Assessing the Antimicrobial Efficacy of Graphene Oxide and Its PEGylated Derivative Against Staphylococcus aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of PEGylated Graphene Oxide (GO-PEG)
2.2. Characterization of GO and GO-PEG
2.3. Antimicrobial Activity Analysis of GO and GO-PEG
3. Results and Discussion
3.1. Characterization of Nanomaterials
3.2. Antimicrobial Potential of GO and GO-PEG
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, J.W.; Chung, K.T. Alexander Fleming and the discovery of penicillin. Adv. Appl. Microbiol. 2001, 49, 163–184. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.O. Comprendiendo la resistencia a antibióticos. Rev. De Investig. Y Educ. En Cienc. De La Salud 2019, 4, 84–89. [Google Scholar] [CrossRef]
- Muñoz, C. Módulo I: Generalidades. Jornada Formativa Sobre la Resistencia a los Antibióticos. Plan Nacional de Resistencias Frente a Antibióticos; Colegio Oficial de Veterinarios de Madrid: Madrid, España, 2017. [Google Scholar]
- Jiménez, M.A.; Galas, M.; Corso, A.; Hormazábal, J.C.; Duarte Valderrama, C.; Salgado Marcano, N.; Ramón-Pardo, P.; Melano, R.G. Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Rev. Panam. Salud. Publica 2019, 43. [Google Scholar]
- Murray, C.J.; Ikuta KSSharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Upreti, N.; Rayamajhee, B.; Sherchan, S.P.; Choudhari, M.K.; Banjara, M.R. Prevalence of methicillin resistant Staphylococcus aureus, multidrug resistant and extended spectrum β-lactamase producing gram negative bacilli causing wound infections at a tertiary care hospital of Nepal. Antimicrob. Resist. Infect. Control 2018, 7, 121. [Google Scholar] [CrossRef]
- Bassetti, M.; Righi, E.; Vena, A.; Graziano, E.; Russo, A.; Peghin, M. Risk stratification and treatment of ICU-acquired pneumonia caused by multidrug-resistant/extensively drug-resistant/pandrug-resistant bacteria. Curr. Opin. Crit. Care 2018, 24, 385–393. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- O’Neill, J.I.M. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist 2014, 20, 1–16. [Google Scholar]
- Armbruster, W.J.; Roberts, T. The political economy of US antibiotic use in animal feed. Food Saf. Econ. Incent. A Safer Food Supply 2018, 293–322. [Google Scholar] [CrossRef]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef]
- Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Li, Y.; Lin, H.; Guo, B.; Du, Y.; Li, X.; Jia, H.; Zhao, X.; Tang, J.; Zhang, L. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology 2013, 24, 105102. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, V.; Bugli, F.; Lauriola, M.C.; Cacaci, M.; Torelli, R.; Ciasca, G.; Conti, C.; Sanguinetti, M.; Papi, M.; De Spirito, M. Bacteria meet graphene: Modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy. ACS Biomater. Sci. Eng. 2017, 3, 619–627. [Google Scholar] [CrossRef]
- Olivi, M.; Alfè, M.; Gargiulo, V.; Valle, F.; Mura, F.; Di Giosia, M.; Rapino, S.; Palleschi, C.; Uccelletti, D.; Fiorito, S. Antimicrobial properties of graphene-like nanoparticles: Coating effect on Staphylococcus aureus. J. Nanoparticle Res. 2016, 18, 1–10. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Mennati, A.; Jafari, S.; Khezri, K.; Adibkia, K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 2015, 5, 19. [Google Scholar]
- Manasrah, A.D.; Laoui, T.; Zaidi, S.J.; Atieh, M.A. Effect of PEG functionalized carbon nanotubes on the enhancement of thermal and physical properties of nanofluids. Exp. Therm. Fluid Sci. 2017, 84, 231–241. [Google Scholar] [CrossRef]
- Zhu, S.; Zhen, H.; Li, Y.; Wang, P.; Huang, X.; Shi, P. PEGylated graphene oxide as a nanocarrier for podophyllotoxin. J. Nanoparticle Res. 2014, 16, 1–11. [Google Scholar] [CrossRef]
- Cheong, Y.K.; Arce, M.P.; Benito, A.; Chen, D.; Luengo Crisostomo, N.; Kerai, L.V.; Rodrígez, G.; Valverde, J.L.; Vadalia, M.; Cerpa-Naranjo, A.; et al. Synergistic antifungal study of PEGylated graphene oxides and copper nanoparticles against Candida albicans. Nanomaterials 2020, 10, 819. [Google Scholar] [CrossRef]
- Marroki, A.; Bousmaha-Marroki, L. Antibiotic Resistance Diagnostic Methods for Pathogenic Bacteria. In Encyclopedia of Infection and Immunity; Elsevier: Amsterdam, The Netherlands, 2022; Volume 4, pp. 320–341. ISBN 9780323903035. [Google Scholar] [CrossRef]
- Deb, A.; Vimala, R. Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2017, 43, 333–342. [Google Scholar] [CrossRef]
- Jose PP, A.; Kala, M.S.; Joseph, A.V.; Kalarikkal, N.; Thomas, S. Reduced graphene oxide/silver nanohybrid as a multifunctional material for antibacterial, anticancer, and SERS applications. Appl. Phys. A 2020, 126, 58. [Google Scholar] [CrossRef]
- Zeer, Q.; Jun, S.; Zhang, Z.; Cao, Y.; Li, J.; Cao, S. PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Mater. Sci. Eng. C 2019, 104, 109889. [Google Scholar] [CrossRef]
- Cerpa-Naranjo, A.; Pérez-Piñeiro, J.; Navajas-Chocarro, P.; Arce, M.P.; Lado-Touriño, I.; Barrios-Bermúdez, N.; Moreno, R.; Rojas-Cervantes, M.L. Rheological properties of different Graphene nanomaterials in biological media. Materials 2022, 15, 3593. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Piñeiro, J.; Sánchez-Cea, F.; Arce, M.P.; Lado-Touriño, I.; Rojas-Cervantes, M.L.; Gilsanz, M.F.; Gallach-Pérez, D.; Blasco, R.; Barrios-Bermúdez, N.; Cerpa-Naranjo, A. Stability Study of Graphene Oxide-Bovine Serum Albumin Dispersions. J. Xenobiotics 2023, 13, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; An, J.; Shi, P.; Ye, N. Determinación de lisozima mediante transferencia de energía por resonancia de fluorescencia basada en óxido de grafeno y polietilenglicol. Anal. Lett. 2016, 50, 148–160. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhang, T.; Jiang, Y.; Liu, X. Synthesis, characterization and cytotoxicity of phosphorylcholine oligomer grafted graphene oxide. Carbon 2014, 71, 166. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, S.; Fang, Y.; Dong, S.Y. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437. [Google Scholar] [CrossRef]
- Serag, E.; Nemr, A.; El-Maghraby, A. Synthesis of Highly Effective Novel Graphene Oxide-Polyethylene Glycol-Polyvinyl Alcohol Nanocomposite Hydrogel For Copper Removal. J. Water Environ. Nanotechnol. 2017, 2, 223–234. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, P.; Mou, Y.; Kang, M.; Liu, M.; Song, L.; Lu, A.; Rong, J. Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage. Polym. Test. 2017, 63, 494–504. [Google Scholar] [CrossRef]
- Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Anal. Chem. 2011, 83, 4453–4488. [Google Scholar] [CrossRef]
- Cerpa, A.; Lado, I.; Quiroga, O.; Moreno, R.; García, R.; Cerdán, S.; Abu-Lail, N.I. Caracterización coloidal y reológica de SWCNT en medios biológicos. Int. J. Smart Nano Mater. 2019, 10, 300–315. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Ren, X.; Tan, X.; Hayat, T.; Alsaedi, A.; Cheng, C.; Chen, C. Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria. Environ. Sci. Nano 2017, 4, 1016–1024. [Google Scholar] [CrossRef]
- Singh, V.; Kumar, V.; Kashyap, S.; Singh, A.V.; Kishore, V.; Sitti, M.; Saxena, P.S.; Srivastava, A. Graphene oxide synergistically enhances antibiotic efficacy in vancomycin-resistant Staphylococcus aureus. ACS Appl. Bio Mater. 2019, 2, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Oves, M.; Rauf, M.A.; Ansari, M.O.; Aslam Parwaz Khan, A.; AQari, H.; Alajmi, M.F.; Sau, S.; Iyer, A.K. Graphene decorated zinc oxide and curcumin to disinfect the methicillin-resistant Staphylococcus aureus. Nanomaterials 2020, 10, 1004. [Google Scholar] [CrossRef] [PubMed]
- Bousiakou, L.G.; Qindeel, R.; Al-Dossary, O.M.; Kalkani, H. Synthesis and characterization of graphene oxide (GO) sheets for pathogen inhibition: Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. J. King Saud Univ.-Sci. 2022, 34, 102002. [Google Scholar] [CrossRef]
- Luc, M. A Comparison of Disc Diffusion and Microbroth Dilution Methods for the Detection of Antibiotic Resistant Subpopulations in Gram Negative bacilli. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2015. [Google Scholar]
- Saeed, S.I.; Vivian, L.; Zalati CS, C.; Sani NI, M.; Aklilu, E.; Mohamad, M.; Noor AA, M.; Muthoosamy, K.; Kamaruzzaman, N.F. Antimicrobial activities of graphene oxide against biofilm and intracellular Staphylococcus aureus isolated from bovine mastitis. BMC Vet. Res. 2023, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Gayathiri, E.; Bharathi, B.; Priya, K. Study of the enumeration of twelve clinical important bacterial populations at 0.5 McFarland standard. Int. J. Creat. Res. Thoughts (IJCRT) 2018, 6, 880–893. [Google Scholar]
- Hui, L.; Piao, J.G.; Auletta, J.; Hu, K.; Zhu, Y.; Meyer, T.; Liu, H.; Yang, L. Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Appl. Mater. Interfaces 2014, 6, 13183–13190. [Google Scholar] [CrossRef]
- Åhman, J.; Matuschek, E.; Kahlmeter, G. EUCAST evaluation of 21 brands of Mueller–Hinton dehydrated media for disc diffusion testing. Clin. Microbiol. Infect. 2020, 26, 1412-e1. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; White, J.C.; Xing, B. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 2014, 48, 9995–10009. [Google Scholar] [CrossRef]
- Bugli, F.; Cacaci, M.; Palmieri, V.; Di Santo, R.; Torelli, R.; Ciasca, G.; Di Vito, M.; Vitali, A.; Conti, C.; Sanguinetti, M.; et al. Curcumin-loaded graphene oxide flakes as an effective antibacterial system against methicillin-resistant Staphylococcus aureus. Interface Focus 2018, 8, 20170059. [Google Scholar] [CrossRef]
- Xia, M.Y.; Xie, Y.; Yu, C.H.; Chen, G.Y.; Li, Y.H.; Zhang, T.; Peng, Q. Graphene-based nanomaterials: The promising active agents for antibiotics-independent antibacterial applications. J. Control. Release 2019, 307, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, J.; Wang, F.; Xiong, Y.; Wu, Y.; Wang, Q.; Weng, J.; Zhang, Z.; Chen, W.; Liu, S. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: Poly (acrylic acid)-functionalization is superior to PEGylation. ACS Nano 2016, 10, 3267–3281. [Google Scholar] [CrossRef]
- Lopez, A.; Liu, J. Covalent and noncovalent functionalization of graphene oxide with DNA for smart sensing. Adv. Intell. Syst. 2020, 2, 2000123. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016, 138, 2064–2077. [Google Scholar] [CrossRef] [PubMed]
- Duch, M.C.; Budinger, G.S.; Liang, Y.T.; Soberanes, S.; Urich, D.; Chiarella, S.E.; Campochiaro, L.A.; Gonzalez, A.; Chandel, N.S.; Hersam, M.C.; et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011, 11, 5201–5207. [Google Scholar] [CrossRef]
- Liu, J.H.; Yang, S.T.; Wang, H.; Chang, Y.; Cao, A.; Liu, Y. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine 2012, 7, 1801–1812. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, M.K.; Kulkarni, P.P.; Sonkar, V.K.; Grácio, J.J.; Dash, D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 2012, 6, 2731–2740. [Google Scholar] [CrossRef]
- Dubey, P.; Gopinath, P. PEGylated graphene oxide-based nanocomposite-grafted chitosan/polyvinyl alcohol nanofiber as an advanced antibacterial wound dressing. RSC Adv. 2016, 6, 69103–69116. [Google Scholar] [CrossRef]
- Zhao, R.; Lv, M.; Li, Y.; Sun, M.; Kong, W.; Wang, L.; Song, S.; Fan, C.; Jia, L.; Qiu, S.; et al. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl. Mater. Interfaces 2017, 9, 15328–15341. [Google Scholar] [CrossRef]
Graphene Oxide (GO) Effects | PEGylated Graphene Oxide (GO-PEG) Effects | |||||
---|---|---|---|---|---|---|
Nanomaterial Concentration | Antimicrobial Activity 1 | Catalase Reaction 2 | Bacterial Viability 3 | Antimicrobial Activity 1 | Catalase Reaction 2 | Bacterial Viability 3 |
32 mg/mL | + | − | − | − | + | + |
16 mg/mL | + | − | − | − | + | + |
8 mg/mL | − | + | + | − | + | + |
4 mg/mL | − | + | + | − | + | + |
2 mg/mL | − | + | + | − | + | + |
1 mg/mL | − | + | + | − | + | + |
0.5 mg/mL | − | + | + | − | + | + |
0.25 mg/mL | − | + | + | − | + | + |
0.125 mg/mL | − | + | + | − | + | + |
0.0625 mg/mL | − | + | + | − | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilsanz-Muñoz, M.F.; Martínez-Martínez, M.; Pérez-Piñeiro, J.; Roldán, M.; Arce, M.P.; Blasco, R.; Rico-San Román, L.; Esperón-Fajardo, F.; Cerpa-Naranjo, A.; Martín-Maldonado, B. Assessing the Antimicrobial Efficacy of Graphene Oxide and Its PEGylated Derivative Against Staphylococcus aureus. Sci 2024, 6, 66. https://doi.org/10.3390/sci6040066
Gilsanz-Muñoz MF, Martínez-Martínez M, Pérez-Piñeiro J, Roldán M, Arce MP, Blasco R, Rico-San Román L, Esperón-Fajardo F, Cerpa-Naranjo A, Martín-Maldonado B. Assessing the Antimicrobial Efficacy of Graphene Oxide and Its PEGylated Derivative Against Staphylococcus aureus. Sci. 2024; 6(4):66. https://doi.org/10.3390/sci6040066
Chicago/Turabian StyleGilsanz-Muñoz, María F., Mónica Martínez-Martínez, Javier Pérez-Piñeiro, Miriam Roldán, Mariana P. Arce, Rodrigo Blasco, Laura Rico-San Román, Fernando Esperón-Fajardo, Arisbel Cerpa-Naranjo, and Bárbara Martín-Maldonado. 2024. "Assessing the Antimicrobial Efficacy of Graphene Oxide and Its PEGylated Derivative Against Staphylococcus aureus" Sci 6, no. 4: 66. https://doi.org/10.3390/sci6040066
APA StyleGilsanz-Muñoz, M. F., Martínez-Martínez, M., Pérez-Piñeiro, J., Roldán, M., Arce, M. P., Blasco, R., Rico-San Román, L., Esperón-Fajardo, F., Cerpa-Naranjo, A., & Martín-Maldonado, B. (2024). Assessing the Antimicrobial Efficacy of Graphene Oxide and Its PEGylated Derivative Against Staphylococcus aureus. Sci, 6(4), 66. https://doi.org/10.3390/sci6040066