Application of Coffee Silverskin Cellulose/Polyacrylamide Gel Polymer Electrolytes for Rechargeable Zinc-Ion Batteries
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Chemicals and Materials
2.2. Extraction and Modification of Cellulose from CS
2.3. Preparation of PAM and PAM/Cellulose Composite
2.4. Production of Cathode and Anode Electrodes
2.5. Fabrication and Assembly of Zinc-Ion Batteries
2.6. Material Characterization
2.7. GPEs and Batteries Performance Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ZIB | Zinc-ion battery |
LIB | Lithium-ion battery |
SSB | Solid-state battery |
EV | Electric vehicles |
SEI | Solid electrolyte interface |
SPE | Solid polymer electrolyte |
LE | Liquid electrolyte |
SeSE | Semi-solid electrolyte |
GPE | Gel polymer electrolyte |
PE | Polymer electrolyte |
HPE | Hybrid polymer electrolyte |
CS | Coffee silverskin |
ACS | Alkali-treated coffee silverskin |
BCS | Bleached coffee silverskin |
CSC | Coffee silverskin cellulose |
NC | Nanocellulose |
CMC | Carboxymethyl cellulose |
CA | Cellulose acetate |
AM | Acrylamide monomer |
PAM | Polyacrylamide |
PAN | Polyacrylonitrile |
PEO | Polyethylene oxide |
PVA | Polyvinyl alcohol |
PVDF | Polyvinylidene fluoride |
NMP | N-Methyl-2-pyrrolidone |
Semi-IPN | Semi-interpenetrating |
Tg | Glass transition temperature |
Td | Decomposition temperature |
CrI | Crystallinity index |
WC | Water content |
AC | Alternating current |
Rs | Solution resistance |
Ret | Electron transfer resistance |
FT-IR | Fourier transform infrared spectroscopy |
XRD | X-ray diffraction |
TGA | Thermogravimetric analyzer |
DTG | Derivative thermogravimetry |
FE-SEM | Field-emission scanning electron microscope |
TTS | Tensile test machine |
EIS | Electrochemical impedance spectroscopy |
CV | Cyclic voltammetry |
GCD | Galvanostatic charge-discharge |
HER | Hydrogen evolution reaction |
References
- Li, F.; Zhu, Y.; Ueno, H.; Deng, T. An electrochemically prepared mixed phase of cobalt hydroxide/oxyhydroxide as a cathode for aqueous zinc ion batteries. Inorganics 2023, 11, 400. [Google Scholar] [CrossRef]
- Samarin, A.S.; Ivanov, A.V.; Fedotov, S.S. Toward efficient recycling of vanadium phosphate-based sodium-ion batteries: A review. Clean Technol. 2023, 5, 881–900. [Google Scholar] [CrossRef]
- Panloetparnich, W.; Loryuenyong, V.; Buasri, A. Facile synthesis of polyaniline-nickel oxide composites via interfacial polymerization. Mater. Today Proc. 2022, 52, 2485–2489. [Google Scholar] [CrossRef]
- Shahverdi, M.; Mazzola, M.; Doude, M.; Grice, Q.; Gafford, J.; Sockeel, N. An experiment-based methodology for evaluating the impacts of full bandwidth load on the hybrid energy storage system for electrified vehicles. Sci 2019, 1, 26. [Google Scholar] [CrossRef]
- Dulău, L.-I. CO2 emissions of battery electric vehicles and hydrogen fuel cell vehicles. Clean Technol. 2023, 5, 696–712. [Google Scholar] [CrossRef]
- Panloetparnich, W.; Loryuenyong, V.; Buasri, A. The preparation of composites between polyaniline-silver (PANI-Ag) via interfacial polymerization. IOP Conf. Ser. Mater. Sci. Eng. 2020, 965, 012015. [Google Scholar] [CrossRef]
- Gao, L.; Zhan, H.; Feng, G.; Ma, Y.; Zhang, C.; Zhang, Y.; Cao, M. Engineering mesoporous Na4Mn0.9Ni0.1V(PO4)3@NC microspheres cathode towards advanced sodium ion batteries. J. Energy Storage 2024, 97, 112890. [Google Scholar] [CrossRef]
- Rauh, A.; Lahme, M.; Benzinane, O. A comparison of the use of Pontryagin’s maximum principle and reinforcement learning techniques for the optimal charging of lithium-ion batteries. Clean Technol. 2022, 4, 1269–1289. [Google Scholar] [CrossRef]
- Lakshmi-Narayana, A.; Hussain, O.M.; Mauger, A.; Julien, C.M. Transport properties of nanostructured Li2TiO3 anode material synthesized by hydrothermal method. Sci 2019, 1, 56. [Google Scholar] [CrossRef]
- Rangarajan, S.S.; Sunddararaj, S.P.; Sudhakar, A.; Shiva, C.K.; Subramaniam, U.; Collins, E.R.; Senjyu, T. Lithium-ion batteries—The crux of electric vehicles with opportunities and challenges. Clean Technol. 2022, 4, 908–930. [Google Scholar] [CrossRef]
- Gao, L.; Ma, Y.; Cao, M. Self-supported Se-doped Na2Ti3O7 arrays for high performance sodium ion batteries. Int. J. Hydrogen Energy 2024, 49, 1–10. [Google Scholar] [CrossRef]
- Jia, X.; Yan, K.; Sun, Y.; Chen, Y.; Tang, Y.; Pan, J.; Wan, P. Solvothermal guided V2O5 microspherical nanoparticles constructing high-performance aqueous zinc-ion batteries. Materials 2024, 17, 1660. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Chen, J.; Wu, T.; Li, R.; Zhao, X.; Pang, Y.; Pan, Z. Rational design of Ni-doped V2O5@3D Ni core/shell composites for high-voltage and high-rate aqueous zinc-ion batteries. Materials 2024, 17, 215. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Wu, X. Polypyrrole film decorated manganese oxide electrode materials for high-efficient aqueous zinc ion battery. Crystals 2023, 13, 1445. [Google Scholar] [CrossRef]
- Gao, L.; Ma, Y.; Zhang, C.; Cao, M. Nitrogen-doped carbon trapped MnMoO4 microrods toward high performance aqueous zinc-ion battery. J. Alloys Compd. 2023, 968, 172008. [Google Scholar] [CrossRef]
- Liu, X.; Yue, L.; Dong, W.; Qu, Y.; Sun, X.; Chen, L. Sodium citrate electrolyte additive to improve zinc anode behavior in aqueous zinc-ion batteries. Batteries 2024, 10, 97. [Google Scholar] [CrossRef]
- Cao, B.; Xu, C.; Jiang, B.; Jin, B.; Zhang, J.; Ling, L.; Lu, Y.; Zou, T.; Zhang, T. Electrolyte optimization strategy: Enabling stable and eco-friendly zinc adaptive interfacial layer in zinc ion batteries. Molecules 2024, 29, 874. [Google Scholar] [CrossRef]
- Yin, H.; Liu, Y.; Zhu, Y.; Ye, F.; Xu, G.; Lin, M.; Kang, W. Bimetal-initiated concerted Zn regulation enabling highly stable aqueous Zn-ion batteries. Batteries 2024, 10, 70. [Google Scholar] [CrossRef]
- Lionetto, F.; Arianpouya, N.; Bozzini, B.; Maffezzoli, A.; Nematollahi, M.; Mele, C. Advances in zinc-ion structural batteries. J. Energy Storage 2024, 84, 110849. [Google Scholar] [CrossRef]
- Chang, K.; Zhao, S.; Deng, W. Achieving long-cycle-life zinc-ion batteries through a zincophilic Prussian blue analogue interphase. Molecules 2024, 29, 1501. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Cheng, H.; Zhang, Y. Improving zinc-ion batteries’ performance: The role of nitrogen doping in V2O3/C cathodes. Inorganics 2024, 12, 117. [Google Scholar] [CrossRef]
- Liang, Z.; Lv, C.; Wang, L.; Li, X.; Cheng, S.; Huo, Y. Design of hollow porous P-NiCo2O4@Co3O4 nanoarray and its alkaline aqueous zinc-ion battery performance. Int. J. Mol. Sci. 2023, 24, 15548. [Google Scholar] [CrossRef]
- Ruan, P.; Liang, S.; Lu, B.; Fan, H.J.; Zhou, J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. 2022, 134, e202200598. [Google Scholar] [CrossRef]
- Dang, J.; Yin, M.; Pan, D.; Tian, Z.; Chen, G.; Zou, J.; Miao, H.; Wang, Q.; Yuan, J. Four-functional iron/copper sulfide heterostructure for alkaline hybrid zinc batteries and water splitting. Chem. Eng. J. 2023, 457, 141357. [Google Scholar]
- Cordeiro, I.M.D.C.; Li, A.; Lin, B.; Ma, D.X.; Xu, L.; Eh, A.L.-S.; Wang, W. Solid polymer electrolytes for zinc-ion batteries. Batteries 2023, 9, 343. [Google Scholar] [CrossRef]
- Yao, W.; Zheng, Z.; Zhou, J.; Liu, D.; Song, J.; Zhu, Y. A minireview of the solid-state electrolytes for zinc batteries. Polymers 2023, 15, 4047. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, Z.; Xiang, Y.; Liu, D.; Xie, Z.; Qu, D.; Sun, M.; Tang, H.; Li, J. Cellulose-based material in lithium-sulfur batteries: A review. Carbohydr. Polym. 2021, 255, 117469. [Google Scholar] [PubMed]
- Agate, S.; Joyce, M.; Lucia, L.; Pal, L. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites—A review. Carbohydr. Polym. 2018, 198, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Buasri, A.; Ojchariyakul, S.; Kaewmanechai, P.; Eakviriyapichat, W.; Loryuenyong, V. The fabrication of multicolor electrochromic device based on graphene conductive ink/poly(Lactic acid) thin films by voltage-step method. Optoelectron. Adv. Mater.–Rapid Commun. 2018, 12, 388–393. [Google Scholar]
- Buasri, A.; Chinaphong, T.; Muangkum, P.; Telakul, A.; Loryuenyong, V. Green synthesis of reduced graphene oxide using pomelo peel and its application in electrochromic device. AIP Conf. Proc. 2021, 2397, 070006. [Google Scholar]
- Das, A.K.; Islam, M.N.; Ghosh, R.K.; Maryana, R. Cellulose-based bionanocomposites in energy storage applications—A review. Heliyon 2023, 9, e13028. [Google Scholar] [CrossRef] [PubMed]
- Poompiew, N.; Pattananuwat, P.; Potiyaraj, P. Controllable morphology of sea-urchin-like nickel−cobalt carbonate hydroxide as a supercapacitor electrode with battery-like behavior. ACS Omega 2021, 6, 25138–25150. [Google Scholar] [CrossRef] [PubMed]
- Hadad, S.; Hamrahjoo, M.; Dehghani, E.; Salami-Kalajahi, M.; Eliseeva, S.N.; Moghaddam, A.R.; Roghani-Mamaqani, H. Cellulose-based solid and gel polymer electrolytes with super high ionic conductivity and charge capacity for high performance lithium ion batteries. Sustain. Mater. Technol. 2022, 33, e00503. [Google Scholar] [CrossRef]
- Khamsanga, S.; Nguyen, M.T.; Yonezawa, T.; Thamyongkit, P.; Pornprasertsuk, R.; Pattananuwat, P.; Tuantranont, A.; Siwamogsatham, S.; Kheawhom, S. MnO2 heterostructure on carbon nanotubes as cathode material for aqueous zinc-ion batteries. Int. J. Mol. Sci. 2020, 21, 4689. [Google Scholar] [CrossRef] [PubMed]
- Poompiew, N.; Jirawatanaporn, N.; Okhawilai, M.; Qin, J.; Román, A.J.; Aumnate, C.; Osswald, T.A.; Potiyaraj, P. 3D-printed polyacrylamide-based hydrogel polymer electrolytes for flexible zinc-ion battery. Electrochim. Acta 2023, 466, 143076. [Google Scholar] [CrossRef]
- Buasri, A.; Ananganjanakit, T.; Peangkom, N.; Khantasema, P.; Pleeram, K.; Lakaeo, A.; Arthnukarn, J.; Loryuenyong, V. A facile route for the synthesis of reduced graphene oxide (RGO) by DVD laser scribing and its applications in the environment-friendly electrochromic devices (ECD). J. Optoelectron. Adv. M 2017, 19, 492–500. [Google Scholar]
- Cruz-Balaz, M.I.; Bósquez-Cáceres, M.F.; Delgado, A.D.; Arjona, N.; Morera Córdova, V.; Álvarez-Contreras, L.; Tafur, J.P. Green energy storage: Chitosan-avocado starch hydrogels for a novel generation of zinc battery electrolytes. Polymers 2023, 15, 4398. [Google Scholar] [CrossRef]
- Liu, C.; Tang, X.; Wang, Y.; Sacci, R.L.; Bras, W.; Keum, J.K.; Chen, X.C. Ionic conductivity enhancement of polymer electrolytes by directed crystallization. ACS Macro Lett. 2022, 11, 595–602. [Google Scholar] [CrossRef]
- Liu, C.; Sacci, R.L.; Sahore, R.; Veith, G.M.; Dudney, N.J.; Chen, X.C. Polyacrylonitrile-based electrolytes: How processing and residual solvent affect ion transport and stability. J. Power Sources 2022, 527, 231165. [Google Scholar] [CrossRef]
- Bao, H.; Pu, W.; Gao, H. Synthesis and characterization of acrylamide/zeolite nanocomposite hydrogels for aqueous zinc-ion batteries. Alex. Eng. J. 2024, 87, 417–423. [Google Scholar] [CrossRef]
- Kao-ian, W.; Mohamad, A.A.; Liu, W.-R.; Pornprasertsuk, R.; Siwamogsatham, S.; Kheawhom, S. Stability enhancement of zinc-ion batteries using non-aqueous electrolytes. Batter. Supercaps 2022, 5, e202100361. [Google Scholar] [CrossRef]
- Wang, M.; Fan, L.; Qin, G.; Hu, X.; Wang, Y.; Wang, C.; Yang, J.; Chen, Q. Flexible and low temperature resistant semi-IPN network gel polymer electrolyte membrane and its application in supercapacitor. J. Membr. Sci. 2020, 597, 117740. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, J.; Qiao, Y.; Xu, H.; Zhang, Z.; Zhang, W.; He, G.; Chen, H. Recent progress in structural modification of polymer gel electrolytes for use in solid-state zinc-ion batteries. Dalton Trans. 2023, 52, 11780–11796. [Google Scholar] [CrossRef]
- Guo, Y.; Lim, G.J.H.; Verma, V.; Cai, Y.; Chua, R.; Nicholas Lim, J.J.; Srinivasan, M. Solid state zinc and aluminum ion batteries: Challenges and opportunities. ChemSusChem 2023, 16, e202202297. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Liu, Z.; Tang, Z.; Liang, G.; Mo, F.; Yang, Q.; Ma, L.; Zhi, C. A Nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn–MnO2 battery with superior shear resistance. Small 2018, 14, 1803978. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chen, S.; Long, C.; Li, X.; Zhao, Y.; Liu, Z.; Huang, Z.; Dong, B.; Zapien, J.A.; Zhi, C. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 2019, 9, 1902446. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C.; Wu, Q.; Xie, W.; Kim, W.-Y.; Lee, S.-Y.; Gwon, J. A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg0.23V2O5·1.0H2O cathode. J. Mater. Chem. A 2020, 8, 18327. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Cho, E.-J.; Maskey, S.; Nguyen, D.-T.; Bae, H.-J. Value-added products from coffee waste: A review. Molecules 2023, 28, 3562. [Google Scholar] [CrossRef]
- Gondim, F.F.; Rodrigues, J.G.P.; Aguiar, V.O.; de Fátima Vieira Marques, M.; Monteiro, S.N. Biocomposites of cellulose isolated from coffee processing by-products and incorporation in poly(butylene adipate-co-terephthalate) (PBAT) matrix: An overview. Polymers 2024, 16, 314. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- Bianchi, S.; Vannini, M.; Sisti, L.; Marchese, P.; Mallegni, N.; Rodríguez, Ó.; Kohnen, S.; Tchoumtchoua, J.; Cinelli, P.; Celli, A. Valorization of coffee silverskin by cascade extraction of valuable biomolecules: Preparation of eco-friendly composites as the ultimate step. Biofuels Bioprod. Bioref. 2024, 18, 524–542. [Google Scholar] [CrossRef]
- Liu, X.; Sun, H.; Leng, X. Coffee silverskin cellulose-based composite film with natural pigments for food packaging: Physicochemical and sensory abilities. Foods 2023, 12, 2839. [Google Scholar] [CrossRef] [PubMed]
- Górska, A.; Brzezińska, R.; Wirkowska-Wojdyła, M.; Bryś, J.; Domian, E.; Ostrowska-Ligęza, E. Application of thermal methods to analyze the properties of coffee silverskin and oil extracted from the studied roasting by-product. Appl. Sci. 2020, 10, 8790. [Google Scholar] [CrossRef]
- Guo, S.; Li, Q.; Huang, J.; Chen, Z.; Ma, D.; Wang, J. High-performance electrochromic device based on poly acrylamide gel polymer electrolyte containing hypromellose. Electrochim. Acta 2024, 476, 143721. [Google Scholar] [CrossRef]
- Abbasi, A.; Xu, Y.; Abouzari-Lotf, E.; Etesami, M.; Khezri, R.; Risse, S.; Kardjilov, N.; Tran, K.V.; Jia, H.; Somwangthanaroj, A.; et al. Phosphonated graphene oxide-modified polyacrylamide hydrogel electrolytes for solid-state zinc-ion batteries. Electrochim. Acta 2022, 435, 141365. [Google Scholar] [CrossRef]
- Xun, Z.; Liu, Y.; Gu, J.; Liu, L.; Huo, P. A biomass-based redox gel polymer electrolyte for improving energy density of flexible supercapacitor. J. Electrochem. Soc. 2019, 166, A2300–A2312. [Google Scholar] [CrossRef]
- Li, H.F.; Han, C.P.; Huang, Y.; Huang, Y.; Zhu, M.S.; Pei, Z.X.; Xue, Q.; Wang, Z.F.; Liu, Z.X.; Tang, Z.J.; et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951. [Google Scholar] [CrossRef]
- Huang, J.Q.; Chi, X.W.; Yang, J.H.; Liu, Y. An ultrastable Na-Zn solid-state hybrid battery enabled by a robust dual-cross-linked polymer electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 17583–17591. [Google Scholar] [CrossRef]
- Rathika, R.; Padmaraj, O.; Suthanthiraraj, S.A. Electrical conductivity and dielectric relaxation behaviour of PEO/PVdF-based solid polymer blend electrolytes for zinc battery applications. Ionics 2017, 24, 243–255. [Google Scholar] [CrossRef]
- Ouajai, S.; Shanks, R.A. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym. Degrad. Stab. 2005, 89, 327–335. [Google Scholar] [CrossRef]
- Alghooneh, A.; Amini, A.M.; Behrouzian, F.; Razavi, S.M.A. Characterisation of cellulose from coffee silverskin. Int. J. Food Prop. 2017, 20, 2830–2843. [Google Scholar] [CrossRef]
- Sung, S.H.; Chang, Y.; Han, J. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr. Polym. 2017, 169, 495–503. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Fan, H.; Ma, L. Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 2022, 14, 205. [Google Scholar] [CrossRef] [PubMed]
- Weng, G.; Yang, X.; Wang, Z.; Xu, Y.; Liu, R. Hydrogel electrolyte enabled high-performance flexible aqueous zinc ion energy storage systems toward wearable electronics. Small 2023, 19, 2303949. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pang, Y.; Liu, J.; Liu, G.; Wang, Y.; Xia, Y. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017, 7, 23494. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Huang, W.-T.; Huang, Y.-T.; Jhang, Y.-N.; Shih, T.-T.; Yılmaz, M.; Deng, M.-J. Evaluation of polymer gel electrolytes for use in MnO2 symmetric flexible electrochemical supercapacitors. Polymers 2023, 15, 3438. [Google Scholar] [CrossRef] [PubMed]
- Sarasini, F.; Tirillò, J.; Zuorro, A.; Maffei, G.; Lavecchia, R.; Puglia, D.; Dominici, F.; Luzi, F.; Valente, T.; Torre, L. Recycling coffee silverskin in sustainable composites based on a poly (butylene adipate-co-terephthalate)/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Ind. Crop. Prod. 2018, 118, 311–320. [Google Scholar] [CrossRef]
- Dominici, F.; García, D.G.; Fombuena, V.; Luzi, F.; Puglia, D.; Torre, L.; Balart, R. Bio-polyethylene-based composites reinforced with alkali and palmitoyl chloride-treated coffee silverskin. Molecules 2019, 24, 3113. [Google Scholar] [CrossRef]
- Kumar, A.; Negi, Y.S.; Choudhary, V.; Bhardwaj, N.K. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J. Mater. Phys. Chem. 2014, 2, 1–8. [Google Scholar] [CrossRef]
- Zuluaga, R.; Putaux, J.L.; Cruz, J.; Vélez, J.; Mondragon, I.; Gañán, P. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 2009, 76, 51–59. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- El Achaby, M.; Fayoud, N.; Figueroa-Espinoza, M.C.; Ben Youcef, H.; Aboulkas, A. New highly hydrated cellulose microfibrils with a tendril helical morphology extracted from agro-waste material: Application to removal of dyes from waste water. RSC Adv. 2018, 8, 5212–5224. [Google Scholar] [CrossRef]
- El Achaby, M.; Ruesgas-Ramón, M.; Fayoud, N.-E.H.; Figueroa-Espinoza, M.C.; Trabadelo, V.; Draoui, K.; Ben Youcef, H. Bio-sourced porous cellulose microfibrils from coffee pulp for wastewater treatment. Cellulose 2019, 26, 3873–3889. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Zhou, L.; He, H.; Jiang, C.; Ma, L.; Yu, P. Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellul. Chem. Technol. 2017, 51, 109–119. [Google Scholar]
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef]
- Dittenber, D.B.; GangaRao, H.V.S. Critical review of recent publications on use of natural composites in infrastructure. Compos. A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Ochoa, D.R.H.; Rojas-Vargas, J.A.; Costa, Y. Characterization of NaOH-treated Colombian silverskin coffee fiber as a composite reinforcement. BioResources 2017, 12, 8803–8812. [Google Scholar] [CrossRef]
- Hao, L.; Wang, P.; Valiyaveettil, S. Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents. Sci. Rep. 2017, 7, 42881. [Google Scholar] [CrossRef]
- Ma, G.; Miao, L.; Dong, Y.; Yuan, W.; Nie, X.; Di, S.; Wang, Y.; Wang, L.; Zhang, N. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 2022, 47, 203–210. [Google Scholar] [CrossRef]
- Yang, J.; Han, C.-R.; Duan, J.-F.; Ma, M.-G.; Zhang, X.-M.; Xu, F.; Sun, R.-C. Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 2013, 20, 227–237. [Google Scholar] [CrossRef]
- Chen, C.; Wang, H.; Li, S.; Fang, L.; Li, D. Reinforcement of cellulose nanofibers in polyacrylamide gels. Cellulose 2017, 24, 5487–5493. [Google Scholar] [CrossRef]
- Zheng, Z.; Shi, W.; Zhou, X.; Zhang, X.; Guo, W.; Shi, X.; Xiong, Y.; Zhu, Y. Agar-based hydrogel polymer electrolyte for high-performance zinc-ion batteries at all climatic temperatures. iScience 2023, 26, 106437. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Han, K.S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Karl, T.; Mueller, K.T.; Liu, J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039–16046. [Google Scholar]
- Ma, D.; He, H.; Huang, X.; Wang, J.; Hu, X. HEC/PAM hydrogel electrolyte toward regulating the surface of zinc negative electrode for inhibited dendrite in zinc-ion batteries. J. Mater. Sci. Mater. Electron. 2024, 35, 140. [Google Scholar] [CrossRef]
- Sun, M.; Ji, G.; Zheng, J. A hydrogel electrolyte with ultrahigh ionic conductivity and transference number benefit from Zn2+ “highways” for dendrite-free Zn-MnO2 battery. Chem. Eng. J. 2023, 463, 142535. [Google Scholar] [CrossRef]
- Li, Z.; Lu, W.; Zhang, N.; Pan, Q.; Chen, Y.; Xu, G.; Zeng, D.; Zhang, Y.; Cai, W.; Yang, M.; et al. Single ion conducting lithium sulfur polymer batteries with improved safety and stability. J. Mater. Chem. A 2018, 6, 14330–14338. [Google Scholar] [CrossRef]
- Chan, C.Y.; Wang, Z.; Li, Y.; Yu, H.; Fei, B.; Xin, J.H. Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries. ACS Appl. Mater. Inter. 2021, 13, 30594–30602. [Google Scholar] [CrossRef] [PubMed]
- Naveed, A.; Yang, H.; Yang, J.; Nuli, Y.; Wang, J. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. 2019, 58, 2760–2764. [Google Scholar] [CrossRef]
- Cao, L.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C.; Chen, L.; Vatamanu, J.; Hu, E.; Hourwitz, M.J.; et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 2021, 16, 902–910. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc dendrite growth and inhibition strategies. Mater. Today Energy 2021, 20, 100692. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Faizan, S.; Shah, L.A.; Bakhtawara; Ye, D.; Ahmad, F.; Khan, M.; Ismail, M. Effects of Cu2+/Zn2+ on the electrochemical performance of polyacrylamide hydrogels as advanced flexible electrode materials. RSC Adv. 2022, 12, 19072–19085. [Google Scholar] [CrossRef]
- Nohara, S.; Wada, H.; Furukawa, N.; Inoue, H.; Morita, M.; Iwakura, C. Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte. Electrochim. Acta 2003, 48, 749–753. [Google Scholar] [CrossRef]
- Hou, G.-M.; Huang, Y.-F.; Ruan, W.-H.; Zhang, M.-Q.; Rong, M.-Z. Hypergrafted nano-silica modified polymer gel electrolyte for high-performance solid-state supercapacitor. J. Solid State Electrochem. 2016, 20, 1903–1911. [Google Scholar] [CrossRef]
- Al-Amin, M.; Islam, S.; Shibly, S.U.A.; Iffat, S. Comparative review on the aqueous zinc-ion batteries (AZIBs) and flexible zinc-ion batteries (FZIBs). Nanomaterials 2022, 12, 3997. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Meng, F.; Zhang, S.; Ping, B.; Li, H.; Yin, B.; Ma, T. CNT@MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery. Carbon Energy 2022, 4, 446–457. [Google Scholar] [CrossRef]
- Chen, S.; Ying, Y.; Ma, L.; Zhu, D.; Huang, H.; Song, L.; Zhi, C. An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat. Commun. 2023, 14, 2925. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, H.; Gao, A.; Ling, J.; Yi, F.; Hao, J.; Li, Q.; Shu, D. Fundamental study on Zn corrosion and dendrite growth in gel electrolyte towards advanced wearable Zn-ion battery. Chem. Eng. J. 2022, 446, 137021. [Google Scholar] [CrossRef]
- Hu, F.; Li, M.; Gao, G.; Fan, H.; Ma, L. The gel-state electrolytes in zinc-ion batteries. Batteries 2022, 8, 214. [Google Scholar] [CrossRef]
- Aruchamy, K.; Ramasundaram, S.; Divya, S.; Chandran, M.; Yun, K.; Oh, T.H. Gel polymer electrolytes: Advancing solid-state batteries for high-performance applications. Gels 2023, 9, 585. [Google Scholar] [CrossRef] [PubMed]
- Muench, S.; Burges, R.; Lex-Balducci, A.; Brendel, J.C.; Jäger, M.; Friebe, C.; Wild, A.; Schubert, U.S. Printable ionic liquid-based gel polymer electrolytes for solid state all-organic batteries. Energy Storage Mater. 2020, 25, 750–755. [Google Scholar] [CrossRef]
- Lei, B.; Li, G.-R.; Chen, P.; Gao, X.-P. A Quasi-solid-state solar rechargeable battery with polyethylene oxide gel electrolyte. ACS Appl. Energy Mater. 2019, 2, 1000–1005. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, X.; Fu, C.; Tu, J.; Tan, Y.; Jiao, S. Room temperature solid state dual-ion batteries based on gel electrolytes. J. Mater. Chem. A 2018, 6, 4313–4323. [Google Scholar] [CrossRef]
GPE | CSC (mg) | AM (g) | Salt (g) | CSC/AM/Salt Weight Ratio |
---|---|---|---|---|
Pure PAM | - | 1.5 | 5.75 | - |
PAM/Cellulose 2.5 | 2.5 | 1.5 | 5.75 | 0.01/6/23 |
PAM/Cellulose 5.0 | 5.0 | 1.5 | 5.75 | 0.01/3/11.50 |
PAM/Cellulose 7.5 | 7.5 | 1.5 | 5.75 | 0.01/2/7.67 |
GPE Composition | Preparation Process | Specific Capacity (mAh/g) | Cyclic Stability | Ionic Conductivity | Reference |
---|---|---|---|---|---|
PAM/CSC | In Situ Polymerization | 37 | 50% After 200 Cycles | 9.10 mS/cm | This Work |
Methacrylate Polymer/BMImTFSI | In Situ Polymerization | 24 | 77% After 1000 Cycles | 0.74 S/cm | [102] |
PEO/LiClO4 | Solution Casting | 8 | 86% After 30 Cycles | 0.39 mS/cm | [103] |
(PVDF-HFP)/LiPF6 | Phase Inversion | 80 | 82% After 1000 Cycles | 2.40 mS/cm | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loryuenyong, V.; Khamsawat, J.; Danwong, P.; Buasri, A.; Pattananuwat, P. Application of Coffee Silverskin Cellulose/Polyacrylamide Gel Polymer Electrolytes for Rechargeable Zinc-Ion Batteries. Sci 2024, 6, 50. https://doi.org/10.3390/sci6030050
Loryuenyong V, Khamsawat J, Danwong P, Buasri A, Pattananuwat P. Application of Coffee Silverskin Cellulose/Polyacrylamide Gel Polymer Electrolytes for Rechargeable Zinc-Ion Batteries. Sci. 2024; 6(3):50. https://doi.org/10.3390/sci6030050
Chicago/Turabian StyleLoryuenyong, Vorrada, Jessada Khamsawat, Panuwit Danwong, Achanai Buasri, and Prasit Pattananuwat. 2024. "Application of Coffee Silverskin Cellulose/Polyacrylamide Gel Polymer Electrolytes for Rechargeable Zinc-Ion Batteries" Sci 6, no. 3: 50. https://doi.org/10.3390/sci6030050
APA StyleLoryuenyong, V., Khamsawat, J., Danwong, P., Buasri, A., & Pattananuwat, P. (2024). Application of Coffee Silverskin Cellulose/Polyacrylamide Gel Polymer Electrolytes for Rechargeable Zinc-Ion Batteries. Sci, 6(3), 50. https://doi.org/10.3390/sci6030050