Model for Proton Acceleration in Strongly Self-Magnetized Sheath Produced by Ultra-High-Intensity Sub-Picosecond Laser Pulses
Abstract
:1. Introduction
2. Methods
2.1. Numerical Simulations
2.2. Mora Model
3. Results
3.1. Magnetic Field Generation Model
3.2. Modified Mora Model
3.3. PIC Simulations of Ion Energy Scaling
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FWHM | Full Width at Half Maximum |
PIC | Particle-In-Cell |
TNSA | Target Normal Sheath Acceleration |
References
- Borghesi, M. Laser-driven ion acceleration: State of the art and emerging mechanisms. Nucl. Instrum. Meth. Phys. Res. A 2014, 740, 6–9. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Wilkens, J.J.; Esirkepov, T.Z.; Korn, G.; Kraft, G.; Kraft, S.D.; Molls, M.; Khoroshkov, V.S. Laser ion acceleration for hadron therapy. Physics-Uspekhi 2014, 57, 1149–1179. [Google Scholar] [CrossRef]
- Ledingham, K.; Bolton, P.; Shikazono, N.; Ma, C.M. Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress. Appl. Sci. 2014, 4, 402–443. [Google Scholar] [CrossRef]
- Bychenkov, V.Y.; Brantov, A.V.; Govras, E.A.; Kovalev, V.F. Laser acceleration of ions: Recent results and prospects for applications. Physics-Uspekhi 2015, 58, 71–81. [Google Scholar] [CrossRef]
- Schreiber, J.; Bolton, P.R.; Parodi, K. Invited Review Article: “Hands-on” laser-driven ion acceleration: A primer for laser-driven source development and potential applications. Rev. Sci. Instrum. 2016, 87, 071101. [Google Scholar] [CrossRef]
- Yogo, A.; Arikawa, Y.; Abe, Y.; Mirfayzi, S.R.; Hayakawa, T.; Mima, K.; Kodama, R. Advances in laser-driven neutron sources and applications. Eur. Phys. J. A 2023, 59, 191. [Google Scholar] [CrossRef]
- Zimmer, M.; Scheuren, S.; Kleinschmidt, A.; Mitura, N.; Tebartz, A.; Schaumann, G.; Abel, T.; Ebert, T.; Hesse, M.; Zähter, S.; et al. Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source. Nat. Commun. 2022, 13, 1173. [Google Scholar] [CrossRef]
- Yogo, A.; Lan, Z.; Arikawa, Y.; Abe, Y.; Mirfayzi, S.; Wei, T.; Mori, T.; Golovin, D.; Hayakawa, T.; Iwata, N.; et al. Laser-Driven Neutron Generation Realizing Single-Shot Resonance Spectroscopy. Phys. Rev. X 2023, 13, 011011. [Google Scholar] [CrossRef]
- Iwata, N.; Mima, K.; Sentoku, Y.; Yogo, A.; Nagatomo, H.; Nishimura, H.; Azechi, H. Fast ion acceleration in a foil plasma heated by a multi-picosecond high intensity laser. Phys. Plasmas 2017, 24, 073111. [Google Scholar] [CrossRef]
- Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; et al. Boosting laser-ion acceleration with multi-picosecond pulses. Sci. Rep. 2017, 7, 42451. [Google Scholar] [CrossRef]
- Simpson, R.A.; Scott, G.G.; Mariscal, D.; Rusby, D.; King, P.M.; Grace, E.; Aghedo, A.; Pagano, I.; Sinclair, M.; Armstrong, C.; et al. Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multi-picosecond regime. Phys. Plasmas 2021, 28, 013108. [Google Scholar] [CrossRef]
- Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; Chen, S.N.; Buffechoux, S.; Kon, A.; Atherton, B.; Audebert, P.; Geissel, M.; Hurd, L.; et al. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons. Nat. Commun. 2018, 9, 280. [Google Scholar] [CrossRef] [PubMed]
- Wilks, S.C.; Langdon, a.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M.H.; Pennington, D.; MacKinnon, A.; Snavely, R.A. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 2001, 8, 542–549. [Google Scholar] [CrossRef]
- Mora, P. Plasma Expansion into a Vacuum. Phys. Rev. Lett. 2003, 90, 185002. [Google Scholar] [CrossRef]
- Robinson, A.P.L.; Foster, P.; Adams, D.; Carroll, D.C.; Dromey, B.; Hawkes, S.; Kar, S.; Li, Y.T.; Markey, K.; McKenna, P.; et al. Spectral modification of laser-accelerated proton beams by self-generated magnetic fields. New J. Phys. 2009, 11, 083108. [Google Scholar] [CrossRef]
- Korzhimanov, A.V. Generation of Cold Magnetized Relativistic Plasmas at the Rear of Thin Foils Irradiated by Ultra-High-Intensity Laser Pulses. Appl. Sci. 2021, 11, 11966. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Z.M.; Zhang, B.; Hong, W.; He, S.K.; Meng, L.B.; Qi, W.; Cui, B.; Zhou, W.M. Investigation of magnetic inhibition effect on ion acceleration at high laser intensities. Matter Radiat. Extrem. 2021, 6, 044401. [Google Scholar] [CrossRef]
- Arber, T.D.; Bennett, K.; Brady, C.S.; Lawrence-Douglas, A.; Ramsay, M.G.; Sircombe, N.J.; Gillies, P.; Evans, R.G.; Schmitz, H.; Bell, A.R.; et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control Fusion 2015, 57, 113001. [Google Scholar] [CrossRef]
- Surmin, I.A.; Bastrakov, S.I.; Efimenko, E.S.; Gonoskov, A.A.; Korzhimanov, A.V.; Meyerov, I.B. Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 2016, 202, 204–210. [Google Scholar] [CrossRef]
- Gurevich, A.V.; Pariiskaya, L.V.; Pitaevskii, L.P. Self-similar motion of rarefied plasma. Sov. Phys. JETP 1966, 22, 449–454. [Google Scholar]
- Mora, P.; Pellat, R. Self-similar expansion of a plasma into a vacuum. Phys. Fluids 1979, 22, 2300–2304. [Google Scholar] [CrossRef]
- Dorozhkina, D.S.; Semenov, V.E. Exact Solution of Vlasov Equations for Quasineutral Expansion of Plasma Bunch into Vacuum. Phys. Rev. Lett. 1998, 81, 2691–2694. [Google Scholar] [CrossRef]
- Kluge, T.; Cowan, T.; Debus, A.; Schramm, U.; Zeil, K.; Bussmann, M. Electron Temperature Scaling in Laser Interaction with Solids. Phys. Rev. Lett. 2011, 107, 205003. [Google Scholar] [CrossRef] [PubMed]
- Daido, H.; Nishiuchi, M.; Pirozhkov, A.S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 2012, 75, 056401. [Google Scholar] [CrossRef] [PubMed]
- Macchi, A.; Borghesi, M.; Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 2013, 85, 751. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzhimanov, A.V. Model for Proton Acceleration in Strongly Self-Magnetized Sheath Produced by Ultra-High-Intensity Sub-Picosecond Laser Pulses. Quantum Beam Sci. 2025, 9, 4. https://doi.org/10.3390/qubs9010004
Korzhimanov AV. Model for Proton Acceleration in Strongly Self-Magnetized Sheath Produced by Ultra-High-Intensity Sub-Picosecond Laser Pulses. Quantum Beam Science. 2025; 9(1):4. https://doi.org/10.3390/qubs9010004
Chicago/Turabian StyleKorzhimanov, Artem V. 2025. "Model for Proton Acceleration in Strongly Self-Magnetized Sheath Produced by Ultra-High-Intensity Sub-Picosecond Laser Pulses" Quantum Beam Science 9, no. 1: 4. https://doi.org/10.3390/qubs9010004
APA StyleKorzhimanov, A. V. (2025). Model for Proton Acceleration in Strongly Self-Magnetized Sheath Produced by Ultra-High-Intensity Sub-Picosecond Laser Pulses. Quantum Beam Science, 9(1), 4. https://doi.org/10.3390/qubs9010004