Investigation of the Influence of Spoiler and Maintenance Track on Second-Order Heaving Vortex-Induced Vibration
Abstract
:1. Introduction
2. Field Measurement
2.1. Measured Site and Equipment Layout
2.2. Field Measurement Data Processing
2.3. Measured Results
3. Wind Tunnel Tests
3.1. Wind Tunnel Experiment Setup
3.2. Experimental Data Processing
4. Discussion
4.1. The Influence of Spoiler on Original Section
4.2. The Influence of Spoiler Size and Form
4.3. The Influence of Maintenance Track
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Wang, H.; Xu, Z.; Tao, T.; Mao, J.; Gao, H. Measurement study on wind characteristics model at bridge site considering typhoon spatial position. J. Vib. Eng. 2023, 36, 1430–1436. [Google Scholar]
- Hui, M.; Larsen, A.; Xiang, H.F. Wind turbulence characteristics study at the stonecutters bridge site: Part Ⅱ: Wind power spectra, integral length scales and coherences. J. Wind Eng. Ind. Aerodyn. 2009, 97, 48–59. [Google Scholar] [CrossRef]
- Li, Y.; Hu, P.; Xu, X.; Qiu, J. Wind characteristics at bridge site in a deep-cutting gorge by wind tunnel test. J. Wind Eng. Ind. Aerodyn. 2017, 160, 30–46. [Google Scholar] [CrossRef]
- Fenerci, A.; Ole, O.; Anders, R. Long-term monitoring of wind field characteristics and dynamic response of along-span suspension bridge in complex terrain. Eng. Struct. 2017, 147, 269–284. [Google Scholar] [CrossRef]
- Wu, F.; Cui, W.; Zhao, L.; Guo, Z.; Li, Q.; Ge, Y. Field Measurements of Wind Microclimate for Vehicle Levels on a Bridge Deck in a Complex Deep Canyon Terrain. China J. Highw. Transp. 2023, 36, 71–81. [Google Scholar]
- Vickery, P.J.; Twisdale, L.A. Wind-field and filling models for hurricane wind-speed predictions. J. Struct. Eng. 1995, 121, 1700–1709. [Google Scholar] [CrossRef]
- Bai, H.; Li, R.; Xu, G.; Kareem, A. Aerodynamic performance of Π-shaped composite deck cable-stayed bridges including VIV mitigation measures. J. Wind Eng. Ind. Aerodyn. 2021, 208, 104451. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; He, R.; Li, J.; Hao, J.; Zhang, J.; Huang, X. Investigation of the intrinsic characteristics of two lock-in regions in a 10:1 π-shaped deck. Ocean Eng. 2024, 293, 116607. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, Y.; Li, M.; Yang, X. Experimental and numerical studies on the vortex-induced vibration of two-box edge girder for cable-stayed bridges. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104336. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, X.; Li, J.; Xin, H.; Sun, Q.; Wang, J. Investigation of vortex-induced vibration of a cable-stayed bridge without backstays based on wind tunnel test. Eng. Struct. 2022, 250, 113436. [Google Scholar] [CrossRef]
- Li, H.-Y.; Xu, Y.-L.; Zhu, L.-D.; Zhang, G.-Q.; Cheng, B.-M. Aerodynamic interference between road vehicles and bridge deck subjected to vortex-induced vibration. J. Wind Eng. Ind. Aerodyn. 2024, 252, 105845. [Google Scholar]
- Larsen, A.; Esdahl, S.; Andersen, J.E.; Vejrum, T. Storebaelt suspension bridge—Vortex shedding excitation and mitigation by guide vanes. J. Wind. Eng. Ind. Aerodyn. 2000, 88, 283–296. [Google Scholar] [CrossRef]
- Laima, S.; Li, H.; Chen, W.; Ou, J. Effects of attachments on aerodynamic characteristics and vortex-induced vibration of twin-box girder. J. Fluids Struct. 2018, 77, 115–133. [Google Scholar] [CrossRef]
- Yuan, W.; Laima, S.; Chen, W.; Li, H.; Hu, H. Investigation on the vortex-and-wake-induced vibration of a separated-box bridge girder. J. Fluids Struct. 2017, 70, 145–161. [Google Scholar]
- Huang, L.; Wang, Q.; Dong, J.H.; Liao, H.L. Vortex-induced vibration mitigation effects of horizontal stabilizers on flat steel box girder with large aspect ratio. Bridge Constr. 2022, 52, 69–77. [Google Scholar]
- Wang, J.; Wang, F.; Xing, F.; Zheng, X.; Li, J.; Zhang, J.; Huang, X. Investigation of two patterns of vortex-induced vibration in a 5:1 rectangular section under different parameters. Phys. Fluids 2024, 36, 057112. [Google Scholar] [CrossRef]
- Li, J.W.; Wu, P.; Hao, J.M.; Pan, H. Experimental and numerical studies on the two “lock-in” regions characteristic of vertical vortex-induced vibration of Π-shaped composite bridge deck. J. Wind. Eng. Ind. Aerodyn. 2022, 228, 105122. [Google Scholar] [CrossRef]
- Zhao, L.; Cui, W.; Shen, X.; Xu, S.; Ding, Y.; Ge, Y. A fast on-site measure-analyze-suppress response to control vortex-induced-vibration of a long-span bridge. Structures 2022, 35, 192–201. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, L.; Guan, X.; Ge, Y. Mitigation mechanism of torsional vortex-induced vibration using aerodynamic countermeasures: Case study on a typical closed-box girder. Eng. Struct. 2024, 318, 118611. [Google Scholar] [CrossRef]
- Xu, F.; Ying, X.; Li, Y.; Zhang, M. Experimental explorations of the torsional vortex-induced vibrations of a bridge deck. J. Bridge Eng. 2016, 21. [Google Scholar] [CrossRef]
- Yang, F.F.; Zheng, S.X.; Yan, Z.X. Vortex-induced vibration and control of split three-box girder bridges. Struct. Eng. Int. 2021, 33, 7–16. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, F.; Tang, H.; Li, Y.; Xu, X. Effects of secondary elements on vortex-induced vibration of a streamlined box girder. KSCE J. Civ. Eng. 2020, 25, 173–184. [Google Scholar] [CrossRef]
- Ge, Y.J.; Zhao, L.; Cao, J.X. Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge. J. Wind Eng. Ind. Aerodyn. 2022, 220, 104866. [Google Scholar] [CrossRef]
- Li, M.; Sun, Y.; Jing, H.; Li, M. Vortex-induced vibration optimization of a wide streamline box girder by wind tunnel test. KSCE J. Civ. Eng. 2018, 22, 5143–5153. [Google Scholar] [CrossRef]
- Hui, Y.; Liu, Z.; Guo, K.; Yang, Q. A Mathematical Model of Nonlinear Aerodynamic Damping for High-Rise Buildings. J. Eng. Mech. (ASCE) 2024, 150, 04024021. [Google Scholar] [CrossRef]
- Hui, Y.; Tang, Y.; Yang, Q.; Chen, B. A Wake-Oscillator Model for predicting VIV of 4-to-1 rectangular section cylinder. Nonlin. Dyn. 2024, 112, 8985–8999. [Google Scholar] [CrossRef]
- Ge, Y.J.; Cao, F.C.; Li, J.W.; Liu, Q.K.; Ma, C.M.; Yang, Y.X.; Zhang, Z.T.; Zhao, L. Guidelines for Wind Tunnel Testing of Bridges; Communications Press Co., Ltd.: Beijing, China, 2018. [Google Scholar]
Mode | Actual Situation | Model | |||||
---|---|---|---|---|---|---|---|
Frequency (Hz) | Mass per Unit (kg·m−1) | Geometric Scale Ratio | Frequency (Hz) | Damping Ratio (%) | Mass per Unit (kg·m−1) | Wind Speed Ratio | |
Second-order asymmetric heave | 0.277 | 23,765.8 | 1:60 | 5.53 | 0.26 | 6.77 | 1:3.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Luo, J.; Xu, S.; Li, P.; Dang, J.; Gao, G.; Wang, J.; Li, H. Investigation of the Influence of Spoiler and Maintenance Track on Second-Order Heaving Vortex-Induced Vibration. Infrastructures 2024, 9, 192. https://doi.org/10.3390/infrastructures9110192
Wang F, Luo J, Xu S, Li P, Dang J, Gao G, Wang J, Li H. Investigation of the Influence of Spoiler and Maintenance Track on Second-Order Heaving Vortex-Induced Vibration. Infrastructures. 2024; 9(11):192. https://doi.org/10.3390/infrastructures9110192
Chicago/Turabian StyleWang, Feng, Jiqing Luo, Shuohua Xu, Peisen Li, Jiamin Dang, Guangzhong Gao, Jiaying Wang, and Haodao Li. 2024. "Investigation of the Influence of Spoiler and Maintenance Track on Second-Order Heaving Vortex-Induced Vibration" Infrastructures 9, no. 11: 192. https://doi.org/10.3390/infrastructures9110192
APA StyleWang, F., Luo, J., Xu, S., Li, P., Dang, J., Gao, G., Wang, J., & Li, H. (2024). Investigation of the Influence of Spoiler and Maintenance Track on Second-Order Heaving Vortex-Induced Vibration. Infrastructures, 9(11), 192. https://doi.org/10.3390/infrastructures9110192