Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements
Abstract
:1. Introduction
- The modification of bitumen, by removing the asphaltene responsible for its dark color [6];
2. Objectives and Experimental Approach
3. Materials and Methods
3.1. Binders and Aggregates
3.2. Pigments
3.3. Material Mixing
4. Experimental Setup
Thermal Testing Setup
5. Results and Discussion
5.1. Thermal Analysis of Asphalt Mixtures
5.1.1. Thermal Analysis of Binders
5.1.2. Heating and Cooling Trends
5.1.3. Heat Maps
5.2. Performance Analysis of Asphalt Mixtures
5.2.1. Rut Resistance of Asphalt
5.2.2. Dynamic Modulus Test
5.3. ANOVA (Analysis of Variance) Analysis
6. Conclusions
- Asphalt prepared with neat C.B displayed an average 9 °C lower temperature than the conventional black asphalt mixture. The temperature was further reduced by 2 °C by adding pigments, resulting in an overall temperature difference of 11 °C.
- Significant temperature differences between black and non-black asphalt mixtures were observed at 1000 and 800 W/m2, with gaps of 7 °C and 10 °C at 1000 flux and 2 °C and 5 °C at 800 flux, indicating a higher efficiency of non-black pavements at extreme temperatures.
- The average temperature absorbed by the conventional black binder at 1200 W/m2 was just above 65 °C, while the neat clear binder displayed a 7 °C lower temperature. Similarly, pigmented binders further lowered the temperature to 1–2 °C. At the lower fluxes, i.e., 1000 and 800, the difference in the average absorbed temperature between the black bitumen and clear binder (C.B, pigmented C.B) was 5–7 °C and 2–3 °C, respectively.
- The neat C.B asphalt mixture took 75% longer to reach the target temperature than conventional black asphalt, with the pigmented mixtures taking an additional 170% (zinc ferrite mix) to 180% (titanium dioxide mix) longer. It indicates a higher resistance to heat absorption and prolonged cooling.
- The cooling rate revealed that conventional asphalt took the longest (approx. 0.45 h) to cool down to 45 °C, while the neat C.B mix took 27% less time (approx. 0.33 h) to return to the target temperature. The pigmented mixture further lessened the cooling time up to 33% (0.3 h) and 31% (0.31 h) for TiO2 and ZnFe2O4 mixtures, respectively.
- The heat maps indicated significant heat accumulation in conventional asphalt mixtures and binders over a wide period. However, the neat and pigment-modified C.B mixtures appeared more relaxed over the entire heat cycle.
- The neat C.B asphalt mixture exhibited around 15% more resistance to rut depth than conventional asphalt, with red, white, and orange-pigmented mixtures showing 20%, 43%, and 73% rut resistance, respectively.
- All the non-black mixtures performed slightly better than conventional black mixtures in the dynamic modulus test. A maximum resistance to permanent deformation of 15% was noted in the C.B + ZnFe2O4 mixture compared to conventional black asphalt mixtures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asif, S.A.; Ahmad, N. Comparative Study of Various Properties of Clear Binder with Traditional Black Binder. Arab. J. Sci. Eng. 2022, 47, 12979–12991. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Sreedhar, S.; Biligiri, K.P. Comprehensive laboratory evaluation of thermophysical properties of pavement materials: Effects on urban heat island. J. Mater. Civ. Eng. 2016, 28, 04016026. [Google Scholar] [CrossRef]
- Chen, J.; Chu, R.; Wang, H.; Zhang, L.; Chen, X.; Du, Y. Alleviating urban heat island effect using high-conductivity permeable concrete pavement. J. Clean. Prod. 2019, 237, 117722. [Google Scholar] [CrossRef]
- Bai, Y.; Bai, Q. Subsea Engineering Handbook; Gulf Professional Publishing: Houston, TX, USA, 2018. [Google Scholar] [CrossRef]
- Lesueur, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef] [PubMed]
- Badin, G.; Ahmad, N.; Ali, H.M.; Ahmad, T.; Jameel, M.S. Effect of addition of pigments on thermal characteristics and the resulting performance enhancement of asphalt. Constr. Build. Mater. 2021, 302, 124212. [Google Scholar] [CrossRef]
- Higashiyama, H.; Sano, M.; Nakanishi, F.; Takahashi, O.; Tsukuma, S. Field measurements of road surface temperature of several asphalt pavements with temperature rise reducing function. Case Stud. Constr. Mater. 2016, 4, 73–80. [Google Scholar] [CrossRef]
- US DOT (FHWA). Pavement Thermal Performance and Contribution to Urban and Global Climate. Available online: https://www.fhwa.dot.gov/pavement/sustainability/articles/pavement_thermal.cfm (accessed on 7 August 2023).
- Li, H.; Harvey, J.T.; Holland, T.J.; Kayhanian, M. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management. Environ. Res. Lett. 2013, 8, 015023. [Google Scholar] [CrossRef]
- Synnefa, A.; Karlessi, T.; Gaitani, N.; Santamouris, M.; Assimakopoulos, D.N.; Papakatsikas, C. Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Build. Environ. 2011, 46, 38–44. [Google Scholar] [CrossRef]
- U.S. EPA. Reducing Urban Heat Islands: Compendium of Strategies (Cool Pavements); U.S. EPA: Washington, DC, USA, 2008; pp. 1–23. Available online: https://www.epa.gov/sites/default/files/2017-05/documents/reducing_urban_heat_islands_ch_5.pdf (accessed on 20 February 2024).
- Chang, H.-T. A temporal and spatial analysis of urban heat island in basin city utilizing remote sensing techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 165–170. [Google Scholar] [CrossRef]
- Miner, M.J.; Taylor, R.A.; Jones, C.; Phelan, P.E. Efficiency, economics, and the urban heat island. Environ. Urban. 2017, 29, 183–194. [Google Scholar] [CrossRef]
- Robaa, E.-S. Effect of urbanization and industrialization processes on outdoor thermal human comfort in Egypt. Atmos. Clim. Sci. 2011, 1, 100. [Google Scholar] [CrossRef]
- Gutzler, D.S. Ecological climatology: Concepts and applications. Nat. Resour. J. 2003, 43, 1291–1296. [Google Scholar]
- Coseo, P.; Larsen, L. Cooling the heat island in compact urban environments: The effectiveness of Chicago’s green alley program. Procedia Eng. 2015, 118, 691–710. [Google Scholar] [CrossRef]
- Correia, D.; Ferreira, A. Energy Harvesting on Airport Pavements: State-of-the-Art. Sustainability 2021, 13, 5893. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. The urban heat island effect in the city of Toronto. Procedia Eng. 2015, 118, 137–144. [Google Scholar] [CrossRef]
- Qin, Y.H. A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Santamouris, M.; Gaitani, N.; Spanou, A.; Saliari, M.; Giannopoulou, K.; Vasilakopoulou, K.; Kardomateas, T. Using cool paving materials to improve microclimate of urban areas—Design realization and results of the flisvos project. Build. Environ. 2012, 53, 128–136. [Google Scholar] [CrossRef]
- Chen, J.; Yin, X.J.; Wang, H.; Ding, Y.M. Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement. J. Clean. Prod. 2018, 188, 12–19. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.H.; Wang, H.; Huang, W.; Sun, W.; Xu, T. Preparation and effectiveness of composite phase change material for performance improvement of Open Graded Friction Course. J. Clean. Prod. 2019, 214, 259–269. [Google Scholar] [CrossRef]
- Shi, X.J.; Rew, Y.; Ivers, E.; Shon, C.S.; Stenger, E.M.; Park, P. Effects of thermally modified asphalt concrete on pavement temperature. Int. J. Pavement Eng. 2019, 20, 669–681. [Google Scholar] [CrossRef]
- Du, Y.F.; Liu, P.S.; Wang, J.C.; Wang, H.; Hu, S.W.; Tian, J.; Li, Y.T. Laboratory investigation of phase change effect of polyethylene glycolon on asphalt binder and mixture performance. Constr. Build. Mater. 2019, 212, 1–9. [Google Scholar] [CrossRef]
- Sengoz, B.; Bagayogo, L.; Oner, J.; Topal, A. Investigation of rheological properties of transparent bitumen. Constr. Build. Mater. 2017, 154, 1105–1111. [Google Scholar] [CrossRef]
- Bocci, M.; Grilli, A.; Cardone, F.; Virgili, A. Clear asphalt mixture for wearing course in tunnels: Experimental application in the province of bolzano. Procedia-Soc. Behav. Sci. 2012, 53, 115–124. [Google Scholar] [CrossRef]
- Partal, P.; Martinez-Boza, F.; Conde, B.; Gallegos, C. Rheological characterisation of synthetic binders and unmodified bitumens. Fuel 1999, 78, 1–10. [Google Scholar] [CrossRef]
- Airey, G.D.; Mohammed, M.H.; Fichter, C. Rheological characteristics of synthetic road binders. Fuel 2008, 87, 1763–1775. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y. Laboratory evaluation of color polymer concrete pavement with synthetic resin binder for exclusive bus lanes. Transp. Res. Rec. 2007, 1991, 124–132. [Google Scholar] [CrossRef]
- Santagata, F.; Canestrari, F.; Ferrotti, G.; Graziani, A. Experimental characterization of transparent synthetic binder mixes reinforced with cellulose fibres. In Proceedings of the 4th International SIIV Congress, Palermo, Italy, 12–14 September 2007; Available online: https://iris.univpm.it/handle/11566/52988 (accessed on 23 August 2023).
- Badin, G.; Huang, Y.; Ahmad, N. Comparative Analysis of Thermally Investigated Pigment-Modified Asphalt Binders. In Proceedings of the ASCE Airfield and Highway Pavements 2023 Conference, Austin, Texas, USA, June 14−17 2023; pp. 174–184. [Google Scholar]
- Badin, G.; Ahmad, N.; Ali, H.M. Experimental investigation into the thermal augmentation of pigmented asphalt. Phys. A Stat. Mech. Its Appl. 2020, 551, 123974. [Google Scholar] [CrossRef]
- Cheela, V.R.S.; John, M.; Biswas, W.; Sarker, P. Combating Urban Heat Island Effect-A Review of Reflective Pavements and Tree Shading Strategies. Buildings 2021, 11, 93. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, L.C.; Wang, S.Y. A novel solar reflective coating with functional gradient multilayer structure for cooling asphalt pavements. Constr. Build. Mater. 2019, 210, 13–21. [Google Scholar] [CrossRef]
- Karlessi, T.; Santamouris, M.; Apostolakis, K.; Synnefa, A.; Livada, I. Development and testing of thermochromic coatings for buildings and urban structures. Sol. Energy 2009, 83, 538–551. [Google Scholar] [CrossRef]
- Pasetto, M.; Pasquini, E.; Giacomello, G.; Baliello, A. Innovative pavement surfaces as urban heat islands mitigation strategy: Chromatic, thermal and mechanical characterisation of clear/coloured mixtures. Road Mater. Pavement Des. 2019, 20, S533–S555. [Google Scholar] [CrossRef]
- Gaitani, N.; Spanou, A.; Saliari, M.; Synnefa, A.; Vassilakopoulou, K.; Papadopoulou, K.; Pavlou, K.; Santamouris, M.; Papaioannou, M.; Lagoudaki, A. Improving the microclimate in urban areas: A case study in the centre of Athens. Build. Serv. Eng. Res. Technol. 2011, 32, 53–71. [Google Scholar] [CrossRef]
- Pomerantz, M.; Akbari, H.; Harvey, J. The Benefits of Cooler Pavements on Durability and Visibility; Report No. LBNL-43443; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2000. [Google Scholar]
- Jameel, M.S.; Ahmad, N.; Badin, G.; Khan, A.H.; Ali, B.; Raza, A. Comparison of hydrated lime, paraffin wax and low-density polyethylene modified bituminous binders: A perspective of adhesion and moisture damage. Int. J. Pavement Eng. 2023, 24, 2168659. [Google Scholar] [CrossRef]
- Elements, A. Iron(III) Oxide Properties (Theoretical). Available online: https://www.americanelements.com/iron-iii-oxide-1309-37-1 (accessed on 8 August 2023).
- Takeda, M.; Onishi, T.; Nakakubo, S.; Fujimoto, S. Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature. Mater. Trans. 2009, 50, 2242–2246. [Google Scholar] [CrossRef]
- Corporation, G. Titanium Dioxide—Titania (TiO2). Available online: https://www.azom.com/properties.aspx?ArticleID=1179 (accessed on 7 August 2023).
- TDK. Mn-Zn Ferrite, Material Characteristics. 2022. Available online: https://product.tdk.com/system/files/dam/doc/product/ferrite/ferrite/ferrite-core/catalog/ferrite_mn-zn_material_characteristics_en.pdf (accessed on 8 August 2023).
- Ferrite Materials. MAGNETICS. Available online: https://www.mag-inc.com/Media/Magnetics/File-Library/Products/Ferrite/Magnetics-Ferrite-Materials-Web-8-17a.pdf (accessed on 7 August 2023).
- Overview of the Ferrite, in FERRITES—TDK. 2021. Available online: https://product.tdk.com/en/system/files?file=dam/doc/product/ferrite/ferrite/ferrite-core/catalog/ferrite_summary_en.pdf (accessed on 7 August 2023).
- Abbas, F.A.; Alhamdo, M.H. Enhancing the thermal conductivity of hot-mix asphalt. Results Eng. 2023, 17, 100827. [Google Scholar] [CrossRef]
- Lindberg, W.R.; Thomas, R.R.; Christensen, R.J. measurements of specific-heat, thermal-conductivity and thermal-diffusivity of Utah tar sands. Fuel 1985, 64, 80–85. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.P.; Hu, X.D.; Liu, G.; Li, B. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete. Materials 2017, 10, 218. [Google Scholar] [CrossRef]
- Del Carpio, J.A.V.; Marinoski, D.L.; Triches, G.; Lamberts, R.; de Melo, J.V.S. Urban pavements used in Brazil: Characterization of solar reflectance and temperature verification in the field. Sol. Energy 2016, 134, 72–81. [Google Scholar] [CrossRef]
- LANXESS. Colouring of Bituminous Mixes, in “Inorganic Pigments—Technical Information Competence Center Construction. LANXESS Deutschland GmbH Business Unit, Inorganic Pigments D-51368 Leverkusen. 2002. Available online: https://lanxess.com/en/Products-and-Brands/Brands/Bayferrox/Construction-Applications (accessed on 7 July 2023).
- E. Inc. Silicone Rubber Fiberglass Flexible Heater. Available online: https://www.omega.com/en-us/industrial-heaters/surface-heaters/flexible-heaters/srfra-srfga/p/SRFGA-404-10-P (accessed on 9 July 2023).
- Affolter, R. Pakistan—Solar Radiation Measurement Data. 2017. Available online: https://energydata.info/dataset/pakistan-solar-radiation-measurement-data (accessed on 9 July 2023).
- Abbas, F.A.; Alhamdo, M.H. Thermal performance of asphalt solar collector by improving tube and slab characteristics. Int. J. Thermofluids 2023, 17, 100293. [Google Scholar] [CrossRef]
- Kyriakodis, G.; Santamouris, M. Using reflective pavements to mitigate urban heat island in warm climates-Results from a large scale urban mitigation project. Urban Clim. 2018, 24, 326–339. [Google Scholar] [CrossRef]
- Sha, A.; Liu, Z.; Tang, K.; Li, P. Solar heating reflective coating layer (SHRCL) to cool the asphalt pavement surface. Constr. Build. Mater. 2017, 139, 355–364. [Google Scholar] [CrossRef]
- Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Rossi, C.O. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. [Google Scholar] [CrossRef]
- Qureshi, F.A.; Ahmad, N.; Ali, H.M. Heat dissipation in bituminous asphalt catalyzed by different metallic oxide nanopowders. Constr. Build. Mater. 2021, 276, 122220. [Google Scholar] [CrossRef]
- Jabbar, H.K.; Hamoodi, M.N.; Al-Hameedawi, A.N. Urban heat islands: A review of contributing factors, effects and data. IOP Conf. Ser. Earth Environ. Sci. 2023, 1129, 012038. [Google Scholar] [CrossRef]
- CSN EN 12697-25; Bituminous Mixtures-Test Methods-Part 25: Cyclic Compression Test. European Standards: Released 01 October, 2017. Available online: https://www.en-standard.eu/csn-en-12697-25-bituminous-mixtures-test-methods-part-25-cyclic-compression-test/ (accessed on 25 February 2024).
- Zheng, M.L.; Han, L.L.; Wang, F.; Mi, H.C.; Li, Y.F.; He, L.T. Comparison and analysis on heat reflective coating for asphalt pavement based on cooling effect and anti-skid performance. Constr. Build. Mater. 2015, 93, 1197–1205. [Google Scholar] [CrossRef]
- Xin, Z.G. Research application of colored asphalt mixture pavement. Adv. Mater. Res. 2014, 900, 459–462. [Google Scholar] [CrossRef]
- AASHTO TP 62; Standard Method of Test for Determining Dynamic Modulus of Hot Mix Asphalt (HMA). GlobalSpec: New York, NY, USA. Available online: https://standards.globalspec.com/std/1283471/aashto-tp-62 (accessed on 25 February 2024).
- Hafeez, M.; Ahmad, N.; Kamal, M.A.; Rafi, J.; Ul Haq, M.F.; Jamal; Zaidi, S.B.A.; Nasir, M.A. Experimental Investigation into the Structural and Functional Performance of Graphene Nano-Platelet (GNP)-Doped Asphalt. Appl. Sci. 2019, 9, 686. [Google Scholar] [CrossRef]
- Li, P.; Zheng, M.L.; Wang, F.; Che, F.; Li, H.Y.; Ma, Q.L.; Wang, Y.H. Laboratory Performance Evaluation of High Modulus Asphalt Concrete Modified with Different Additives. Adv. Mater. Sci. Eng. 2017, 2017, 7236153. [Google Scholar] [CrossRef]
Material | Specific Heat (J kg−1K−1) | Thermal Conductivity (W m−1K−1) |
---|---|---|
Iron oxide red (Fe2O3) | 650 [41] | 3 (800 °C) and 8 (200 °C) 15 at room temperature [42] |
Titanium dioxide white (TiO2) | 683–697 [43] | 11.7 at 25 °C [43] |
Zinc ferrite yellow (ZnFe2O4) | 800 [44] | 3.5–4.3 at 25–85 °C [45] 1–5 at room temperature [46] |
Conventional asphalt | 900 [9] | 1.35 at room temperature [47] 0.8–2.0 [9] |
Conventional bitumen | 1850–3900 at 27–127 °C [48] | 0.17–0.2 [49] |
Property | Titanium Dioxide White | Zinc Ferrite Yellow | Iron Oxide Red |
---|---|---|---|
Heat stability (°C) | 900–930 | 260–300 | 350–400 |
Particle size | 300 nm | 0.1–0.6 μm | 97% ≤ 45 μm |
Particle shape | Tetragonal | Acicular | Spherical |
pH value | 6.5–8.0 | 5–8 | 3–7 |
Density (g/cm3) | 4.13 | 5.0–5.6 | 0.72–1.1 |
Chemical formula | TiO2 | ZnFe2O4 | Fe2O3·H2O |
Tinting strength % | ≥175 | 95–110 | 95–105 |
Moisture at 105 °C, % | 0.5 Max | 0.5 Max | 1.0 Max |
Oil absorption (mL/100 g) | 19~22 | 25–45 | 15–25 |
Matter soluble in water % | 0.5 Max | 0.5 Max | 0.5 Max |
Dimensions | Internal Dimensions (mm3) | External Dimensions (mm3) | Heater Dimensions (mm3) | Thermocouple Positioning (mm) | |||||
---|---|---|---|---|---|---|---|---|---|
Heat Sink | T1 | T2 | T3 | T4 | T5 | ||||
Larger Heat Sink | 100 × 100 × 50 | 110 × 110 × 55 | 100 × 100 × 1.5 | Heat sink base | 0 | 10 | 30 | 50 | |
Smaller Heat Sink | 60 × 60 × 25 | 70 × 70 × 30 | 60 × 60 × 1.5 | 0 | 5 | 15 | 25 |
Statistics | ||||||
Groups | Count | Sum | Average | Variance | ||
Conv. Black Asphalt | 3601 | 176,572.9325 | 49.0344 | 69.7382 | ||
Neat C.B Asphalt | 3601 | 155,958.9918 | 43.3099 | 54.0948 | ||
C.B + TiO2 | 3601 | 148,025.9923 | 41.1069 | 47.0287 | ||
C.B + ZnFe2O4 | 3601 | 148,432.8170 | 41.2199 | 46.0895 | ||
ANOVA Results for thermal testing | ||||||
Source of Variation | SS | df | MS | F | p-Value | F crit |
Between Groups | 149,366.1305 | 3 | 49,788.7102 | 917.9705 | 0 | 2.6055 |
Within Groups | 781,024.4668 | 14,400 | 54.2378 | |||
Total | 930,390.5973 | 14,403 |
Statistics | ||||||
Groups | Count | Sum | Average | Variance | ||
Conventional | 12 | 47.0586 | 4.2781 | 3.1557 | ||
Clear binder | 12 | 41.3900 | 3.7627 | 2.4111 | ||
C.B + Fe2O3 | 12 | 42.6500 | 3.5542 | 2.1059 | ||
C.B + TiO2 | 12 | 27.3700 | 2.2808 | 1.0498 | ||
C.B + ZnFe2O4 | 12 | 15.8300 | 1.3192 | 0.3082 | ||
ANOVA Results for rutting analysis | ||||||
Source of Variation | SS | df | MS | F | p-value | F crit |
Between Groups | 68.1594 | 4 | 17.0398 | 9.6311 | 0.0000 | 2.5463 |
Within Groups | 93.7708 | 53 | 1.7693 | |||
Total | 161.9301 | 57 |
Conv. Black Asphalt | Neat C.B Asphalt | C.B + TiO2 | C.B + ZnFe2O4 | |
---|---|---|---|---|
Conv. Black Asphalt | 1 | |||
Neat C.B Asphalt | 0.9994 | 1 | ||
C.B + TiO2 | 0.9976 | 0.9965 | 1 | |
C.B + ZnFe2O4 | 0.9984 | 0.9978 | 0.9997 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badin, G.; Ahmad, N.; Huang, Y.; Mahmood, Y. Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements. Infrastructures 2024, 9, 88. https://doi.org/10.3390/infrastructures9050088
Badin G, Ahmad N, Huang Y, Mahmood Y. Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements. Infrastructures. 2024; 9(5):88. https://doi.org/10.3390/infrastructures9050088
Chicago/Turabian StyleBadin, Gul, Naveed Ahmad, Ying Huang, and Yasir Mahmood. 2024. "Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements" Infrastructures 9, no. 5: 88. https://doi.org/10.3390/infrastructures9050088
APA StyleBadin, G., Ahmad, N., Huang, Y., & Mahmood, Y. (2024). Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements. Infrastructures, 9(5), 88. https://doi.org/10.3390/infrastructures9050088