Aging Resistance Evaluation of an Asphalt Mixture Modified with Zinc Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Asphalt Binder Modification and Aging Assessmen
2.3. Asphalt Mixture Design and Choice of ZnO/AC Ratio
2.4. Mechanical Strength and Aging Analysis
2.5. ANOVA—Analysis of Variance
3. Results
3.1. Modified Asphalt Properties and Aging Assessment
3.2. Mixture Design and Choice of ZnO/AC Ratio
3.3. Mechanical Strength and Aging Analysis
3.3.1. Marshall Test
3.3.2. Indirect Tensile Strength (ITS) Test
3.3.3. Resilient Modulus Test
4. Conclusions
- The PDI, SPI, and VAI parameters show that ZnO increased the resistance to thermo-oxidative aging of the asphalt binder. The best performance was achieved with ZnO/AC = 5 wt%. Considering the LTOA/STOA ratio calculated from the S/F, ITSD, ITSC and RM parameters, ZnO (ZnO/AC = 5 wt%) contributes to increasing the resistance to thermo-oxidative aging of the HMA mixture.
- The stiffness and viscosity of the binder increase with increasing ZnO content. This is mainly when the ZnO/AC ratio ≥ 3 wt%. Additionally, the resistance under monotonic loading in the Marshall test (S/F) and the resilient modulus at 20 °C and 30 °C of the HMA increase when ZnO (ZnO/AC = 5 wt%) is used as a binder modifier. That is, ZnO could help to increase the rutting resistance.
- The ITSD, ITSC, and TSR parameters increase when the HMA uses the ZnO/AC = 5 wt% modified binder. This is an indicator of increased indirect tensile strength and moisture damage resistance.
- ZnO is shown to be a promising nano-material for improving the performance of binders and asphalt mixtures in pavements. Some recommendations for future studies are as follows: (i) evaluate the effect of ZnO on other properties such as fatigue resistance and low service temperatures; (ii) perform direct rutting resistance tests; (iii) use different types of binders, aggregates, and asphalt mixtures; (iv) perform environmental assessment, Life Cycle Cost Analysis (LCCA), and Life Cycle Assessment (LCA); (v) perform storage stability tests on the modified asphalt binder; and (vi) evaluate aging indices obtained from parameters measured at low and intermediate temperatures on asphalt binders (e.g., rheological characterization) and HMAs modified with ZnO.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593–609. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.; Wu, S.; Chen, A.; Kuang, D.; Bai, T.; Gao, Y.; Zhang, J.; Li, L.; Wan, L.; et al. Review of ultraviolet ageing mechanisms and anti-ageing methods for asphalt binders. J. Road Eng. 2022, 2, 137–155. [Google Scholar] [CrossRef]
- Yi, J.; Wang, Y.; Pei, Z.; Xu, M.; Feng, D. Mechanisms and research progress on biological rejuvenators for regenerating aged asphalt: Review and discussion. J. Clean. Prod. 2023, 422, 138622. [Google Scholar] [CrossRef]
- Fernández-Gómez, W.D.; Rondón-Quintana, H.A.; Reyes-Lizcano, F.A. A review of asphalt and asphalt mixture aging. Ing. Investig. 2013, 33, 5–12. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Xu, G.; Shi, C. Evaluation of aging behaviors of asphalt binders through different rheological indices. Fuel 2018, 221, 78–88. [Google Scholar] [CrossRef]
- Ling, M.; Luo, X.; Chen, Y.; Hud, S.; Lytton, R.L. A calibrated mechanics-based model for top-down cracking of asphalt pavements. Constr. Build. Mater. 2019, 208, 102–112. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Cui, P.; Lin, J.; Li, M.; Chen, Z. Correlation of asphalt performance indicators and aging degrees: A review. Constr. Build. Mater. 2020, 250, 118824. [Google Scholar] [CrossRef]
- Du, P.; Long, J.; Duan, H.; Luo, H.; Zhang, H. Laboratory performance and aging resistance evaluation of zinc oxide/expanded vermiculite composite modified asphalt binder and mixture. Constr. Build. Mater. 2022, 358, 129385. [Google Scholar] [CrossRef]
- Abouelsaad, A.; White, G.; Jamshidi, A. State of the art review of ageing of bituminous binders and asphalt mixtures: Ageing simulation techniques, ageing inhibitors and the relationship between simulated ageing and field ageing. Infrastructures 2024, 9, 8. [Google Scholar] [CrossRef]
- Cong, P.; Liu, C.; Han, Z.; Zhao, Y. A comprehensive review on polyurethane modified asphalt: Mechanism, characterization and prospect. J. Road Eng. 2023, 3, 315–335. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Ban, X.; Liu, X.; Guo, Y.; Sun, J.; Liu, Y.; Zhang, S.; Lei, J. Thermosetting resin modified asphalt: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 1001–1036. [Google Scholar] [CrossRef]
- Behnood, A. A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. J. Clean. Prod. 2020, 259, 120817. [Google Scholar] [CrossRef]
- Li, N.; Hao, P.; Yao, Y.; Zhang, C. The implementation of balanced mix design in asphalt materials: A review. Constr. Build. Mater. 2023, 402, 132919. [Google Scholar] [CrossRef]
- Bell, C.; Wieder, A.; Fellin, M. Laboratory Aging of Asphalt-Aggregate Mixtures: Field Validation; Strategic Highway Research Program Report No. SHRP-A-390; National Research Council: Washington, DC, USA, 1994. [Google Scholar]
- Fu, Z.; Tang, Y.; Ma, F.; Wang, Y.; Dai, S.J.; Hou, Y.; Li, J. Rheological properties of asphalt binder modified by nano-TiO2/ZnO and basalt fiber. Constr. Build. Mater. 2022, 320, 126323. [Google Scholar] [CrossRef]
- Di, H.; Zhang, H.; Yang, E.; Ding, H.; Liu, H.; Huang, B.; Qiu, Y. Usage of Nano-TiO2 or Nano-ZnO in asphalt to resist aging by NMR spectroscopy and rheology technology. J. Mater. Civ. Eng. 2023, 35, 04022391. [Google Scholar] [CrossRef]
- Han, D.; Hu, G.; Zhang, J. Study on anti-aging performance enhancement of polymer modified asphalt with high linear SBS content. Polymers 2023, 15, 256. [Google Scholar] [CrossRef]
- Staub de Melo, J.V.; Manfro, A.L.; Barra, B.S.; Dell’Antonio Cadorin, N.; Borba Broering, W. Evaluation of the rheological behavior and the development of performance equations of asphalt composites produced with titanium dioxide and zinc oxide nanoparticles. Nanomaterials 2023, 13, 288. [Google Scholar] [CrossRef]
- Rondón-Quintana, H.A.; Ruge-Cárdenas, J.C.; Zafra-Mejía, C.A. The use of zinc oxide in asphalts: Review. Sustainability 2023, 15, 11070. [Google Scholar] [CrossRef]
- Mueller, N.C.; Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447–4453. [Google Scholar] [CrossRef]
- Li, R.; Pei, J.; Sun, C. Effect of nano-ZnO with modified surface on properties of bitumen. Constr. Build. Mater. 2015, 98, 656–661. [Google Scholar] [CrossRef]
- Ashish, P.K.; Singh, D. High-and intermediate-temperature performance of asphalt binder containing carbon nanotube using different rheological approaches. J. Mater. Civ. Eng. 2018, 30, 04017254. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, P.; Chen, T.; Jing, M. Comparative study of Octavinyl Oligomeric Sesquisiloxane nanomaterial-modified asphalt using Molecular Dynamics Method. Polymers 2022, 14, 4577. [Google Scholar] [CrossRef] [PubMed]
- Porter, F. Zinc Handbook: Properties, Processing, and Use in Design; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
- Moezzi, A.; McDonagh, A.M.; Cortie, M.B. Zinc oxide particles: Synthesis, properties and applications. Chem. Eng. J. 2012, 185–186, 1–22. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, C.; Yu, J.; Tan, B.; Shi, C. Effect of nano-zinc oxide on ultraviolet aging properties of bitumen with 60/80 penetration grade. Mater. Struct. 2015, 48, 3249–3257. [Google Scholar] [CrossRef]
- Nazari, H.; Naderi, K.; Nejad, F.M. Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Constr. Build. Mater. 2018, 170, 591–602. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Guo, G.; Zhao, B.; Yu, J. Effects of ZnO particle size on properties of asphalt and asphalt mixture. Constr. Build. Mater. 2018, 159, 578–586. [Google Scholar] [CrossRef]
- Debbarma, K.; Debnath, B.; Sarkar, P.P. A comprehensive review on the usage of nanomaterials in asphalt mixes. Constr. Build. Mater. 2022, 361, 129634. [Google Scholar] [CrossRef]
- Duan, H.; Long, J.; Zhang, H.; Luo, H.; Cao, J. Effects of different carriers for zinc oxide (ZnO) particles on microstructure of ZnO/layered silicate composite and aging resistance of composite modified asphalt. Constr. Build. Mater. 2022, 349, 128773. [Google Scholar] [CrossRef]
- Du, P.F.; Ke, N.X.; Zhang, H.L. Effect of nano-zinc oxide on the morphology and ultraviolet aging properties of various bitumens. Pet. Sci. Technol. 2015, 33, 1110–1117. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, H.L.; Hao, P.W.; Zhu, C.Z. The effect of surface modifiers on ultraviolet aging properties of nano-zinc oxide modified bitumen. Pet. Sci. Technol. 2015, 33, 72–78. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, C.; Yu, J.; Shi, C.; Zhang, D. Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles. Constr. Build. Mater. 2015, 98, 735–740. [Google Scholar] [CrossRef]
- Zhang, H.B.; Zhang, H.L.; Ke, N.X.; Huang, J.H.; Zhu, C.Z. The effect of different nanomaterials on the long-term aging properties of bitumen. Pet. Sci. Technol. 2015, 33, 388–396. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, C.; Kuang, D. Physical, rheological, and aging properties of bitumen containing organic expanded vermiculite and nano-zinc oxide. J. Mater. Civ. Eng. 2016, 28, 04015203. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, H.; Shi, C.; Li, S. Effect of nano-zinc oxide and organic expanded vermiculite on rheological properties of different bitumens before and after aging. Constr. Build. Mater. 2017, 146, 30–37. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, H.; Xu, G.; Wu, C. Investigation of the aging behaviors of multi-dimensional nanomaterials modified different bitumens by Fourier transform infrared spectroscopy. Constr. Build. Mater. 2018, 167, 536–542. [Google Scholar] [CrossRef]
- Xu, X.; Guo, H.; Wang, X.; Zhang, M.; Wang, Z.; Yang, B. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder. Constr. Build. Mater. 2019, 224, 732–742. [Google Scholar] [CrossRef]
- He, Z.; Xie, T.; Li, Q.; Wang, P. Physical and antiaging properties of rodlike Nano-ZnO–modified asphalt. J. Mater. Civ. Eng. 2021, 33, 04021316. [Google Scholar] [CrossRef]
- Zhu, Q.; He, Z.; Wang, J.; Wang, S. Morphology, rheology and physical properties investigations of multi-scale nano-zinc oxide modified asphalt binder. Alex. Eng. J. 2024, 89, 31–38. [Google Scholar] [CrossRef]
- INVIAS–Instituto Nacional de Vías. Especificaciones Generales de Construcción de Carreteras; INVIAS–Instituto Nacional de Vías: Bogotá, Colombia, 2020. [Google Scholar]
- Guo, G.; Zhang, H. The effect of morphology of ZnO particle on properties of asphalt binder and mixture. Int. J. Transp. Sci. Technol. 2022, 11, 437–454. [Google Scholar] [CrossRef]
- Zhu, C.; Li, D.; Zhang, H.; Wang, Z.; Li, J. Synergistic effect of surface modified nano-zinc oxide and organic vermiculite on long-term ultraviolet and thermal-oxidative aging resistance of different asphalt binders. Constr. Build. Mater. 2023, 409, 133832. [Google Scholar] [CrossRef]
- Rincón, J.A.; González, E.V.; Rondón-Quintana, H.A.; Reyes-Lizcano, F.A.; Bastidas-Martínez, J.G. Mechanical behavior of low-density polyethylene waste modified hot mix asphalt. Sustainability 2022, 14, 4229. [Google Scholar] [CrossRef]
- Hesami, E.; Jelagin, D.; Kringos, N.; Birgisson, B. An empirical framework for determining asphalt mastic viscosity as a function of mineral filler concentration. Constr. Build. Mater. 2012, 35, 23–29. [Google Scholar] [CrossRef]
- Gómez-Meijide, B.; Ajam, H.; Lastra-González, P.; Garcia, A. Effect of ageing and RAP content on the induction healing properties of asphalt mixtures. Constr. Build. Mater. 2018, 179, 468–476. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Sun, C.; Liu, S.; Liang, M.; Yao, Z. Experimental assessment on engineering properties of aged bitumen incorporating a developed rejuvenator. Constr. Build. Mater. 2018, 179, 1–10. [Google Scholar] [CrossRef]
- Qu, X.; Liu, Q.; Guo, M.; Wang, D.; Oeser, M. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective. Constr. Build. Mater. 2018, 187, 718–729. [Google Scholar] [CrossRef]
- Moraes, R.; Bahia, H.U. Effect of mineral filler on changes in molecular size distribution of asphalts during oxidative ageing. Road Mater. Pavement Des. 2015, 16, 55–72. [Google Scholar] [CrossRef]
- Shiau, J.M.; Tia, M.; Ruth, B.E.; Page, G.C. Characterization of age-hardening potential of asphalt by using Corbett-Swarbrick asphalt fractionation test. Transp. Res. Rec. 1991, 1323, 53–60. [Google Scholar]
- Hou, X.; Xiao, F.; Wang, J.; Amirkhanian, S. Identification of asphalt aging characterization by spectrophotometry technique. Fuel 2018, 226, 230–239. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U. Effect of ageing on bitumen chemistry and rheology. Constr. Build. Mater. 2002, 16, 15–22. [Google Scholar] [CrossRef]
- Smith, B.T.; Howard, I.L. Comparing laboratory conditioning protocols to long-term aging of asphalt mixtures in the Southeast United States. J. Mater. Civ. Eng. 2019, 31, 04018346. [Google Scholar] [CrossRef]
- Zadshir, M.; Hosseinnezhad, S.; Fini, E.H. Deagglomeration of oxidized asphaltenes as a measure of true rejuvenation for severely aged asphalt binder. Constr. Build. Mater. 2019, 209, 416–424. [Google Scholar] [CrossRef]
- Mousavi, M.; Pahlavan, F.; Oldham, D.; Hosseinnezhad, S.; Fini, E.H. Multiscale investigation of oxidative aging in biomodified asphalt binder. J. Phys. Chem. C 2016, 120, 17224–17233. [Google Scholar] [CrossRef]
- Dehouche, N.; Kaci, M.; Mokhtar, K.A. Influence of thermo-oxidative aging on chemical composition and physical properties of polymer modified bitumens. Constr. Build. Mater. 2012, 26, 350–356. [Google Scholar] [CrossRef]
- Kumbargeri, Y.S.; Biligiri, K.P. A novel approach to understanding asphalt binder aging behavior using asphaltene proportion as a performance indicator. J. Test. Eval. 2016, 44, 439–449. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Nejad, F.M.; Oveisi, K. Estimating the moisture damage of asphalt mixture modified with nano zinc oxide. Mater. Struct. 2016, 49, 1165–1174. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Nejad, F.M. The employment of thermodynamic and mechanical methods to evaluate the impact of nanomaterials on moisture damage of HMA. Mater. Struct. 2016, 49, 4483–4495. [Google Scholar] [CrossRef]
- Al-Mistarehi, B.; Al-Omari, A.; Taamneh, M.; Imam, R.; Khafaja, D.A. The effects of adding Nano Clay and Nano Zinc Oxide on asphalt cement rheology. J. King Saud Univ. Eng. Sci. 2023, 35, 260–269. [Google Scholar] [CrossRef]
- Molenaar, A.A.A.; Li, N. Prediction of compressive and tensile strength of asphalt concrete. Int. J. Pavement Res. Technol. 2014, 7, 324–331. [Google Scholar] [CrossRef]
- Teltayev, B.; Radovskiy, B. Predicting thermal cracking of asphalt pavements from bitumen and mix properties. Road Mater. Pavement Des. 2018, 19, 1832. [Google Scholar] [CrossRef]
- Li, X.L.; Zhou, Z.H.; Ye, J.H.; Zhang, X.A.; Wang, S.Y.; Diab, A. High-temperature creep and low-temperature relaxation of recycled asphalt mixtures: Evaluation and balanced mix design. Constr. Build. Mater. 2021, 310, 125222. [Google Scholar] [CrossRef]
- Kamboozia, N.; Rad, S.M.; Saed, S.A. Laboratory investigation of the effect of Nano-ZnO on the fracture and rutting resistance of porous asphalt mixture under the aging condition and freeze–thaw cycle. J. Mater. Civ. Eng. 2022, 34, 04022052. [Google Scholar] [CrossRef]
- Saltan, M.; Terzi, S.; Karahancer, S. Mechanical behavior of bitumen and hot-mix asphalt modified with zinc oxide nanoparticle. J. Mater. Civ. Eng. 2019, 31, 04018399. [Google Scholar] [CrossRef]
Test | Unit | Method | Result | Recommended |
---|---|---|---|---|
Neat asphalt binder | ||||
Softening point | °C | ASTM D 36 | 48.7 | 48–54 |
Penetration | dmm | ASTM D 5 | 61.6 | 60–70 |
Penetration index | - | NLT 181 | −1.05 | −1.2 to +0.6 |
Specific gravity | - | AASHTO T 228 | 1.024 | - |
Viscosity (135 °C) | P | ASTM D 4402 | 4.72 | 4 minimum |
Ductility | cm | ASTM D113 | 128 | 100 minimum |
Flash and fire points | °C | ASTM D8254 | 288 | 230 minimum |
After RTFOT | ||||
Mass loss | % | ASTM D2872 | 0.22 | 0.8 maximum |
Percent penetration retained | % | ASTM D 5 | 82.8 | 50 minimum |
Increase in softening point | °C | ASTM D 36 | 2.3 | 9 maximum |
Test | Method | Recommended | Result |
---|---|---|---|
Absorption (fine aggregate) | AASHTO T 84, 85 | - | 1.65% |
Absorption (coarse aggregate) | - | 1.88% | |
Specific gravity (fine) | - | 2.652 | |
Specific gravity (coarse) | - | 2.671 | |
Soundness using magnesium sulphate | AASHTO T 104 | 18.0% maximum | 5.3% |
Fractured particles (1 side) | ASTM D5821 | 85% minimum | 92.7% |
Abrasion in Los Angeles machine | AASHTO T 96 | 25% maximum | 22.7% |
10% of fines (dry resistance) | DNER-ME 096 | 110 kN minimum | 122.5 kN |
10% of fines (wet resistance) | DNER-ME 096 | 82.5 kN minimum | 108.9 kN |
Micro-Deval | AASHTO T 327 | 20% maximum | 18.6% |
Sieve, mm | 19.0 | 12.5 | 9.5 | 4.75 | 2.0 | 0.43 | 0.18 | 0.075 |
Sieve | ¾″ | ½″ | 3/8″ | #4 | #10 | #40 | #80 | #200 |
Passing, % | 100 | 87.5 | 79.0 | 57.0 | 37.0 | 19.5 | 12.5 | 6.0 |
Fr (Hz) | Control-S ZnO-S | Control-L ZnO-L | Control-S ZnO-S | Control-L ZnO-L | Control-S ZnO-S | Control-L ZnO-L |
---|---|---|---|---|---|---|
10 °C | 20 °C | 30 °C | ||||
F | ||||||
2.5 | 2.8 | 906.2 | 8.3 | 28.9 | 9.7 | 1.37 |
5.0 | 11.2 | 127.7 | 15.1 | 0.2 | 61.0 | 23.2 |
10.0 | 13.2 | 134.5 | 12.7 | 119.0 | 65.2 | 28.9 |
Fr (Hz) | LTOA/STOA—Control | LTOA/STOA—ZnO | ||||
---|---|---|---|---|---|---|
10 °C | 20 °C | 30 °C | 10 °C | 20 °C | 30 °C | |
2.5 | 1.191 | 1.189 | 1.213 | 1.050 | 1.050 | 1.048 |
5.0 | 1.129 | 1.162 | 1.237 | 1.046 | 1.057 | 1.041 |
10.0 | 1.127 | 1.180 | 1.241 | 1.054 | 1.040 | 1.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rondón-Quintana, H.A.; Zafra-Mejía, C.A.; Urazán-Bonells, C.F. Aging Resistance Evaluation of an Asphalt Mixture Modified with Zinc Oxide. Infrastructures 2024, 9, 81. https://doi.org/10.3390/infrastructures9050081
Rondón-Quintana HA, Zafra-Mejía CA, Urazán-Bonells CF. Aging Resistance Evaluation of an Asphalt Mixture Modified with Zinc Oxide. Infrastructures. 2024; 9(5):81. https://doi.org/10.3390/infrastructures9050081
Chicago/Turabian StyleRondón-Quintana, Hugo Alexander, Carlos Alfonso Zafra-Mejía, and Carlos Felipe Urazán-Bonells. 2024. "Aging Resistance Evaluation of an Asphalt Mixture Modified with Zinc Oxide" Infrastructures 9, no. 5: 81. https://doi.org/10.3390/infrastructures9050081
APA StyleRondón-Quintana, H. A., Zafra-Mejía, C. A., & Urazán-Bonells, C. F. (2024). Aging Resistance Evaluation of an Asphalt Mixture Modified with Zinc Oxide. Infrastructures, 9(5), 81. https://doi.org/10.3390/infrastructures9050081