Promising Catalyst for Chlorosilane Dismutation
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Setty, H.S.N.; Yaws, C.L.; Martin, B.R.; Wangler, D.J. Method of Operating a Quartz Fluidized Bed Reactor for the Production of Silicon. U.S. Patent 3,963,838, 15 June 1976. [Google Scholar]
- Iya, S.K.; Flagella, R.N.; Dipaolo, F.S. Heterogeneous decomposition of silane in a fixed bed reactor. J. Electrochem. Soc. 1982, 129, 1531–1535. [Google Scholar] [CrossRef]
- Eaglesham, D.J.; Cerullo, M. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 1990, 64, 1943–1947. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Bathey, B.R.; Cretella, M.C. Solar-grade silicon. J. Mater. Sci. 2005, 17, 3877–3896. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, W. CFD–PBM coupled simulation of silicon CVD growth in a fluidized bed reactor: Effect of silane pyrolysis kinetic models. Chem. Eng. Sci. 2015, 127, 84–94. [Google Scholar] [CrossRef]
- Niu, J.; Dai, Y.; Yin, L.; Shang, J.; Crittenden, J.C. Photocatalytic reduction of triclosan on Au–Cu2O nanowire arrays as plasmonic photocatalysts under visible light irradiation. Phys. Chem. Chem. Phys. 2015, 17, 17421–17428. [Google Scholar] [CrossRef] [PubMed]
- Tirumala, R.T.A.; Dadgar, A.P.; Mohammadparast, F.; Ramakrishnan, S.B.; Mou, T.; Wang, B.; Andiappan, M. Homogeneous versus heterogeneous catalysis in Cu2O-nanoparticle-catalyzed C–C coupling reactions. Green Chem. 2019, 21, 5284–5290. [Google Scholar] [CrossRef]
- Bailey, D.L.; Shafer, P.W.; Wagner, G.H. Disproportionation of Chlorosilanes Employing Amine-Type Catalysts. U.S. Patent 2,834,648, 13 May 1958. [Google Scholar]
- Jung, I.N.; Cho, K.D.; Lim, J.C.; Yoo, B.R. Redistribution Catalyst and Methods for Its Preparation and Use to Convert Chlorosilicon Hydrides to Silane. U.S. Patent 4,613,491, 23 September 1986. [Google Scholar]
- Erickson, C.E.; Wagner, G.H. Disproportionation of Silane Derivatives. U.S. Patent 2,627,451, 3 February 1953. [Google Scholar]
- Bakay, C.J. Verfahren zur Herstellung von Silan. DE Patent 2507864A1, 28 August 1975. [Google Scholar]
- Litteral, C.J. Disproportionation of Chlorosilane. U.S. Patent 4,113,845, 12 September 1978. [Google Scholar]
- Litteral, C.J. Verfahren zur Herstellung von Disproportionierungsprodukten von Chlorsilanverbindungen. U.S. Patent 2,162,537, 13 July 1972. [Google Scholar]
- Seth, K.K. Chlorosilane Disproportionation Process. U.S. Patent 4,395,389, 26 July 1983. [Google Scholar]
- Grishnova, N.D.; Gusev, A.V.; Moiseev, A.N.; Mochalov, G.M.; Balanovsky, N.V.; Kharitonov, T.N. Catalytic Activity of Anion-Exchange Resins in the Trichlorosilane Disproportionation Reaction. J. Appl. Chem. 1999, 72, 1667–1672. [Google Scholar]
- Зyбaкoвa, Л.Б. Cинтeтичecкиe иoнooбмeнныe мaтepиaлы; Зyбaкoвa, Л.Б., Teвлинa, A.C., Дaвaнкoвa, A.Б., Eds.; Xимия: Mocквa, Russia, 1978. [Google Scholar]
- Mochalov, G.; Stolmakov, Y.; Zhuchok, O. Thermodynamics and Kinetics of the Reaction of Catalytic Dismutation of Chlorosilanes in the Vapor Phase in the Temperature Range of 353–393 K. Chemengineering 2023, 7, 13–27. [Google Scholar] [CrossRef]
- Zou, N.; Lin, X.; Li, M.; Li, L.; Ye, C.; Chen, J.; Qiu, T. Ionic Liquid@Amphiphilic Silica Nanoparticles: Novel Catalysts for Converting Waste Cooking Oil to Biodiesel. ACS Sustain. Chem. Eng. 2020, 8, 18054–18061. [Google Scholar] [CrossRef]
- Union Carbide Corporation. Low-Cost Solar Array Project: Feasibility of the Silane Process for Producing Semiconductor-Grade Silicon; Final Report (Phases I and II); Union Carbide Corp.: New York, NY, USA, 1979. [Google Scholar]
- Vorotyntsev, V.M.; Mochalov, G.M.; Kolotilova, M.A. Liquid-vapor equilibria in systems based on dichlorosilane. Russ. J. Phys. Chem. A 2005, 79, 16–19. [Google Scholar]
- Yungman, V.S. (Ed.) Thermal Constants of Substances; Wiley: New York, NY, USA, 1999; Volumes 1–8, Available online: https://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html (accessed on 18 September 2023).
DCS | MCS | ||
---|---|---|---|
T, K | P, bar | T, K | P, bar |
273 | 0.81 | 253 | 1.43 |
283 | 1.15 | 263 | 1.99 |
293 | 1.60 | 273 | 2.71 |
303 | 2.18 | 283 | 3.61 |
313 | 2.90 | 293 | 4.71 |
323 | 3.80 | 303 | 6.03 |
333 | 4.90 | 313 | 7.62 |
343 | 6.22 | 323 | 9.47 |
353 | 7.79 | --- | --- |
363 | 9.64 | --- | --- |
373 | 11.79 | --- | --- |
TCS dismutation kinetics 1 bar total pressure | |||||
τ (s) | Mole Fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.00000 | 0.000347 | 0.0459 | 0.878 | 0.0466 |
0.000027 | 0.00110 | 0.0729 | 0.822 | 0.0752 | |
1.75 | 0.000089 | 0.00190 | 0.0900 | 0.785 | 0.0941 |
2.5 | 0.000126 | 0.00223 | 0.0955 | 0.773 | 0.100 |
3 | 0.000136 | 0.00231 | 0.0968 | 0.770 | 0.102 |
4 | 0.000135 | 0.00230 | 0.0968 | 0.768 | 0.104 |
TCS dismutation kinetics 2 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 0.8 | 0.000025 | 0.00108 | 0.0717 | 0.809 | 0.0740 |
0.000076 | 0.00176 | 0.0866 | 0.777 | 0.0904 | |
1 | 0.000110 | 0.00201 | 0.0911 | 0.767 | 0.0954 |
1.3 | 0.000126 | 0.00221 | 0.0942 | 0.760 | 0.0990 |
1.5 | 0.000134 | 0.00227 | 0.0952 | 0.758 | 0.100 |
2 | 0.000134 | 0.00227 | 0.0952 | 0.758 | 0.100 |
2.5 | 0.000145 | 0.00238 | 0.0977 | 0.768 | 0.103 |
3.5 | 0.000144 | 0.00239 | 0.0978 | 0.767 | 0.103 |
TCS dismutation kinetics 3 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 0.7 | 0.000067 | 0.00165 | 0.0836 | 0.768 | 0.0871 |
0.000089 | 0.00188 | 0.0878 | 0.759 | 0.0919 | |
0.8 | 0.000113 | 0.00209 | 0.0913 | 0.751 | 0.0958 |
1 | 0.000126 | 0.00219 | 0.0930 | 0.747 | 0.0978 |
2 | 0.000128 | 0.00220 | 0.0928 | 0.746 | 0.0980 |
TCS dismutation kinetics 4 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 0.7 | 0.000110 | 0.00196 | 0.0882 | 0.742 | 0.0924 |
0.000116 | 0.00210 | 0.0905 | 0.737 | 0.0950 | |
0.9 | 0.000126 | 0.00218 | 0.0917 | 0.734 | 0.0965 |
2 | 0.000125 | 0.00216 | 0.0918 | 0.735 | 0.0964 |
TCS dismutation kinetics 5 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.000134 | 0.00220 | 0.0905 | 0.710 | 0.0954 |
0.000135 | 0.00221 | 0.0904 | 0.711 | 0.0953 | |
TCS dismutation kinetics 6 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.000132 | 0.00216 | 0.0890 | 0.700 | 0.0938 |
0.000130 | 0.00217 | 0.0891 | 0.699 | 0.0937 | |
DCS dismutation kinetics 1 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 0.6 | 0.0840 | 0.126 | 0.468 | 0.291 | 0.00184 |
0.0866 | 0.127 | 0.460 | 0.295 | 0.00219 | |
0.7 | 0.0882 | 0.127 | 0.455 | 0.298 | 0.00251 |
2 | 0.0881 | 0.128 | 0.456 | 0.298 | 0.00252 |
DCS dismutation kinetics 2 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.0891 | 0.125 | 0.441 | 0.296 | 0.00340 |
0.0890 | 0.125 | 0.440 | 0.297 | 0.00341 | |
DCS dismutation kinetics 3 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.0894 | 0.125 | 0.442 | 0.298 | 0.00342 |
0.0893 | 0.126 | 0.442 | 0.298 | 0.00341 | |
DCS dismutation kinetics 4 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.0866 | 0.122 | 0.429 | 0.289 | 0.00331 |
0.0866 | 0.122 | 0.429 | 0.288 | 0.00332 | |
DCS dismutation kinetics 5 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.0867 | 0.121 | 0.429 | 0.289 | 0.00332 |
0.0867 | 0.122 | 0.430 | 0.289 | 0.00332 | |
DCS dismutation kinetics 6 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.0853 | 0.121 | 0.422 | 0.284 | 0.00327 |
0.0854 | 0.120 | 0.423 | 0.284 | 0.00326 | |
MCS dismutation kinetics 1 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.413 | 0.213 | 0.275 | 0.0682 | 0.000290 |
0.413 | 0.214 | 0.276 | 0.0682 | 0.000288 | |
MCS dismutation kinetics 2 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.413 | 0.213 | 0.276 | 0.0682 | 0.000288 |
0.413 | 0.214 | 0.276 | 0.0682 | 0.000290 | |
MCS dismutation kinetics 3 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.408 | 0.211 | 0.272 | 0.0673 | 0.000284 |
0.407 | 0.211 | 0.273 | 0.0673 | 0.000285 | |
MCS dismutation kinetics 4 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.409 | 0.211 | 0.273 | 0.0674 | 0.000285 |
0.408 | 0.211 | 0.273 | 0.0674 | 0.000286 | |
MCS dismutation kinetics 5 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.402 | 0.208 | 0.268 | 0.0664 | 0.000280 |
0.402 | 0.208 | 0.269 | 0.0664 | 0.000281 | |
MCS dismutation kinetics 6 bar total pressure | |||||
τ (s) | Mole fraction | ||||
S | MCS | DCS | TCS | STC | |
0.5 1 | 0.396 | 0.204 | 0.264 | 0.0653 | 0.000277 |
0.396 | 0.205 | 0.265 | 0.0654 | 0.000276 |
Molar Concentration (mmol/L) | ||||||
---|---|---|---|---|---|---|
Total Pressure, bar | Mole Fraction | |||||
S | MCS | DCS | TCS | STC | τ (s) | |
1 | 0.00481 | 0.0791 | 3.25 | 25.5 | 3.42 | 3 |
2 | 0.00963 | 0.158 | 6.49 | 51.0 | 6.84 | 2.5 |
3 | 0.0145 | 0.238 | 9.77 | 76.7 | 10.3 | 1 |
4 | 0.0194 | 0.318 | 13.1 | 103 | 13.7 | 0.9 |
5 | 0.0242 | 0.398 | 16.3 | 128 | 17.2 | 0.5 |
6 | 0.0291 | 0.478 | 19.6 | 154 | 20.6 | - |
Total Pressure, bar | Mole Fraction | ||||
---|---|---|---|---|---|
S | MCS | DCS | TCS | STC | |
1 | 3.01 | 4.23 | 14.9 | 10.0 | 0.115 |
2 | 6.01 | 8.46 | 29.8 | 20.0 | 0.230 |
3 | 9.05 | 12.7 | 44.8 | 30.1 | 0.346 |
4 | 12.1 | 17.0 | 59.8 | 40.2 | 0.462 |
5 | 15.1 | 21.3 | 74.8 | 50.4 | 0.579 |
6 | 18.2 | 25.6 | 89.9 | 60.5 | 0.695 |
Total Pressure, bar | Mole Fraction | ||||
---|---|---|---|---|---|
S | MCS | DCS | TCS | STC | |
1 | 13.7 | 7.10 | 9.16 | 2.26 | 0.00955 |
2 | 27.4 | 14.2 | 18.3 | 4.53 | 0.0191 |
3 | 41.3 | 21.3 | 27.6 | 6.81 | 0.0288 |
4 | 55.1 | 28.5 | 36.8 | 9.10 | 0.0384 |
5 | 69.0 | 35.7 | 46.1 | 11.4 | 0.0481 |
6 | 82.8 | 42.8 | 55.3 | 13.7 | 0.0577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuchok, O.; Stolmakov, Y.; Kalinina, A.; Medov, V.; Belousova, D.; Maleev, N.; Mochalov, G. Promising Catalyst for Chlorosilane Dismutation. Sci 2024, 6, 38. https://doi.org/10.3390/sci6030038
Zhuchok O, Stolmakov Y, Kalinina A, Medov V, Belousova D, Maleev N, Mochalov G. Promising Catalyst for Chlorosilane Dismutation. Sci. 2024; 6(3):38. https://doi.org/10.3390/sci6030038
Chicago/Turabian StyleZhuchok, Olesya, Yegor Stolmakov, Alexandra Kalinina, Vitaly Medov, Darya Belousova, Nikita Maleev, and Georgy Mochalov. 2024. "Promising Catalyst for Chlorosilane Dismutation" Sci 6, no. 3: 38. https://doi.org/10.3390/sci6030038
APA StyleZhuchok, O., Stolmakov, Y., Kalinina, A., Medov, V., Belousova, D., Maleev, N., & Mochalov, G. (2024). Promising Catalyst for Chlorosilane Dismutation. Sci, 6(3), 38. https://doi.org/10.3390/sci6030038