Hierarchical SVM for Semantic Segmentation of 3D Point Clouds for Infrastructure Scenes
Abstract
:1. Introduction
2. Related Work
2.1. Classical Machine Learning Method
2.1.1. Neighborhood Selection
2.1.2. Feature Extraction
2.1.3. Feature Selection
2.1.4. Supervised Classification
2.1.5. Semantic Segmentation
2.2. Deep Learning Method
- Forward propagation: The input point cloud is fed into the deep learning model, and the model generates an output. During this step, the point cloud is transformed into a set of feature maps, which are then passed through multiple layers of the neural network to generate a final prediction.
- Backward propagation: The error, calculated from the loss function using the ground truth labels, is propagated back through the network to adjust the weights and biases of each layer in the model. This involves calculating the gradient of the loss function with respect to the weights and biases and using this information to update the values of these parameters.
- Optimization: An optimization algorithm, such as stochastic gradient descent (SGD) or Adam, is employed to adjust the weights and biases of the neural network based on the gradients calculated in the backward propagation step. The objective is to find the values of the parameters that minimize the loss function.
2.3. Advantages and Limitations
2.4. Research Gaps
- The absence of utilizing learning-based methods for the semantic segmentation of 3D point clouds of bridges;
- Uncertainty regarding the application of learning-based methods for semantic segmentation of bridge point clouds due to limitations in training datasets and computational time;
- Limited exploration into optimizing classical machine learning approaches for the semantic segmentation of 3D point clouds;
- Lack of a detailed comparison between classical machine learning and deep learning approaches in 3D point cloud semantic segmentation.
3. Methodology
3.1. Optimal Neighborhood
3.1.1. Definition
3.1.2. Neighborhood Type
3.1.3. Neighborhood Scale
3.2. Feature Extraction
3.2.1. Geometric Features
3.2.2. Height-Based Features
- Maximal height features between any two points in the neighborhood :
- Using the statistical moments to give a robust height feature. The standard deviation of the height is calculated using the following equation:
3.3. Feature Selection
3.4. Learning Strategy
- (i)
- Precision (measure of correctness)
- (ii)
- Recall (measure of completeness)
- (iii)
- Accuracy (measures overall performance of the model)
- (iv)
- Intersection over union (IoU)
- (v)
- Mean of IoU (mIoU)
3.5. Hierarchy Support Vector Machine Approach
4. Evaluation Datasets
5. Implementation Details/Tools
6. Experiments
6.1. Experiment 1: Our Methodology
6.1.1. Optimal Neighborhood Estimation
6.1.2. Feature Selection Optimization
6.1.3. Neighborhood Labeling
6.1.4. Hierarchical Support Vector Machine Approach
6.2. Experiment 2: Deep Learning Methods
6.2.1. Hyperparameters of PointNet and PointNet++ Models
- Learning rate: a hyperparameter that determines the speed at which the model learns from the training data and can have a significant impact on the accuracy and convergence of the model.
- Batch size: a hyperparameter that defines the number of training examples used in one iteration.
- Number of points in each batch: the number of points in each batch refers to the quantity of down-sampled points extracted from the original point cloud and presented to the model as batches.
- Epochs: an epoch refers to a single iteration through the entire training dataset during the training of a neural network.
- Optimizer: an optimizer adjusts the model’s parameters during training to minimize a specified loss function, helping the network to learn and to improve its predictive accuracy; it does so by using gradients to update the parameters in a direction that reduces the loss.
6.2.2. Hyperparameters of KPConv Model
- •
- Subsampling parameter (): a hyperparameter that controls the number of points to be subsampled at each layer in the network. The initial subsampling parameter is .
- •
- Kernel points: a hyperparameter that defines the number of points within a local region to perform the convolution operation.
- •
- Conv radius: a hyperparameter that determines the influence of each kernel point during the convolutional operation. It is crucial for the aggregation of information from kernel points to the points located within the defined radius.
7. Discussion
7.1. HSVM Model
7.2. Comparison with Deep Learning Models
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIM | Building Information Modeling |
SVM | Support Vector Machine |
HSVM | Hierarchical Support Vector Machine |
GA | Genetic Algorithm |
PPT | Point Prediction Time |
References
- Bryde, D.; Broquetas, M.; Volm, J.M. The project benefits of Building Information Modelling (BIM). Int. J. Proj. Manag. 2013, 31, 971–980. [Google Scholar] [CrossRef]
- Wong, A.; Wong, F.; Nadeem, A. Attributes of Building Information Modelling Implementations in Various Countries. Archit. Eng. Des. Manag. 2010, 6, 288–302. [Google Scholar] [CrossRef]
- Heaton, J.; Parlikad, A.K.; Schooling, J. Design and development of BIM models to support operations and maintenance. Comput. Ind. 2019, 111, 172–186. [Google Scholar] [CrossRef]
- Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to digital twins: A systematic review of the evolution of intelligent building representations in the AEC-FM industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [Google Scholar] [CrossRef]
- Vilgertshofer, S.; Mafipour, M.; Borrmann, A.; Martens, J.; Blut, T.; Becker, R.; Blankenbach, J.; Göbels, A.; Beetz, J.; Celik, F.; et al. TwinGen: Advanced technologies to automatically generate digital twins for operation and maintenance of existing bridges. In ECPPM 2022-eWork and eBusiness in Architecture, Engineering and Construction 2022; CRC Press: Boca Raton, FL, USA, 2023; pp. 213–220. [Google Scholar] [CrossRef]
- Fukuoka, T.; Fujiu, M. Detection of Bridge Damages by Image Processing Using the Deep Learning Transformer Model. Buildings 2023, 13, 788. [Google Scholar] [CrossRef]
- Adibfar, A.; Costin, A.M. Creation of a mock-up bridge digital twin by fusing intelligent transportation systems (ITS) Data into Bridge Information Model (BrIM). J. Constr. Eng. Manag. 2022, 148, 04022094. [Google Scholar] [CrossRef]
- Iacovino, C.; Turksezer, Z.I.; Giordano, P.F.; Limongelli, M.P. Comparison of bridge inspection policies in terms of data quality. J. Bridge Eng. 2022, 27, 04021115. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Nguyen, T.Q.; Jin, R.; Jeon, C.H.; Shim, C.S. BIM-based mixed-reality application for bridge inspection and maintenance. Constr. Innov. 2022, 22, 487–503. [Google Scholar] [CrossRef]
- Mohamed, A.G.; Khaled, A.; Abotaleb, I.S. A Bridge Information Modeling (BrIM) Framework for Inspection and Maintenance Intervention in Reinforced Concrete Bridges. Buildings 2023, 13, 2798. [Google Scholar] [CrossRef]
- Ndekugri, I.; Braimah, N.; Gameson, R. Delay Analysis within Construction Contracting Organizations. J. Constr. Eng. Manag. 2008, 134, 692–700. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Jiménez Fernández-Palacios, B.; Muñoz Nieto, A.L.; Arias-Sanchez, P.; Gonzalez-Aguilera, D. Mobile LiDAR System: New Possibilities for the Documentation and Dissemination of Large Cultural Heritage Sites. Remote Sens. 2017, 9, 189. [Google Scholar] [CrossRef]
- Huang, Z.; Wen, Y.; Wang, Z.; Ren, J.; Jia, K. Surface Reconstruction from Point Clouds: A Survey and a Benchmark. arXiv 2022, arXiv:2205.02413. [Google Scholar] [CrossRef]
- Sharma, R.; Abrol, P. Parameter Extraction and Performance Analysis of 3D Surface Reconstruction Techniques. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 331–336. [Google Scholar] [CrossRef]
- Pătrăucean, V.; Armeni, I.; Nahangi, M.; Yeung, J.; Brilakis, I.; Haas, C. State of research in automatic as-built modelling. Adv. Eng. Inform. 2015, 29, 162–171. [Google Scholar] [CrossRef]
- Iglesias, J.L.; Severiano, J.A.D.; Amorocho, P.E.L.; del Val, C.M.; Gómez-Jáuregui, V.; García, O.F.; Royano, A.P.; González, C.O. Revision of Automation Methods for Scan to BIM. In Advances in Design Engineering: Proceedings of the XXIX International Congress INGEGRAF, LogroÃśo, Spain, 20–21 June 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Ariyachandra, M.; Brilakis, I. Understanding the challenge of digitally twinning the geometry of existing rail infrastructure. In Proceedings of the 12th FARU International Research Conference, Colombo, Sri Lanka, 3–4 December 2019. [Google Scholar] [CrossRef]
- Gourguechon, C.; Macher, H.; Landes, T. Automation of As-Built Bim Creation from Point Cloud: An Overview of Research Works Focused on Indoor Environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B2-2022, 193–200. [Google Scholar] [CrossRef]
- Zhang, G.; Vela, P.A.; Karasev, P.; Brilakis, I. A sparsity-inducing optimization-based algorithm for planar patches extraction from noisy point-cloud data. Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 85–102. [Google Scholar] [CrossRef]
- Dimitrov, A.; Gu, R.; Golparvar-Fard, M. Non-uniform B-spline surface fitting from unordered 3D point clouds for as-built modeling. Comput.-Aided Civ. Infrastruct. Eng. 2016, 31, 483–498. [Google Scholar] [CrossRef]
- Xu, Y.; Tuttas, S.; Hoegner, L.; Stilla, U. Voxel-based segmentation of 3D point clouds from construction sites using a probabilistic connectivity model. Pattern Recognit. Lett. 2018, 102, 67–74. [Google Scholar] [CrossRef]
- Lu, R.; Brilakis, I.; Middleton, C.R. Detection of structural components in point clouds of existing RC bridges. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 191–212. [Google Scholar] [CrossRef]
- Zhang, G.; Vela, P.; Brilakis, I. Automatic generation of as-built geometric civil infrastructure models from point cloud data. In Computing in Civil and Building Engineering; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 406–413. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution for Point Clouds. arXiv 2019, arXiv:1904.08889. [Google Scholar] [CrossRef]
- Lu, R.; Brilakis, I. Digital twinning of existing reinforced concrete bridges from labelled point clusters. Autom. Constr. 2019, 105, 102837. [Google Scholar] [CrossRef]
- Lu, R. Automated Generation of Geometric Digital Twins of Existing Reinforced Concrete Bridges. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Mafipour, M.S.; Vilgertshofer, S.; Borrmann, A. Automated geometric digital twinning of bridges from segmented point clouds by parametric prototype models. Autom. Constr. 2023, 156, 105101. [Google Scholar] [CrossRef]
- Martens, J.; Blankenbach, J. VOX2BIM+—A Fast and Robust Approach for Automated Indoor Point Cloud Segmentation and Building Model Generation. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 2023, 91, 273–294. [Google Scholar] [CrossRef]
- Martens, J.; Blankenbach, J. An evaluation of pose-normalization algorithms for point clouds introducing a novel histogram-based approach. Adv. Eng. Inform. 2020, 46, 101132. [Google Scholar] [CrossRef]
- Thomson, C.; Boehm, J. Automatic Geometry Generation from Point Clouds for BIM. Remote Sens. 2015, 7, 11753–11775. [Google Scholar] [CrossRef]
- Grilli, E.; Menna, F.; Remondino, F. A Review of Point Clouds Segmentation and Classification Algorithms. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42W3, 339–344. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, P.; Lin, Y.; Tong, Y.; Liu, X. Pointwise classification of mobile laser scanning point clouds of urban scenes using raw data. J. Appl. Remote Sens. 2021, 15, 024523. [Google Scholar] [CrossRef]
- Lu, H.; Shi, H. Deep Learning for 3D Point Cloud Understanding: A Survey. arXiv 2020, arXiv:2009.08920. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Symagulov, A.; Kuchin, Y.; Yakunin, K.; Yelis, M. From Classical Machine Learning to Deep Neural Networks: A Simplified Scientometric Review. Appl. Sci. 2021, 11, 5541. [Google Scholar] [CrossRef]
- Thomas, H.; Goulette, F.; Deschaud, J.E.; Marcotegui, B.; LeGall, Y. Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods. In Proceedings of the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 390–398. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Lee, I.; Schenk, T. Perceptual organization of 3D surface points. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 193–198. [Google Scholar]
- Filin, S.; Pfeifer, N. Neighborhood Systems for Airborne Laser Data. Photogramm. Eng. Remote Sens. 2005, 71, 743–755. [Google Scholar] [CrossRef]
- Linsen, L.; Prautzsch, H. Local Versus Global Triangulations. In Proceedings of the Eurographics 2001—Short Presentations, Eurographics Association, Manchester, UK, 3–7 September 2001. [Google Scholar] [CrossRef]
- Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of lidar data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [Google Scholar] [CrossRef]
- Brodu, N.; Lague, D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens. 2012, 68, 121–134. [Google Scholar] [CrossRef]
- Hackel, T.; Wegner, J.D.; Schindler, K. Fast Semantic Segmentation of 3d Point Clouds with Strongly Varying Density. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 177–184. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Mallet, C. Semantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II3, 181–188. [Google Scholar] [CrossRef]
- Demantké, J.; Mallet, C.; David, N.; Vallet, B. Dimensionality Based Scale Selection in 3D Lidar Point Clouds. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-5/W12, 97–102. [Google Scholar] [CrossRef]
- Pauly, M.; Keiser, R.; Gross, M. Multi-scale Feature Extraction on Point-Sampled Surfaces. Comput. Graph. Forum 2003, 22, 281–289. [Google Scholar] [CrossRef]
- Blomley, R.; Jutzi, B.; Weinmann, M. Classification of Airborne Laser Scanning Data Using Geometric Multi-Scale Features and Different Neighbourhood Types. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-3, 169–176. [Google Scholar] [CrossRef]
- Vosselman, G.; Gorte, B.G.; Sithole, G.; Rabbani, T. Recognising structure in laser scanner point clouds. Inter. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 46, 33–38. [Google Scholar]
- Blomley, R.; Weinmann, M.; Leitloff, J.; Jutzi, B. Shape distribution features for point cloud analysis and A geometric histogram approach on multiple scales. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-3, 9–16. [Google Scholar] [CrossRef]
- Jutzi, B.; Groß, H. Nearest Neighbour Classification on Laser Point Clouds to Gain Object Structures from Buildings. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 4–7. [Google Scholar]
- Weinmann, M.; Jutzi, B.; Mallet, C. Feature relevance assessment for the semantic interpretation of 3D point cloud data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5/W2, 313–318. [Google Scholar] [CrossRef]
- Chehata, N.; Guo, L.; Mallet, C. Airborne Lidar Feature Selection for Urban Classification Using Random Forests. In Proceedings of the Laserscanning, Paris, France, 1–2 September 2009. [Google Scholar]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Khanum, M.; Mahboob, T.; Imtiaz, W.; Ghafoor, H.A.; Sehar, R. A survey on unsupervised machine learning algorithms for automation, classification and maintenance. Int. J. Comput. Appl. 2015, 119, 34–39. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Lin, Y.; Jiang, M.; Huang, Y.; Lei, Y. Consistency-Based Semi-Supervised Learning for Point Cloud Classification. In Proceedings of the 2021 4th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Yibin, China, 20–22 August 2021; pp. 440–445. [Google Scholar] [CrossRef]
- Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef]
- Park, Y.; Guldmann, J.M. Creating 3D City Models with Building Footprints and LiDAR Point Cloud Classification: A Machine Learning Approach. Comput. Environ. Urban Syst. 2019, 75, 76–89. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hu, J.; Li, D.; Duan, Q.; Yueqi, H.; Chen, G.; Si, X. Fish species classification by color, texture and multi-class support vector machine using computer vision. Comput. Electron. Agric. 2012, 88, 133–140. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Wu, L. Classification of Fruits Using Computer Vision and a Multiclass Support Vector Machine. Sensors 2012, 12, 12489–12505. [Google Scholar] [CrossRef]
- Osisanwo, F.; Akinsola, J.; Awodele, O.; Hinmikaiye, J.; Olakanmi, O.; Akinjobi, J. Supervised machine learning algorithms: Classification and comparison. Int. J. Comput. Trends Technol. (IJCTT) 2017, 48, 128–138. [Google Scholar]
- Murty, M.N.; Raghava, R. Kernel-Based SVM. In Support Vector Machines and Perceptrons: Learning, Optimization, Classification, and Application to Social Networks; Springer International Publishing: Cham, Switerland, 2016; pp. 57–67. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Hachimi, M.; Kaddoum, G.; Gagnon, G.; Illy, P. Multi-stage Jamming Attacks Detection using Deep Learning Combined with Kernelized Support Vector Machine in 5G Cloud Radio Access Networks. In Proceedings of the 2020 International Symposium on Networks, Computers and Communications, Montreal, QC, Canada, 20–22 October 2020. [Google Scholar]
- Rivolli, A.; Read, J.; Soares, C.; Pfahringer, B.; de Carvalho, A.C. An empirical analysis of binary transformation strategies and base algorithms for multi-label learning. Mach. Learn. 2020, 109, 1509–1563. [Google Scholar] [CrossRef]
- Chen, C.; Li, X.; Belkacem, A.N.; Qiao, Z.; Dong, E.; Tan, W.; Shin, D. The Mixed Kernel Function SVM-Based Point Cloud Classification. Int. J. Precis. Eng. Manuf. 2019, 20, 737–747. [Google Scholar] [CrossRef]
- Anandakumar, R.; Nidamanuri, R.; Krishnan, R. Semantic labelling of Urban point cloud data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 907–911. [Google Scholar] [CrossRef]
- Madzarov, G.; Gjorgjevikj, D. Multi-class classification using support vector machines in decision tree architecture. In Proceedings of the IEEE EUROCON 2009, St. Petersburg, Russia, 18–23 May 2009; pp. 288–295. [Google Scholar] [CrossRef]
- He, Y.; Yu, H.; Liu, X.; Yang, Z.; Sun, W.; Wang, Y.; Fu, Q.; Zou, Y.; Mian, A. Deep learning based 3D segmentation: A survey. arXiv 2021, arXiv:2103.05423. [Google Scholar]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Huang, H.; Wang, K.; Zhang, C.; Fan, L.; Guo, F. Selecting Optimal Combination of Data Channels for Semantic Segmentation in City Information Modelling (CIM). Remote Sens. 2021, 13, 1367. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. arXiv 2020, arXiv:1911.11236. [Google Scholar] [CrossRef]
- Zhang, Z.; Hua, B.S.; Yeung, S.K. ShellNet: Efficient Point Cloud Convolutional Neural Networks using Concentric Shells Statistics. arXiv 2019, arXiv:1908.06295. [Google Scholar] [CrossRef]
- Landrieu, L.; Simonovsky, M. Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs. arXiv 2018, arXiv:1711.09869. [Google Scholar] [CrossRef]
- Qu, T.; Di, S.; Feng, Y.T.; Wang, M.; Zhao, T.; Wang, M. Deep Learning Predicts Stress-Strain Relations of Granular Materials Based on Triaxial Testing Data. Comput. Model. Eng. Sci. 2021, 128, 129–144. [Google Scholar] [CrossRef]
- Hinks, T.; Carr, H.; Truong-Hong, L.; Laefer, D.F. Point cloud data conversion into solid models via point-based voxelization. J. Surv. Eng. 2013, 139, 72–83. [Google Scholar] [CrossRef]
- Yao, X.; Guo, J.; Hu, J.; Cao, Q. Using Deep Learning in Semantic Classification for Point Cloud Data. IEEE Access 2019, 7, 37121–37130. [Google Scholar] [CrossRef]
- Qi, C.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Adv. Neural Inf. Process. Syst. 2017, 30, 5105–5114. [Google Scholar]
- Thompson, N.C.; Greenewald, K.; Lee, K.; Manso, G.F. The Computational Limits of Deep Learning. arXiv 2022, arXiv:2007.05558. [Google Scholar] [CrossRef]
- Zhang, M.; You, H.; Kadam, P.; Liu, S.; Kuo, C.C.J. PointHop: An Explainable Machine Learning Method for Point Cloud Classification. IEEE Trans. Multimed. 2020, 22, 1744–1755. [Google Scholar] [CrossRef]
- Dogan, Ü.; Edelbrunner, J.; Iossifidis, I. Autonomous driving: A comparison of machine learning techniques by means of the prediction of lane change behavior. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Beach, Thailand, 7–11 December 2011; pp. 1837–1843. [Google Scholar] [CrossRef]
- Saraiva, P. On Shannon entropy and its applications. Kuwait J. Sci. 2023, 50, 194–199. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Gaikwad, A.; Datta, D.; Sharma, P.; Bera, S. Application of Shannon Entropy to Optimize the Data Analysis. In Proceedings of the International Conference on Advanced Engineering Optimization through Intelligent Techniques, Surat, India, 1–3 July 2013. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms; Pearson Education India: Noida, India, 2013. [Google Scholar]
- Brindle, A. Genetic Algorithms for Function Optimisation. Ph.D. Thesis, Department of Computing Science, University of Alberta, Edmonton, AB, Canada, 1981. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Glasgow, UK, 2019; pp. 8024–8035. [Google Scholar]
Dataset | Classes | Training (pts) | Test (pts) |
---|---|---|---|
Scene 1 | vegetation, road, railing, noise barrier, signs | 100,000 | 209,400 |
Scene 2 | vegetation, road, railing, abutment, girder, pier, footing | 140,000 | 149,114 |
Dataset | Classes | Training (pts) | Validation (pts) | Test (pts) |
---|---|---|---|---|
Scene 1 | vegetation, road, railing, noise barrier, and signs | 61,995,915 | 2,186,724 | 11,896,152 |
Parameters | Values |
---|---|
generations | 10 |
population | 20 |
cross-over probability | 1 |
mutation probability | 0.2 |
k-fold | 5 |
Best Chromosome | Decoded Feature Set | Fitness_VALUE | HSVM Layers | SVM Kernel |
---|---|---|---|---|
[1,1,1,1,1,1,1,0,0] | x,y,z, linearity, planarity, sphericity, verticality | 0.026 | layer 1 | Linear |
[1,1,1,1,0,0,1,1,0] | x,y,z, linearity, verticality, height difference | 0.0126 | layer 2 | Linear |
[1,1,1,0,0,0,1,1,0] | x,y,z, verticality, height difference | 0.006 | layer 3 | RBF |
Classes | Precision [%] | Recall [%] |
---|---|---|
vegetation | 80.7 | 100 |
road | 98.1 | 97.7 |
railing | 97.2 | 67.6 |
noise barrier | 95.4 | 94.63 |
signs | 88.6 | 97.4 |
Classes | Precision [%] | Recall [%] |
---|---|---|
vegetation | 90.00 | 81.67 |
road | 95.52 | 100 |
railing | 79.81 | 85.84 |
abutment | 96.70 | 99.11 |
girder | 79.61 | 100 |
pier | 97.06 | 99.85 |
footing | 94.01 | 90.93 |
Parameters | Values |
---|---|
learning rate | 0.001 |
batch size | 16 |
number of points in each batch | 4096 |
epochs | 200 |
optimizer | Adam |
Parameters | Values |
---|---|
learning rate | 0.01 |
batch size | 1 |
batch number | 6 |
number of points in each batch | 10,000 |
0.06 m | |
epochs | 200 |
kernel points | 15 pts |
conv radius | 2.5 m |
optimizer | momentum gradient descent |
Method | Vegetation | Road | Railing | Noise Barrier | Signs | mIoU | OA |
---|---|---|---|---|---|---|---|
PointNet | 30.1 | 93.5 | 31.7 | 11.8 | 53.3 | 44.1 | 82.5 |
PointNet++ | 54.4 | 96.2 | 57.2 | 65.5 | 42.3 | 56.7 | 89.8 |
HSVM | 65.2 | 96.8 | 65.1 | 75.3 | 63.6 | 73.2 | 91.9 |
KPConv | 69.4 | 97.1 | 74.2 | 84.5 | 89.3 | 82.9 | 95.9 |
Method | Training Time | Inference Time | Device |
---|---|---|---|
PointNet | ≈1.5 h | ≈0.32 h | GPU |
PointNet++ | ≈5.25 h | ≈0.37 h | GPU |
HSVM | ≈0.09 h | ≈0.1 h | CPU |
KPConv | ≈5.13 h | ≈1 h | GPU |
Method | Training Data (pts) | Test Data (pts) | Time (sec/1000 pts) |
---|---|---|---|
PointNet | 61,995,915 | 11,896,152 | 0.022 |
PointNet++ | 61,995,915 | 11,896,152 | 0.154 |
HSVM | 100,000 | 209,400 | 2.21 |
KPConv | 61,995,915 | 11,896,152 | 0.3 |
Method | PPT 1 | Computational Time | Accuracy | Data Volume | Device | Hyperparameters |
---|---|---|---|---|---|---|
PointNet | ++++ | +++ | + | - | - | - |
PointNet++ | +++ | ++ | ++ | - | - | - |
HSVM 2 | + | ++++ | +++ | + | + | + |
KPConv | ++ | + | ++++ | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, M.; Martens, J.; Blankenbach, J. Hierarchical SVM for Semantic Segmentation of 3D Point Clouds for Infrastructure Scenes. Infrastructures 2024, 9, 83. https://doi.org/10.3390/infrastructures9050083
Mansour M, Martens J, Blankenbach J. Hierarchical SVM for Semantic Segmentation of 3D Point Clouds for Infrastructure Scenes. Infrastructures. 2024; 9(5):83. https://doi.org/10.3390/infrastructures9050083
Chicago/Turabian StyleMansour, Mohamed, Jan Martens, and Jörg Blankenbach. 2024. "Hierarchical SVM for Semantic Segmentation of 3D Point Clouds for Infrastructure Scenes" Infrastructures 9, no. 5: 83. https://doi.org/10.3390/infrastructures9050083
APA StyleMansour, M., Martens, J., & Blankenbach, J. (2024). Hierarchical SVM for Semantic Segmentation of 3D Point Clouds for Infrastructure Scenes. Infrastructures, 9(5), 83. https://doi.org/10.3390/infrastructures9050083