How Sarcopenia, Muscle Mass, Strength, and Performance Relate to Non-Alcoholic Fatty Liver Disease: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Search Strategy
2.2. Study Selection and Eligibility Criteria
2.3. Data Extraction
3. Results
3.1. Full Papers
3.2. Low Muscle Mass
3.3. Low Muscle Strength
3.4. Low Physical Performance
3.5. Sarcopenia
3.6. Poster Abstracts
First Author (Year) | Diagnosis of NAFLD | Assessment of NAFLD Severity | Assessment of Muscle Mass | Main Results | |
---|---|---|---|---|---|
Method | Parameter | ||||
Moon, JS (2013) [67] | FLI | - | BIA | SMM/weight SMM/VFA (continuous and Q4) | Negative correlation, decreased AOR for SMM/VFA |
Hong, HC (2014) [48] | CT | - | DXA | SMM/weight (Q1) | Increased AOR |
Issa, D (2014) [40] | LB | LB | CT | TPA | Lower TPA in NAFLD, and in NASH-cirrhosis vs. NASH. |
Lee, YH (2015) [68] | HSI (>36), CNS (≥40), LFS (≥−0.640) | BARD (≥2), FIB-4 (≥2.67) | DXA | ASM/weight (<32.2% ♂, 25.5% ♀) | Increased AOR |
Hashimoto, Y (2015) [77] | CAP (>237.8) | - | DXA | SMM/weight (continuous) | Decreased AOR |
Kim, HY (2016) [66] | FLI (≥60) | - | DXA | ASM/weight (continuous) | Lower ASM/weight increased AOR |
Lee, YH (2016) [71] | LFS ≥ −0.640 b | NFS (Q4), FIB-4 (≥2.67), Forns index (Q4) | DXA | ASM/BMI | Decreased AOR for NFS and FIB-4, NS for Forns index |
Poggiogalle E, (2016) [76] | FLI | - | DXA | TrFM/ASM | Positive correlation |
Koo, BK (2017) [36] | LB | LB, LSM (NASH and F ≥ 2) | BIA | ASM/weight (<29.0% ♂, <22.9% ♀) ASM/BMI (<0.789 ♂, <0.512 ♀) | Increased AOR |
Osaka, T (2017) [53] | US b | LSM | BIA | SMM/weight | Inverse correlation. Decreased OR for F ≥ 2 |
Peng, TC (2017) [42] | US | US | BIA | SMM/weight (<37.0% ♂, <28% ♀) SMM/height2 (<10.76 ♂, <6.75 ♀) | Increased AOR for SMM/weight and SMM/weight + gait speed, decreased AOR por SMM/height |
Petta, S (2017) [37] | LB b | LB | BIA | ASM/weight (<37 ♂, <28 ♀) | Increase AOR for grade 3 steatosis, ballooning and fibrosis but not NASH |
Rachakonda, V (2017) a [43] | CT | - | DXA, CT | FFM, FFM/height2, FFM/weight, MMA, MMA/height2, MMA/weight | Higher FFM, FFM/height2, MMA, and MMA/height2. FFM/weight and MMA/weight NS. Resolved vs. persistent NAFLD: NS |
Choe, EK (2018) [54] | US | - | CT | SMA/BMI (<8.37 ♂, 7.47 ♀) | Increased AOR |
Choe, EK (2018) [65] | US | FIB-4 | Physical examination | WCR (T3) | Increased AOR |
Kim, G (2018) a [69] | HSI (>36.0; resolution of NAFLD <30) | - | BIA | ASM/weight ASM/BMI ∆ASM/weight ∆ASM/BMI | Decreased AHR for incident NAFLD and increased AHR for NAFLD resolution |
Shida, T (2018) [61] | US and elevated ALT b | LSM (≥12), CAP (≥260) | BIA | SMM/VFA (Q1) | Increased AOR |
Zhai, Y (2018) [59] | US | - | DXA | ASM/height2 | Low muscle mass and low muscle strength and performance (simultaneously) inversely correlated with NAFLD |
Alferink, LJM (2019) [44] | US | LSM (≥8.0 kPa) | DXA | ASM/weight, ASM/height2 | In normal weight ♀: decreased AOR for ASM/weight and ASM/height2 for NAFLD. In ♀ decreased AOR for ASM/height2 for LSM ≥ 8.0 kPa |
Chen, VL (2019) [45] | CT | - | DXA | ASM/weight | Negative correlation in ♂, NS in ♀. |
Chung, GE (2019) [49] | US | US | BIA | ASM/weight (<29% ♂, <22.9% ♀; and Q1) | Increased AOR |
Debroy, P (2019) [58] | CT | - | DXA | ASM/height2 | ASM/height2 NS |
Gan, D (2019) [50] | US | - | DXA | ASM/weight (<28.64% ♂, <24.12% ♀) | Increased AOR |
Hsing, J C(2019) [70] | FLI (≥60) | - | DXA | ASM/weight (≥29.1 ♂, ≥25.1 ♀) | Decreased AOR |
Kang, MK (2019) [41] | US b | NFS, FIB-4 | BIA | ASM/weight (<29 in ♂, <22.9 in ♀) ASM/BMI (<0.789 in ♂, <0.512 in ♀) | Increased AOR |
Lee, MJ (2019) a [46] | US | - | BIA | ∆ASM, ∆ASM/weight (T3) | Increased AOR for ∆AMS. Higher loss of ASM/weight in NAFLD |
Mizuno, N (2019) a [39] | LB b | LB, ∆ALT (decrease) | BIA | SMM/height2, SMM/FM | Baseline: lower SMM/FM for NASH than simple steatosis, SMM/height2 NS, fibrosis NS. Follow-up: SMM/FM with increased AOR for decrease in ALT |
Oshida, N (2019) [55] | US | - | BIA | ASM/BMI, ASM/height2 | Lower ASM/BMI and higher ASM/height2 in NAFLD |
Seko, Y (2019) a [38] | LB b | LB, ∆ALT (decrease > 30%) | BIA | ASM/BMI, ASM/FM, ASM/height2 | Baseline: higher ASM/BMI and ASM/FM in F < 2 and NAS < 6, NS for ASMI/height2. Follow-up: ∆ASM/FM increased AOR for ALT decreased, ∆ASM/BMI NS |
Seo, DH (2019) [47] | US | US | BIA | ASM/weight (<29.0% ♂, <22.9% ♀) ASM/BMI (<0.789 ♂, <0.512 ♀) | Increased AOR in ♂, NS in ♀. Higher proportion of moderate-to-severe NALFD in low ASM/weight |
Shida, T a [62] | US b | LSM, CAP | BIA | ∆SMM/VFA | Decreased CAP in improved SMM/VFA, ∆LSM NS |
Su, X (2019) [60] | US | - | BIA | ASM/VFA (T1) | ♂ increased OR (not AOR), ♀ increased AOR |
Wijarnpreecha, K (2019) [51] | US | NFS (>0.676 or >0.12 if ≥65 y) | BIA | SMM/weight (<37.0% in ♂, <28.0% in ♀) | Increased AOR |
Zhang, Y (2019) [52] | 1H MRS | - | DXA | ASM/weight SMM/weight (continuous) | Negative correlation for all |
Hyun Kim, K (2020) [57] | US | CAP, LSM | BIA | ASM/BMI (<0.789 ♂, <0.521 ♀) | Higher prevalence of low ASM/BMI in NAFLD vs. CHB. Higher LSM in low ASM/BMI. CAP NS |
Tanaka, M (2020) [56] | US | - | CT | SMA/BMI | Decreased AOR in ♂, NS in ♀ |
First Author (Year) | Diagnosis of NAFLD | Assessment of NAFLD Severity | Assessment of Muscle Strength and/or Performance | Main Results |
---|---|---|---|---|
Peng, TC (2017) [42] | US | US | Gait speed (<0.8 m/s) | Increased AOR for SMM/weight + gait speed, NS AOR (but increased OR) for gait speed |
Lee, K (2018) [72] | HSI (>36.0) | - | HGS/BMI (1SD decrease, Q1) | Increased AOR |
Zhai, Y (2018) [59] | US | - | HGS (<26 ♂, <18 ♀), Gait speed (<0.8 m/s) | Low muscle mass and low muscle strength and performance (simultaneously) inversely correlated with NAFLD |
Alferink, LJM (2019) [44] | US | LSM (≥8.0 kPa) | HGS, Gait speed | In normal weight ♀: lower HGS in NAFLD. NS for gait speed |
Chen, VL (2019) [45] | CT | - | HGS, KES | Lower HGS in NAFLD in ♂, NS in ♀. KES NS |
Cruz, JF (2019) [64] | US | US | EFS/BMI, KES/BMI | Inverse relationship with NAFLD. Lower EFS/BMI and KES/BMI in grade 3 steatosis |
Debroy, P (2019) [58] | CT | - | HGS/weight (<25th percentile, 25–50th percentile) | Low HGS/weight increased AOR. |
Gan, D (2019) [50] | US | - | HGS/weight (<51.26% ♂, <35.38% ♀) | Increased AOR |
Kim, B-J (2019) [73] | HSI (per unit increase) | - | HGS (♂ <28.9, ♀ <16.8) | Increased AOR |
Oshida, N (2019) [55] | US | - | HGS, KES | Lower KES (in <60 y) in NAFLD. KES in >60 y and HGS NS |
Zhang, Y (2019) [52] | 1H MRS | - | HGS/weight, KES/weight, EFS/weight | Negative correlation for all except for EFS/weight (NS) |
Hao, L (2020) [63] | US | - | HGS/weight | Decreased AOR |
Kang, S (2020) [74] | HSI (>36.0) | - | HGS/BMI (Q1) | Increased AOR |
Park, SH (2020) [75] | LFS (>−0.640) | FIB-4, NFS | HGS/BMI (Q4) | Decreased AOR for NAFLD. HGS/BMI quartiles showed inverse relationships with FIB-4 and NFS score quartiles |
First Author (Year) | Diagnosis of NAFLD | Assessment of NAFLD Severity | Assessment of Muscle Mass | Main Results | |
---|---|---|---|---|---|
Method | Parameter | ||||
Tsien, C (2012) [78] | LB | LB | CT | TPA | Lower TPA in NASH and NASH cirrhosis than controls or steatosis. Fibrosis and lobular inflammation inversely correlated with TPA. |
Choi, YJ (2013) [79] | US | - | BIA | SMM/weight (Q1) | Increased AOR |
Yamaguchi, A (2015) [80] | CAP a | LSM (≥9.0) | BIA | SMM/weight | Lower SMM/weight |
Joo, SK (2016) [81] | LB a | LB | DXA | ASM/weight | Decreasing ASM/weight with increasing fibrosis |
Kim, W (2016) [82] | LB | LB | BIA | ASM/weight (Q1) | Lower ASM/weight in NAFLD. Increased AOR for NASH |
Shen, H (2016) [83] | US | - | BIA | SMM/height2 (≤10.75% ♂, ≤6.75 ♀) | Decreased OR, NS AOR |
Kallwitz, ER (2017) [84] | FLI, NFLS | NFS | NR | ASM/BMI | Increased AOR for every 1SD decrease |
Kapuria, D (2018) [85] | LB a | LB | CT | TPA/height2 | Higher TPA/height2 in advanced steatosis, AOR NS. Fibrosis and NASH NS |
Kwanten, WJ (2018) [86] | LB | LB | BIA, CT | Muscle mass b/weight (<2SD below reference) | Low muscle mass more prevalent in NAFLD, and in ≥F2 vs. <F2 vs. NAFL |
Yerragorla, P (2018) [87] | LB | - | CT | SMA | Lower SMA in NAFLD |
Gerber, L (2019) [88] | US-FLI | - | DXA | ASM/BMI (<0.789 ♂, <0.512 ♀) | Higher prevalence of low ASM/BMI in NAFLD |
Longitudinal Studies | ||||||||
First Author (Year) | Selection | Comparability | Outcome | |||||
Representativeness of the Exposed Cohort a | Selection of the Non-Exposed Cohort b | Ascertainment of Exposure c | Demonstration That Outcome of Interest Was Not Present at Start of Study d | Comparability of Cohorts e | Assessment of Outcome f | Was Follow-Up Long Enough for Outcomes to Occur g | Adequacy of Follow Up of Cohorts h | |
Rachakonda, V (2017) [43] | * | * | * | * | 0 | * | * | 0 |
Kim, G (2018) [69] | * | * | * | * | ** | * | * | * |
Lee, MJ (2019) [46] | * | * | * | * | ** | * | * | * |
Mizuno, N (2019) [39] | * | * | * | * | ** | * | * | * |
Seko, Y (2019) [38] | * | * | * | * | ** | * | * | * |
Shida, T (2019) [62] | * | * | * | * | 0 | * | * | * |
Cross-Sectional Studies | ||||||||
Authors | Selection | Comparability | Outcome | |||||
Representativeness of the Sample i | Sample Size j | Non-Respondents k | Ascertainment of the Exposure l | Comparability of Subjects in Different Outcome Groups m | Assessment of Outcome n | Statistical Test o | ||
Tsien, C (2012) [78] | 0 | 0 | 0 | ** | 0 | * | 0 | |
Choi, YJ (2013) [79] | * | * | 0 | ** | ** | * | * | |
Moon, JS (2013) [67] | * | * | 0 | ** | ** | * | * | |
Hong, HC (2014) [48] | * | * | 0 | ** | ** | * | * | |
Issa, D (2014) [40] | 0 | 0 | 0 | ** | 0 | * | 0 | |
Lee, YH (2015) [68] | * | */0 p | 0 | ** | **/0 p | * | * | |
Yamaguchi, A (2015) [80] | 0 | 0 | 0 | ** | 0 | * | 0 | |
Hashimoto, Y (2015) [77] | * | * | 0 | ** | ** | * | * | |
Joo, SK (2016) [81] | * | 0 | 0 | ** | 0 | * | 0 | |
Kim, HY (2016) [66] | * | * | 0 | ** | ** | * | * | |
Kim, W (2016) [82] | * | * | 0 | ** | **/0 p | * | */0 p | |
Lee, YH (2016) [71] | * | * | 0 | ** | ** | * | * | |
Poggiogalle E (2016) [76] | * | * | 0 | * | ** | * | * | |
Shen, H (2016) [83] | * | 0 | 0 | ** | 0 | * | * | |
Kallwitz, ER (2017) [84] | * | 0 | 0 | ** | 0 | * | 0 | |
Koo, BK (2017) [36] | * | 0 | 0 | ** | ** | * | * | |
Osaka, T (2017) [53] | * | 0 | 0 | ** | ** | * | * | |
Peng, TC (2017) [42] | * | * | 0 | ** | ** | * | * | |
Petta, S (2017) [37] | * | * | 0 | ** | **/* p | * | * | |
Choe, EK (2018a) [54] | * | * | 0 | ** | ** | * | * | |
Choe, EK (2018b) [65] | * | * | 0 | * | ** | * | * | |
Kapuria, D (2018) [85] | * | 0 | 0 | ** | ** | * | 0 | |
Kwanten, WJ (2018) [86] | * | * | 0 | ** | 0 | * | * | |
Lee, K (2018) [72] | * | * | 0 | ** | ** | * | * | |
Shida, T (2018) [61] | * | * | 0 | * | ** | * | * | |
Yerragorla, P (2018) [87] | * | 0 | 0 | ** | 0 | * | 0 | |
Zhai, Y (2018) [59] | * | * | 0 | ** | ** | * | * | |
Alferink, LJM (2019) [44] | * | * | 0 | ** | ** | * | */0 p | |
Chen, VL (2019) [45] | * | * | 0 | ** | **/0 p | * | */0 p | |
Chung, GE (2019) [49] | * | * | 0 | ** | ** | * | * | |
Cruz, JF (2019) [64] | * | * | 0 | ** | **/0 p | * | 0 | |
Debroy, P (2019) [58] | * | 0 | 0 | ** | **/0 p | * | */0 p | |
Gan, D (2019) [50] | * | * | 0 | ** | ** | * | * | |
Gerber, L (2019) [88] | * | * | 0 | ** | ** | * | 0 | |
Hsing, JC (2019) [70] | * | * | 0 | ** | ** | * | * | |
Kang, MK (2019) [41] | * | * | 0 | ** | ** | * | * | |
Kim, B-J (2019) [73] | * | * | 0 | ** | ** | * | * | |
Oshida, N (2019) [55] | * | 0 | 0 | ** | 0 | * | 0 | |
Seo, DH (2019) [47] | * | * | 0 | ** | **/0 p | * | * | |
Su, X (2019) [60] | * | * | 0 | ** | ** | * | * | |
Wijarnpreecha, K (2019) [51] | * | * | 0 | ** | ** | * | * | |
Zhang, Y (2019) [52] | * | * | 0 | ** | * | * | * | |
Hao, L (2020) [63] | * | * | 0 | ** | * | * | * | |
Hyun Kim, K (2020) [57] | * | * | 0 | ** | 0 | * | 0 | |
Kang, S (2020) [74] | * | 0 | 0 | ** | ** | * | * | |
Park, SH (2020) [75] | * | * | 0 | ** | **/0 p | * | */0 p | |
Tanaka, M (2020) [56] | * | * | 0 | ** | ** | * | * |
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, S.; Huang, J.; Zhu, Y.; Lin, S. Validation of five hepatic steatosis algorithms in metabolic-associated fatty liver disease: A population based study. J. Gastroenterol. Hepatol. 2022, 37, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Mundi, M.S.; Velapati, S.; Patel, J.; Kellogg, T.A.; Abu Dayyeh, B.K.; Hurt, R.T. Evolution of NAFLD and Its Management. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2020, 35, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Sheka, A.C.; Adeyi, O.; Thompson, J.; Hameed, B.; Crawford, P.A.; Ikramuddin, S. Nonalcoholic Steatohepatitis: A Review. JAMA 2020, 323, 1175–1183. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Chalasani, N. Non-invasive assessment of non-alcoholic fatty liver disease: Clinical prediction rules and blood-based biomarkers. J. Hepatol. 2018, 68, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- Bay, M.L.; Pedersen, B.K. Muscle-Organ Crosstalk: Focus on Immunometabolism. Front. Physiol. 2020, 11, 567881. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Messina, C.; Fusco, S.; Gazzotti, S.; Albano, D.; Bonaccorsi, G.; Guglielmi, G.; Bazzocchi, A. DXA beyond bone mineral density and the REMS technique: New insights for current radiologists practice. Radiol. Med. 2024, 129, 1224–1240. [Google Scholar] [CrossRef]
- Liu, D.; Wang, S.; Liu, S.; Wang, Q.; Che, X.; Wu, G. Frontiers in sarcopenia: Advancements in diagnostics, molecular mechanisms, and therapeutic strategies. Mol. Asp. Med. 2024, 97, 101270. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.S.; Munk, T.; Knudsen, A.W.; Beck, A.M. Concordance between changes in calf circumference and muscle mass exists: A narrative literature review. Clin. Nutr. ESPEN 2024, 59, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Güner, M.; Öztürk, Y.; Ceylan, S.; Okyar Baş, A.; Koca, M.; Balci, C.; Doğu, B.B.; Cankurtaran, M.; Halil, M.G. Evaluation of waist-to-calf ratio as a diagnostic tool for sarcopenic obesity: A cross-sectional study from a geriatric outpatient clinic. Eur. Geriatr. Med. 2024. [Google Scholar] [CrossRef]
- Lai, Z.; Wu, G.; Yang, Y.; Chen, L.; Lin, H. Interactive effects of physical activity and sarcopenia on incident ischemic heart disease: Results from a nation-wide cohort study. Atherosclerosis 2024, 388, 117396. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef]
- Sinclair, A.J.; Abdelhafiz, A.H.; Rodriguez-Manas, L. Frailty and sarcopenia—Newly emerging and high impact complications of diabetes. J. Diabetes Its Complicat. 2017, 31, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Bone, A.E.; Hepgul, N.; Kon, S.; Maddocks, M. Sarcopenia and frailty in chronic respiratory disease. Chronic Respir. Dis. 2017, 14, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Moorthi, R.N.; Avin, K.G. Clinical relevance of sarcopenia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2017, 26, 219–228. [Google Scholar] [CrossRef]
- Tarantino, G.; Sinatti, G.; Citro, V.; Santini, S.J.; Balsano, C. Sarcopenia, a condition shared by various diseases: Can we alleviate or delay the progression? Intern. Emerg. Med. 2023, 18, 1887–1895. [Google Scholar] [CrossRef]
- Rossi, F.E.; Lira, F.S.; Silva, B.S.A.; Freire, A.; Ramos, E.M.C.; Gobbo, L.A. Influence of skeletal muscle mass and fat mass on the metabolic and inflammatory profile in sarcopenic and non-sarcopenic overfat elderly. Aging Clin. Exp. Res. 2019, 31, 629–635. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, S.; Gao, T.; Zhong, F.; Cai, J.; Sun, Y.; Ma, A. Association between Sarcopenia and Metabolic Syndrome in Middle-Aged and Older Non-Obese Adults: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Feng, X.; Zhou, J.; Gong, H.; Xia, S.; Wei, Q.; Hu, X.; Tao, R.; Li, L.; Qian, F.; et al. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci. Rep. 2016, 6, 38937. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Meigs, J.B. Ectopic fat and cardiometabolic and vascular risk. Int. J. Cardiol. 2013, 169, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Eliades, M.; Spyrou, E.; Agrawal, N.; Lazo, M.; Brancati, F.L.; Potter, J.J.; Koteish, A.A.; Clark, J.M.; Guallar, E.; Hernaez, R. Meta-analysis: Vitamin D and non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2013, 38, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Halfon, M.; Phan, O.; Teta, D. Vitamin D: A review on its effects on muscle strength, the risk of fall, and frailty. BioMed Res. Int. 2015, 2015, 953241. [Google Scholar] [CrossRef]
- Kim, Y.J.; Tamadon, A.; Park, H.T.; Kim, H.; Ku, S.Y. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos. Sarcopenia 2016, 2, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Carias, S.; Castellanos, A.L.; Vilchez, V.; Nair, R.; Dela Cruz, A.C.; Watkins, J.; Barrett, T.; Trushar, P.; Esser, K.; Gedaly, R. Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. J. Gastroenterol. Hepatol. 2016, 31, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.; Lee, E.Y.; Kim, C.O. Gamma-glutamyl transferase is associated with sarcopenia and sarcopenic obesity in community-dwelling older adults: Results from the Fifth Korea National Health and Nutrition Examination Survey, 2010–2011. Endocr. J. 2015, 62, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Montano-Loza, A.J. Clinical relevance of sarcopenia in patients with cirrhosis. World J. Gastroenterol. 2014, 20, 8061–8071. [Google Scholar] [CrossRef]
- Lucero, C.; Verna, E.C. The Role of Sarcopenia and Frailty in Hepatic Encephalopathy Management. Clin. Liver Dis. 2015, 19, 507–528. [Google Scholar] [CrossRef] [PubMed]
- Mazurak, V.C.; Tandon, P.; Montano-Loza, A.J. Nutrition and the transplant candidate. Liver Transplant. Off. Publ. Am. Assoc. Study Liver Dis. Int. Liver Transplant. Soc. 2017, 23, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Flato, U.A.P.; Tofano, R.J.; Goulart, R.A.; Guiguer, E.L.; Detregiachi, C.R.P.; Buchaim, D.V.; Araújo, A.C.; Buchaim, R.L.; Reina, F.T.R.; et al. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int. J. Mol. Sci. 2020, 21, 3607. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, L.; You, W.; Shan, T. Myokines mediate the cross talk between skeletal muscle and other organs. J. Cell. Physiol. 2020, 236, 2393–2412. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.K.; Kim, D.; Joo, S.K.; Kim, J.H.; Chang, M.S.; Kim, B.G.; Lee, K.L.; Kim, W. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J. Hepatol. 2017, 66, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Petta, S.; Ciminnisi, S.; Di Marco, V.; Cabibi, D.; Camma, C.; Licata, A.; Marchesini, G.; Craxi, A. Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2017, 45, 510–518. [Google Scholar] [CrossRef]
- Seko, Y.; Mizuno, N.; Okishio, S.; Takahashi, A.; Kataoka, S.; Okuda, K.; Furuta, M.; Takemura, M.; Taketani, H.; Umemura, A.; et al. Clinical and pathological features of sarcopenia-related indices in patients with non-alcoholic fatty liver disease. Hepatol. Res. Off. J. Jpn. Soc. Hepatol. 2019, 49, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, N.; Seko, Y.; Kataoka, S.; Okuda, K.; Furuta, M.; Takemura, M.; Taketani, H.; Hara, T.; Umemura, A.; Nishikawa, T.; et al. Increase in the skeletal muscle mass to body fat mass ratio predicts the decline in transaminase in patients with nonalcoholic fatty liver disease. J. Gastroenterol. 2019, 54, 160–170. [Google Scholar] [CrossRef]
- Issa, D.; Alkhouri, N.; Tsien, C.; Shah, S.; Lopez, R.; McCullough, A.; Dasarathy, S. Presence of sarcopenia (muscle wasting) in patients with nonalcoholic steatohepatitis. Hepatology 2014, 60, 428–429. [Google Scholar] [CrossRef]
- Kang, M.K.; Park, J.G.; Lee, H.J.; Kim, M.C. Association of low skeletal muscle mass with advanced liver fibrosis in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2019, 34, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.C.; Wu, L.W.; Chen, W.L.; Liaw, F.Y.; Chang, Y.W.; Kao, T.W. Nonalcoholic fatty liver disease and sarcopenia in a Western population (NHANES III): The importance of sarcopenia definition. Clin. Nutr. 2017, 38, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, V.; Wills, R.; DeLany, J.P.; Kershaw, E.E.; Behari, J. Differential Impact of Weight Loss on Nonalcoholic Fatty Liver Resolution in a North American Cohort with Obesity. Obesity 2017, 25, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Alferink, L.J.M.; Trajanoska, K.; Erler, N.S.; Schoufour, J.D.; de Knegt, R.J.; Ikram, M.A.; Janssen, H.L.A.; Franco, O.H.; Metselaar, H.J.; Rivadeneira, F.; et al. Nonalcoholic Fatty Liver Disease in The Rotterdam Study: About Muscle Mass, Sarcopenia, Fat Mass, and Fat Distribution. J. Bone Miner. Res. 2019, 34, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.L.; Wright, A.P.; Halligan, B.; Chen, Y.; Du, X.; Handelman, S.K.; Long, M.T.; Kiel, D.P.; Speliotes, E.K. Body Composition and Genetic Lipodystrophy Risk Score Associate With Nonalcoholic Fatty Liver Disease and Liver Fibrosis. Hepatol. Commun. 2019, 3, 1073–1084. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, E.H.; Bae, S.J.; Kim, G.A.; Park, S.W.; Choe, J.; Jung, C.H.; Lee, W.J.; Kim, H.K. Age-Related Decrease in Skeletal Muscle Mass Is an Independent Risk Factor for Incident Nonalcoholic Fatty Liver Disease: A 10-Year Retrospective Cohort Study. Gut Liver 2019, 13, 67–76. [Google Scholar] [CrossRef]
- Seo, D.H.; Lee, Y.H.; Park, S.W.; Choi, Y.J.; Huh, B.W.; Lee, E.; Huh, K.B.; Kim, S.H.; Cha, B.S. Sarcopenia is associated with non-alcoholic fatty liver disease in men with type 2 diabetes. Diabetes Metab. 2019, 46, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.C.; Hwang, S.Y.; Choi, H.Y.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Relationship between sarcopenia and nonalcoholic fatty liver disease: The Korean Sarcopenic Obesity Study. Hepatology 2014, 59, 1772–1778. [Google Scholar] [CrossRef]
- Chung, G.E.; Kim, M.J.; Yim, J.Y.; Kim, J.S.; Yoon, J.W. Sarcopenia Is Significantly Associated with Presence and Severity of Nonalcoholic Fatty Liver Disease. J. Obes. Metab. Syndr. 2019, 28, 129–138. [Google Scholar] [CrossRef]
- Gan, D.; Wang, L.; Jia, M.; Ru, Y.; Ma, Y.; Zheng, W.; Zhao, X.; Yang, F.; Wang, T.; Mu, Y.; et al. Low muscle mass and low muscle strength associate with nonalcoholic fatty liver disease. Clin. Nutr. 2019, 39, 1124–1130. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Kim, D.; Raymond, P.; Scribani, M.; Ahmed, A. Associations between sarcopenia and nonalcoholic fatty liver disease and advanced fibrosis in the USA. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1121–1128. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, D.; Wang, R.; Fu, W.; Zhang, S. Relationship between Muscle Mass/Strength and Hepatic Fat Content in Post-Menopausal Women. Medicina 2019, 55, 629. [Google Scholar] [CrossRef] [PubMed]
- Osaka, T.; Hashimoto, Y.; Fukuda, T.; Tanaka, M.; Yamazaki, M.; Fukui, M. Relationship between skeletal muscle mass and hepatic fibrosis in patients with type 2 diabetes. Diabetes Metab. 2017, 43, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.K.; Kang, H.Y.; Park, B.; Yang, J.I.; Kim, J.S. The Association between Nonalcoholic Fatty Liver Disease and CT-Measured Skeletal Muscle Mass. J. Clin. Med. 2018, 7, 310. [Google Scholar] [CrossRef]
- Oshida, N.; Shida, T.; Oh, S.; Kim, T.; Isobe, T.; Okamoto, Y.; Kamimaki, T.; Okada, K.; Suzuki, H.; Ariizumi, S.-I.; et al. Urinary Levels of Titin-N Fragment, a Skeletal Muscle Damage Marker, are Increased in Subjects with Nonalcoholic Fatty Liver Disease. Sci. Rep. 2019, 9, 19498. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Okada, H.; Hashimoto, Y.; Kumagai, M.; Nishimura, H.; Oda, Y.; Fukui, M. Relationship between nonalcoholic fatty liver disease and muscle quality as well as quantity evaluated by computed tomography. Liver Int. 2020, 40, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Hyun Kim, K.; Kyung Kim, B.; Yong Park, J.; Young Kim, D.; Hoon Ahn, S.; Han, K.-H.; Kim, S.U. Sarcopenia assessed using bioimpedance analysis is associated independently with significant liver fibrosis in patients with chronic liver diseases. Eur. J. Gastroenterol. Hepatol. 2020, 32, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Debroy, P.; Lake, J.E.; Malagoli, A.; Guaraldi, G. Relationship between Grip Strength and Nonalcoholic Fatty Liver Disease in Men Living with HIV Referred to a Metabolic Clinic. J. Frailty Aging 2019, 8, 150–153. [Google Scholar] [CrossRef]
- Zhai, Y.; Xiao, Q.; Miao, J. The Relationship between NAFLD and Sarcopenia in Elderly Patients. Can. J. Gastroenterol. Hepatol. 2018, 2018, 5016091. [Google Scholar] [CrossRef]
- Su, X.; Xu, J.; Zheng, C. The relationship between non-alcoholic fatty liver and skeletal muscle mass to visceral fat area ratio in women with type 2 diabetes. BMC Endocr. Disord. 2019, 19, 76. [Google Scholar] [CrossRef]
- Shida, T.; Akiyama, K.; Oh, S.; Sawai, A.; Isobe, T.; Okamoto, Y.; Ishige, K.; Mizokami, Y.; Yamagata, K.; Onizawa, K.; et al. Skeletal muscle mass to visceral fat area ratio is an important determinant affecting hepatic conditions of non-alcoholic fatty liver disease. J. Gastroenterol. 2018, 53, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Shida, T.; Oshida, N.; Oh, S.; Okada, K.; Shoda, J. Progressive reduction in skeletal muscle mass to visceral fat area ratio is associated with a worsening of the hepatic conditions of non-alcoholic fatty liver disease. Diabetes Metab. Syndr. Obes. 2019, 12, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Wang, Z.; Wang, Y.; Wang, J.; Zeng, Z. Association between Cardiorespiratory Fitness, Relative Grip Strength with Non-Alcoholic Fatty Liver Disease. Med. Sci. Monit. 2020, 26, e923015. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.F.; Ferrari, Y.A.C.; Machado, C.P.; Santana, N.N.; Mota, A.V.H.; Lima, S.O. Sarcopenia and severity of non-alcoholic fatty liver disease. Arq. Gastroenterol. 2019, 56, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.Y.; Lee, Y.H.; Choi, Y.J.; Huh, B.W.; Lee, B.W.; Kim, S.K.; Kang, E.S.; Cha, B.S.; Lee, E.J.; Huh, K.B.; et al. Waist-to-calf circumstance ratio is an independent predictor of hepatic steatosis and fibrosis in patients with type 2 diabetes. J. Gastroenterol. Hepatol. 2018, 33, 1082–1091. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, C.W.; Park, C.H.; Choi, J.Y.; Han, K.; Merchant, A.T.; Park, Y.M. Low skeletal muscle mass is associated with non-alcoholic fatty liver disease in Korean adults: The Fifth Korea National Health and Nutrition Examination Survey. Hepatobiliary Pancreat. Dis. Int. HBPD INT 2016, 15, 39–47. [Google Scholar] [CrossRef]
- Moon, J.S.; Yoon, J.S.; Won, K.C.; Lee, H.W. The role of skeletal muscle in development of nonalcoholic Fatty liver disease. Diabetes Metab. J. 2013, 37, 278–285. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jung, K.S.; Kim, S.U.; Yoon, H.J.; Yun, Y.J.; Lee, B.W.; Kang, E.S.; Han, K.H.; Lee, H.C.; Cha, B.S. Sarcopaenia is associated with NAFLD independently of obesity and insulin resistance: Nationwide surveys (KNHANES 2008–2011). J. Hepatol. 2015, 63, 486–493. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S.E.; Lee, Y.B.; Jun, J.E.; Ahn, J.; Bae, J.C.; Jin, S.M.; Hur, K.Y.; Jee, J.H.; Lee, M.K.; et al. Relationship Between Relative Skeletal Muscle Mass and Nonalcoholic Fatty Liver Disease: A 7-Year Longitudinal Study. Hepatology 2018, 68, 1755–1768. [Google Scholar] [CrossRef]
- Hsing, J.C.; Nguyen, M.H.; Yang, B.; Min, Y.; Han, S.S.; Pung, E.; Winter, S.J.; Zhao, X.; Gan, D.; Hsing, A.W.; et al. Associations Between Body Fat, Muscle Mass, and Nonalcoholic Fatty Liver Disease: A Population-Based Study. Hepatol. Commun. 2019, 3, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Kim, S.U.; Song, K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Han, K.H. Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008–2011). Hepatology 2016, 63, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. Relationship Between Handgrip Strength and Nonalcoholic Fatty Liver Disease: Nationwide Surveys. Metab. Syndr. Relat. Disord. 2018, 16, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-J.; Ahn, S.H.; Lee, S.H.; Hong, S.; Hamrick, M.W.; Isales, C.M.; Koh, J.-M. Lower hand grip strength in older adults with non-alcoholic fatty liver disease: A nationwide population-based study. Aging 2019, 11, 4547–4560. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Moon, M.K.; Kim, W.; Koo, B.K. Association between muscle strength and advanced fibrosis in non-alcoholic fatty liver disease: A Korean nationwide survey. J. Cachexia Sarcopenia Muscle 2020, 11, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, D.J.; Plank, L.D. Association of grip strength with non-alcoholic fatty liver disease: Investigation of the roles of insulin resistance and inflammation as mediators. Eur. J. Clin. Nutr. 2020, 74, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Poggiogalle, E.; Lubrano, C.; Gnessi, L.; Mariani, S.; Lenzi, A.; Donini, L.M. Fatty Liver Index Associates with Relative Sarcopenia and GH/IGF-1 Status in Obese Subjects. PLoS ONE 2016, 11, e0145811. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Osaka, T.; Fukuda, T.; Tanaka, M.; Yamazaki, M.; Fukui, M. The relationship between hepatic steatosis and skeletal muscle mass index in men with type 2 diabetes. Endocr. J. 2016, 63, 877–884. [Google Scholar] [CrossRef]
- Tsien, C.; Dasarathy, J.; Shah, S.; Periyalwar, P.; Alkhouri, N.; Hawkins, C.A.; Khiyami, A.; McCullough, A.J.; Dasarathy, S. Severity of non alcoholic fatty liver disease related to reduced skeletal muscle mass. Hepatology 2012, 56, 881A. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lim, J.S.; Jee, S.H.; Lee, E.J.; Lee, S.H.; Huh, B.W.; Huh, K.B. Low relative skeletal muscle mass is independently associated with NAFLD in Korean women with type 2 diabetes. Diabetologia 2013, 56, S527. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Ebinuma, H.; Nakamoto, N.; Miyake, R.; Shiba, S.; Taniki, N.; Wakayama, Y.; Chu, P.; Saito, H.; Kanai, T. The Association Between Sarcopenia and Liver Fibrosis Progression in Non-alcoholic Fatty Liver Disease: Assessment by Non-invasive Transient Elastography and Bioelectrical Impedance Body Composition Analyzer. Hepatology 2015, 62, 1252A–1305A. [Google Scholar] [CrossRef]
- Joo, S.K.; Kim, W.; Oh, S. Relationship between Appendicular Sarcopenia and Non-alcoholic Fatty Liver Disease in Korean Population. J. Hepatol. 2016, 64, S496. [Google Scholar] [CrossRef]
- Kim, W.; Koo, B.K.; Joo, S.K.; Kim, J.H.; Park, S.C. Sarcopenia is an Independent Risk Factor for Biopsy-Proven Non-Alcoholic Steatohepatitis. J. Hepatol. 2016, 64, S502. [Google Scholar] [CrossRef]
- Shen, H.; Liangpunsakul, S. Association Between Sarcopenia and Prevalence of Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study From the Third National Health and Nutrition Examination Survey. Gastroenterology 2016, 150, S1143–S1144. [Google Scholar] [CrossRef]
- Kallwitz, E.R.; Bello, S.; Joyce, C.; Adams, W.; Cotler, S. Association of sarcopenia with non-alcoholic fatty liver disease (NAFLD) and fibrosis models in US adults. Hepatology 2017, 66, 891. [Google Scholar]
- Kapuria, D.; Ghomraoui, F.; Brown, P.; Ben-Yakov, G.S.; Kleiner, D.; Rotman, Y. Low Skeletal Muscle Mass is Associated with Advanced Steatosis in Non Alcoholic Fatty Liver Disease. Gastroenterology 2018, 154, S-1176. [Google Scholar] [CrossRef]
- Kwanten, W.J.; de Fré, C.; de Fré, M.; Vonghia, L.; Vanwolleghem, T.; Michielsen, P.P.; Op de Beeck, B.; Verrijken, A.; Dirink, E.; Van Gaal, L.; et al. Sarcopenia Is Less Prevalent in an Obese Population with NAFLD Compared to Patients with Obesity Alone, but Increases with Severity of Disease. Hepatology 2018, 68, 184–1353. [Google Scholar] [CrossRef]
- Yerragorla, P.; Nepal, P.; Nekkalapudi, D.; Andreias, L.; Ahmed, S.; Dabas, R.; Mousavi, A.; Morcos, M.; Matari, H.; Harley, J.; et al. Sarcopenia in Non-Alcoholic Fatty Liver Disease (NAFLD). Gastroenterology 2018, 154, 486–493. [Google Scholar] [CrossRef]
- Gerber, L.; Paik, J.; Deshpande, R.; De Avila, L.; Golabi, P.; Younossi, Z.M. Sarcopenia is associated with mortality in patients with nonalcoholic fatty liver disease. Hepatology 2019, 70, 737A–738A. [Google Scholar] [CrossRef]
- Kim, K.M.; Jang, H.C.; Lim, S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J. Intern. Med. 2016, 31, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Correa-de-Araujo, R.; Addison, O.; Miljkovic, I.; Goodpaster, B.H.; Bergman, B.C.; Clark, R.V.; Elena, J.W.; Esser, K.A.; Ferrucci, L.; Harris-Love, M.O.; et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front. Physiol. 2020, 11, 963. [Google Scholar] [CrossRef] [PubMed]
- Seto, W.K.; Yuen, M.F. Nonalcoholic fatty liver disease in Asia: Emerging perspectives. J. Gastroenterol. 2017, 52, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Deurenberg, P.; Deurenberg-Yap, M.; Guricci, S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes. Rev. An. Off. J. Int. Assoc. Study Obes. 2002, 3, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Zhu, K.F.; Zhou, W.J.; Zhang, Q.; Deng, D.F.; Yang, Y.C.; Lu, W.W.; Xu, J.; Yang, Y.M. Sarcopenia is associated with the presence of nonalcoholic fatty liver disease in Zhejiang Province, China: A cross-sectional observational study. BMC Geriatr. 2021, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Wu, Y.; Chen, J.; Xiang, D.; Li, D. The relationship between muscle mass and fat content in body composition and non-alcoholic fatty liver disease in the Chinese general population: A cross-sectional study. Front. Med. 2024, 11, 1384366. [Google Scholar] [CrossRef] [PubMed]
- Freer, C.L.; George, E.S.; Tan, S.Y.; Abbott, G.; Scott, D.; Daly, R.M. Prevalence of Sarcopenia and Its Defining Components in Non-alcoholic Fatty Liver Disease Varies According to the Method of Assessment and Adjustment: Findings from the UK Biobank. Calcif. Tissue Int. 2024, 114, 592–602. [Google Scholar] [CrossRef]
- Liu, C.; Li, N.; Sheng, D.; Shao, Y.; Qiu, L.; Shen, C.; Liu, Z. Increased visceral fat area to skeletal muscle mass ratio is positively associated with the risk of metabolic dysfunction-associated steatotic liver disease in a Chinese population. Lipids Health Dis. 2024, 23, 104. [Google Scholar] [CrossRef]
- Xu, M.; Lin, Y.; Yang, N.; Li, J.; Li, L.; Ding, H.; Xu, C. Relationship between skeletal muscle mass loss and metabolic dysfunction-associated fatty liver disease among Chinese patients with metabolic dysregulation. Rev. Assoc. Med. Bras. 2024, 70, e20230963. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigor, J.; Monteiro-Soares, M.; Barata, P.; Martins-Mendes, D. How Sarcopenia, Muscle Mass, Strength, and Performance Relate to Non-Alcoholic Fatty Liver Disease: A Systematic Review. Sci 2024, 6, 59. https://doi.org/10.3390/sci6040059
Rigor J, Monteiro-Soares M, Barata P, Martins-Mendes D. How Sarcopenia, Muscle Mass, Strength, and Performance Relate to Non-Alcoholic Fatty Liver Disease: A Systematic Review. Sci. 2024; 6(4):59. https://doi.org/10.3390/sci6040059
Chicago/Turabian StyleRigor, Joana, Matilde Monteiro-Soares, Pedro Barata, and Daniela Martins-Mendes. 2024. "How Sarcopenia, Muscle Mass, Strength, and Performance Relate to Non-Alcoholic Fatty Liver Disease: A Systematic Review" Sci 6, no. 4: 59. https://doi.org/10.3390/sci6040059
APA StyleRigor, J., Monteiro-Soares, M., Barata, P., & Martins-Mendes, D. (2024). How Sarcopenia, Muscle Mass, Strength, and Performance Relate to Non-Alcoholic Fatty Liver Disease: A Systematic Review. Sci, 6(4), 59. https://doi.org/10.3390/sci6040059