention pavement | - | Public square | Minato, Japan | [248] |
Evaporative | - | - | Water retention pavement | - | Small park | Mitaka, Japan | [248] |
Evaporative | Dense graded asphalt | - | Water retention pavement | - | Parking lot | Tokyo, Japan | [249] |
Reflective | White concrete, black asphalt | 0.45 (concrete) | Photocatalytic, colored infrared reflective concrete | 0.68 | 4160 m2 | Athens, Greece | [200] |
Reflective | Dark concrete, black asphalt | 0.15–0.2 | Colored infrared reflective concrete | 0.65–0.75 | 25,000 m2 | Tirana, Albania | [250] |
Reflective | Dark concrete, black asphalt | <0.4 | Colored infrared reflective concrete, marble | 0.70–0.78 | 16,000 m2 | Athens, Greece | [244] |
Reflective | Concrete, black asphalt | 0.35–0.45 (concrete), <0.2 (asphalt) | Colored infrared reflective concrete | 0.60 | 4500 m2 | Athens, Greece | [37] |
Reflective | Grey concrete, black asphalt | 0.04 (asphalt) | Colored infrared reflective asphalt, photocatalytic concrete | 0.35–0.66 | 37,000 m2 | Athens, Greece | [245] |
Reflective | - | - | Marble cement | 0.69 | - | Athens, Greece | [246] |
Evaporative | Black asphalt, gray concrete | - | Porous brick, porous asphalt | - | 200 m sidewalk, 200 m bike lane | Taipei, Taiwan | [251] |
Reflective | Dark asphalt | 0.06–0.08 | Reflective coating | 0.18–0.25 | 13,000 m2 | Los Angeles, CA, USA | [247] |
Reflective | Dark asphalt | 0.12 | Reflective coating | 0.33–0.38 (initially), (0.19–0.30) (after 10 months) | 57,936 m2 | Phoenix, AZ, USA | |
Reflective | Black asphalt | Reflective coating | - | 3500 m2 | Makkah, Saudi Arabia | [197] | |
Reflective | Black asphalt | Colored cryogenic material with hallow ceramic microspheres | - | 200 m road, 200 m sidewalk/bicycle lane | Doha, Qatar | [197] | |
Evaporative | - | - | Semi-permeable asphalt, fully-permeable asphalt | - | 850 m2 | Pingtung, Taiwan | [252] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, A.; Yasir, N.; Badin, G.; Mahmood, Y. Innovative Pavement Solutions: A Comprehensive Review from Conventional Asphalt to Sustainable Colored Alternatives. Infrastructures 2024, 9, 186. https://doi.org/10.3390/infrastructures9100186
Riaz A, Yasir N, Badin G, Mahmood Y. Innovative Pavement Solutions: A Comprehensive Review from Conventional Asphalt to Sustainable Colored Alternatives. Infrastructures. 2024; 9(10):186. https://doi.org/10.3390/infrastructures9100186
Chicago/Turabian StyleRiaz, Anisa, Nof Yasir, Gul Badin, and Yasir Mahmood. 2024. "Innovative Pavement Solutions: A Comprehensive Review from Conventional Asphalt to Sustainable Colored Alternatives" Infrastructures 9, no. 10: 186. https://doi.org/10.3390/infrastructures9100186
APA StyleRiaz, A., Yasir, N., Badin, G., & Mahmood, Y. (2024). Innovative Pavement Solutions: A Comprehensive Review from Conventional Asphalt to Sustainable Colored Alternatives. Infrastructures, 9(10), 186. https://doi.org/10.3390/infrastructures9100186