Exploring the Efficacy of Amine-Free Anti-Stripping Agent in Improving Asphalt Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Modified Asphalt
2.3. Conventional Properties Tests
2.4. Performance Properties Tests
3. Results
3.1. Segregation-Storage Stability Test
3.2. Conventional Properties Tests
3.3. Rotational Viscometer Results
3.4. Elastic Recovery Test Results
3.5. Conventional Test Results after Aging
3.6. Marshall Stability Results
3.7. ITS and Moisture Damage
3.8. Improved Immersion Test Results
4. Conclusions
- The introduction of the anti-stripping agent induces significant changes in fundamental asphalt binder properties. Notably, a 0.25% dosage leads to a decrease in penetration, coupled with an increase in softening point and viscosity. Conversely, higher dosages produce contrasting effects.
- The treated asphalt displays an improvement in elastic recovery with increasing anti-stripping agent dosage, emphasizing the dosage-dependent nature of these changes.
- The remarkable increase in the percent retained penetration of asphalt, accompanied by a decrease in ductility of residue values, underscores the complex interactions among the asphalt binder, anti-stripping agent, and the aging process.
- The addition of a low dose (0.25–0.5%) of anti-stripping agent significantly enhances the retained stability index and TSR values in asphalt mixtures. This positive outcome is attributed to the crucial role played by the liquid anti-stripping agent in fostering a robust bond between the asphalt binder and aggregate particles, particularly in the presence of water.
- Notably, asphalt treated with 0.25% anti-stripping agents exhibits a conspicuous decline in stripping ratios compared to the virgin mixture, highlighting the efficacy of these dosages in mitigating stripping.
- Despite these advantages, a call for caution is sounded, emphasizing the imperative of further investigations and field performance evaluations, particularly regarding the potential long-term effects of aging. Advanced chemical and rheological tests, along with molecular analyses of anti-stripping–binder interactions, are proposed to provide deeper insights into observed binder modifications and deliver valuable insights into the optimal dosage for achieving the desired long-term performance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, Y.; Yu, Z.; Long, Y.; Li, Y. Experimental investigation on the effects of a new anti-stripping additive on performance properties of asphalt and its mixtures. Constr. Build. Mater. 2022, 353, 129173. [Google Scholar] [CrossRef]
- Haghshenas, H.; Khodaii, A.; Saleh, M. Long term effectiveness of anti-stripping agents. Constr. Build. Mater. 2015, 76, 307–312. [Google Scholar] [CrossRef]
- Mehrara, A.; Khodaii, A. A review of state of the art on stripping phenomenon in asphalt concrete. Constr. Build. Mater. 2013, 38, 423–442. [Google Scholar] [CrossRef]
- Xiao, Z.; Chen, M.; Wu, S.; Xie, J.; Kong, D.; Qiao, Z.; Niu, C. Moisture susceptibility evaluation of asphalt mixtures containing steel slag powder as filler. Materials 2019, 12, 3211. [Google Scholar] [CrossRef]
- Kakar, M.R.; Hamzah, M.O.; Valentin, J. A review on moisture damages of hot and warm mix asphalt and related investigations. J. Clean. Prod. 2015, 99, 39–58. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Constr. Build. Mater. 2013, 47, 254–260. [Google Scholar] [CrossRef]
- Cui, S.; Blackman, B.R.; Kinloch, A.J.; Taylor, A.C. Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. Int. J. Adhes. Adhes. 2014, 54, 100–111. [Google Scholar] [CrossRef]
- Omar, H.A.; Yusoff, N.I.M.; Mubaraki, M.; Ceylan, H. Effects of moisture damage on asphalt mixtures. J. Traffic Transp. Eng. Engl. Ed. 2020, 7, 600–628. [Google Scholar] [CrossRef]
- Shu, S.; Zhuang, C.; Ren, R.; Xing, B.; Chen, K.; Li, G. Effect of Different Anti-Stripping Agents on the Rheological Properties of Asphalt. Coatings 2022, 12, 1895. [Google Scholar] [CrossRef]
- Luo, R.; Tu, C. Actual diffusivities and diffusion paths of water vapor in asphalt mixtures. Constr. Build. Mater. 2019, 207, 145–157. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Wang, W.; Weng, H.; Fang, Y.; Xiao, F. Impacts of colloidal and interfacial interactions on bonding strength of rubberized RAP asphalt binder. Constr. Build. Mater. 2022, 349, 128768. [Google Scholar] [CrossRef]
- Caro, S.; Masad, E.; Bhasin, A.; Little, D.N. Moisture susceptibility of asphalt mixtures, Part 1: Mechanisms. Int. J. Pavement Eng. 2008, 9, 81–98. [Google Scholar] [CrossRef]
- Al-Saffar, Z.H.; Yaacob, H.; Mohd Satar, M.K.I.; Saleem, M.K.; Jaya, R.P.; Lai, C.J.; Shaffie, E. Evaluating the chemical and rheological attributes of aged asphalt: Synergistic effects of maltene and waste engine oil rejuvenators. Arab. J. Sci. Eng. 2020, 45, 8685–8697. [Google Scholar] [CrossRef]
- Al-Saffar, Z.H.; Yaacob, H.; Satar, M.K.I.M.; Jaya, R.P. Impacts of maltene on the wettability and adhesion properties of rejuvenated asphalt binder. Arab. J. Sci. Eng. 2021, 46, 10557–10568. [Google Scholar] [CrossRef]
- Ji, H.; Li, B.; Li, A.; Li, Z.; Han, J.; Liu, Z. Adhesion mechanism of warm-mixed recycled SBS Modified Asphalt Binder: Surface free energy, microstructure and chemical compositions. Case Stud. Constr. Mater. 2023, 19, e02426. [Google Scholar] [CrossRef]
- Arabani, M.; Hamedi, G.H. Using the surface free energy method to evaluate the effects of polymeric aggregate treatment on moisture damage in hot-mix asphalt. J. Mater. Civ. Eng. 2011, 23, 802–811. [Google Scholar] [CrossRef]
- Huang, T.; Cao, Z.; Lv, S.; Yu, H.; Peng, X.; Jiang, H.; Wu, L. Road behavior and micro characteristics of high-performance asphalt based on compound modification approach. Constr. Build. Mater. 2023, 371, 130622. [Google Scholar] [CrossRef]
- Abuawad, I.M.; Al-Qadi, I.L.; Trepanier, J.S. Mitigation of moisture damage in asphalt concrete: Testing techniques and additives/modifiers effectiveness. Constr. Build. Mater. 2015, 84, 437–443. [Google Scholar] [CrossRef]
- Chuanfeng, Z.; Yong, Q.; Dan, L.; Ting, Z.; Xingyang, L.; Shi, Z. Effects of anti-stripping agents on the microscopic strength of mineral aggregate contact surface. Constr. Build. Mater. 2013, 49, 627–634. [Google Scholar] [CrossRef]
- Kavussi, A.; Qorbani, M.; Khodaii, A.; Haghshenas, H. Moisture susceptibility of warm mix asphalt: A statistical analysis of the laboratory testing results. Constr. Build. Mater. 2014, 52, 511–517. [Google Scholar] [CrossRef]
- Nazirizad, M.; Kavussi, A.; Abdi, A. Evaluation of the effects of anti-stripping agents on the performance of asphalt mixtures. Constr. Build. Mater. 2015, 84, 348–353. [Google Scholar] [CrossRef]
- Ali, S.A.; Zaman, M.; Ghabchi, R.; Rahman, M.A.; Ghos, S.; Rani, S. Effect of additives and aging on moisture-induced damage potential of asphalt mixes using surface free energy and laboratory-based performance tests. Int. J. Pavement Eng. 2022, 23, 285–296. [Google Scholar] [CrossRef]
- Arabani, M.; Roshani, H.; Hamedi, G.H. Estimating moisture sensitivity of warm mix asphalt modified with zycosoil as an antistrip agent using surface free energy method. J. Mater. Civ. Eng. 2012, 24, 889–897. [Google Scholar] [CrossRef]
- Park, D.-W.; Seo, W.-J.; Kim, J.; Vo, H.V. Evaluation of moisture susceptibility of asphalt mixture using liquid anti-stripping agents. Constr. Build. Mater. 2017, 144, 399–405. [Google Scholar] [CrossRef]
- Xu, W.; Luo, R. Evaluation of interaction between emulsified asphalt and mineral powder using rheology. Constr. Build. Mater. 2022, 318, 125990. [Google Scholar] [CrossRef]
- Eltwati, A.; Putra Jaya, R.; Mohamed, A.; Jusli, E.; Al-Saffar, Z.; Hainin, M.R.; Enieb, M. Effect of Warm Mix Asphalt (WMA) Antistripping Agent on Performance of Waste Engine Oil-Rejuvenated Asphalt Binders and Mixtures. Sustainability 2023, 15, 3807. [Google Scholar] [CrossRef]
- Sezavar, R.; Shafabakhsh, G.; Mirabdolazimi, S. New model of moisture susceptibility of nano silica-modified asphalt concrete using GMDH algorithm. Constr. Build. Mater. 2019, 211, 528–538. [Google Scholar] [CrossRef]
- Geckil, T.; Seloglu, M. Performance properties of asphalt modified with reactive terpolymer. Constr. Build. Mater. 2018, 173, 262–271. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef]
- Zhong, K.; Yang, X.; Wei, X. Investigation on surface characteristics of epoxy asphalt concrete pavement. Int. J. Pavement Res. Technol. 2017, 10, 545–552. [Google Scholar] [CrossRef]
- Alam, M.N.; Aggarwal, P. Effectiveness of anti stripping agents on moisture susceptibility of bituminous mix. Constr. Build. Mater. 2020, 264, 120274. [Google Scholar] [CrossRef]
- Oliviero Rossi, C.; Teltayev, B.; Angelico, R. Adhesion promoters in bituminous road materials: A review. Appl. Sci. 2017, 7, 524. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, M.; Zhong, J.; Baumgardner, G.L.; Huang, B. Waste Plastic Powder Coating on Acidic Aggregates: A New Hydrophobic Coating Technology to Build Moisture-Resistant Asphalt Mixtures. Transp. Res. Rec. 2023, 03611981231193413. [Google Scholar] [CrossRef]
- Sarkar, D.; Pal, M.; Sarkar, A.K. Study on plastic coated overburnt brick aggregate as an alternative material for bituminous road construction. Adv. Mater. Sci. Eng. 2016, 2016, 5352787. [Google Scholar] [CrossRef]
- AI, A.-H.; Rashed Abdullah, M. Mechanistic properties of the unaged and aged DGAMs. Al-Rafidain Eng. J. AREJ 2014, 22, 178–196. [Google Scholar] [CrossRef]
- Xie, J.; Yang, Y.; Lv, S.; Zhang, Y.; Zhu, X.; Zheng, C. Investigation on rheological properties and storage stability of modified asphalt based on the grafting activation of crumb rubber. Polymers 2019, 11, 1563. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, G.; Zhang, H.; Xiao, F.; Amirkhanian, S.; Wu, C. Influence of different anti-stripping agents on the rheological properties of asphalt binder at high temperature. Constr. Build. Mater. 2018, 164, 317–325. [Google Scholar] [CrossRef]
Physical Properties | Value | Unit | Test Condition | ASTM Designation No. |
---|---|---|---|---|
Penetration | 43 | 1/10 mm | 25 °C, 100 gm, 5 s | D-5 |
Ductility | 160 | cm | 25 °C, 5 cm/min | D-113 |
Softening point | 54 | °C | Ring & ball | D-36 |
Specific gravity | 1.03 | --- | 25 °C | D-70 |
Rotational viscosity | 571 | cP | 135 °C | D4402 |
145 | cP | 165 °C |
Aggregate Properties | Coarse Aggregate | Fine Aggregate | ASTM Specification |
---|---|---|---|
Bulk-specific gravity | 2.669 | 2.659 | - |
Apparent-specific gravity | 2.729 | 2.733 | - |
Water absorption | 0.72% | 1.13% | - |
Loss angeles abrasion | 22% | - | 45% max |
Soundness | 4.1% | - | 18% max |
Crushed percentage | 95% | - | 90% min |
Deleterious materials | 0.5 | - | 3% max |
Property | Typical Value |
---|---|
Specific gravity (g/cm3) | 1.07 |
Boiling point (°C) | 290 |
Color of liquid | Colorless |
Refractive index | 1.4 |
Flash point COC, (°C) | >150 |
Viscosity @ 24 °C, cpc | 75–125 |
pH | 7 |
Potential health effects | Slight irritant upon contact with skin or eyes, or upon ingestion |
Additive | Top Reading (°C) | Bottom Reading (°C) | Difference (°C) | Requirement (<2.2) |
---|---|---|---|---|
0.0% | - | - | - | - |
0.25% | 57.1 | 58.2 | 1.1 | Pass |
0.50% | 57.6 | 58.5 | 0.9 | Pass |
0.75% | 58 | 59 | 1 | Pass |
1.0% | 58 | 59 | 1 | Pass |
Sample Type | Virgin Asphalt | Asphalt Binder with Anti-Stripping Agent | |||
---|---|---|---|---|---|
0.25% | 0.5% | 0.75% | 1.0% | ||
Residual length X (cm) | 18.9 | 18 | 17.5 | 17 | 16.6 |
Elastic recovery rate (%) | 5.5 | 10 | 12.5 | 15 | 17.8 |
Additive (%) | Loss by Weight (%) | Retained Penetration (%) | Ductility of Residue |
---|---|---|---|
- | <0.75% (ASTM 2872) | >55% (ASTM D5) | >25 cm (ASTM D113) |
0.0 | 0.445 | 67.8 | 41 |
0.25 | 0.563 | 63.6 | 40 |
0.5 | 0.612 | 61.8 | 36 |
0.75 | 0.624 | 61.2 | 35 |
1.0 | 0.716 | 59.9 | 31 |
Anti-Stripping (%) | Stability after 40 min (kN) | Stability after 24 h (kN) | Retained Stability Index (%) |
---|---|---|---|
0 | 16.2 | 14.2 | 87.6 |
0.25 | 16.4 | 15.8 | 96.3 |
0.5 | 16.0 | 15.7 | 98.1 |
0.75 | 15.8 | 15.4 | 97.4 |
1.0 | 15.5 | 14.6 | 94.1 |
Asphalt/Anti-Stripping Asphalt | Stripping Ratio of Asphalt (%) |
---|---|
Virgin asphalt (VA) | 65 |
0.25% anti-stripping agent + VA | 50 |
0.5% anti-stripping agent + VA | 66 |
0.75% anti-stripping agent + VA | 68 |
1.0% anti-stripping agent + VA | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saffar, Z.H.; Mohamed Hasan, H.G.; Oleiwi Aletba, S.R. Exploring the Efficacy of Amine-Free Anti-Stripping Agent in Improving Asphalt Characteristics. Infrastructures 2024, 9, 25. https://doi.org/10.3390/infrastructures9020025
Al-Saffar ZH, Mohamed Hasan HG, Oleiwi Aletba SR. Exploring the Efficacy of Amine-Free Anti-Stripping Agent in Improving Asphalt Characteristics. Infrastructures. 2024; 9(2):25. https://doi.org/10.3390/infrastructures9020025
Chicago/Turabian StyleAl-Saffar, Zaid Hazim, Heja Ghazi Mohamed Hasan, and Salam Ridha Oleiwi Aletba. 2024. "Exploring the Efficacy of Amine-Free Anti-Stripping Agent in Improving Asphalt Characteristics" Infrastructures 9, no. 2: 25. https://doi.org/10.3390/infrastructures9020025
APA StyleAl-Saffar, Z. H., Mohamed Hasan, H. G., & Oleiwi Aletba, S. R. (2024). Exploring the Efficacy of Amine-Free Anti-Stripping Agent in Improving Asphalt Characteristics. Infrastructures, 9(2), 25. https://doi.org/10.3390/infrastructures9020025