Assessing the Cooling Benefits of Tree Shade by an Outdoor Urban Physical Scale Model at Tempe, AZ
Abstract
:1. Introduction
2. Experimental Details
2.1. Experimental Site and Period
2.2. Experimental Design
2.3. Measurement Equipment
3. Experimental Results
3.1. Instrumentation Calibration and Quality Control
3.2. Tree Shade Cooling Benefits to the Target Building
3.3. Tree Shade Cooling Benefits to the Surrounding Buildings
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W. Exploring the consequences of climate change for indoor air quality. Environ. Res. Lett. 2013, 8, 015022. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Song, J.; Wang, Z.-H. Interfacing the Urban Land–Atmosphere System through Coupled Urban Canopy and Atmospheric Models. Bound.-Layer Meteorol. 2014, 154, 427–448. [Google Scholar] [CrossRef]
- Zhao, Q.; Myint, S.W.; Wentz, E.A.; Fan, C. Rooftop Surface Temperature Analysis in an Urban Residential Environment. Remote Sens. 2015, 7, 12135–12159. [Google Scholar] [CrossRef]
- Zhao, Q.; Wentz, E.A. A MODIS/ASTER Airborne Simulator (MASTER) Imagery for Urban Heat Island Research. Data 2016, 1, 7. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Middel, A.; Chhetri, N.; Quay, R. Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban For. Urban Green. 2015, 14, 178–186. [Google Scholar] [CrossRef]
- Millward, A.A.; Sabir, S. Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Zhao, X.; Yang, J.; Song, J. Cooling and energy saving potentials of shade trees and urban lawns in a desert city. Appl. Energy 2016, 161, 437–444. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.-H. Optimizing urban irrigation schemes for the trade-off between energy and water consumption. Energy Build. 2015, 107, 335–344. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.-H.; Georgescu, M.; Chen, F.; Tewari, M. Assessing the Impact of Enhanced Hydrological Processes on Urban Hydrometeorology with Application to Two Cities in Contrasting Climates. J. Hydrometeorol. 2016, 17, 1031–1047. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Williamson, T.J. Urban Microclimate: Designing the Spaces between Buildings, 1st ed.; Earthscan: London, UK; Washington, DC, USA, 2011; ISBN 978-1-84407-467-9. [Google Scholar]
- Wentz, E.A.; Rode, S.; Li, X.; Tellman, E.M.; Turner, B.L. Impact of Homeowner Association (HOA) landscaping guidelines on residential water use. Water Resour. Res. 2016. [Google Scholar] [CrossRef]
- Zhao, Q.; Wentz, E.A.; Murray, A.T. Shade Optimization in a Desert Environment. Ext. Abstr. Proc. GISci. 2014, 2014, 118–121. [Google Scholar]
- Zhao, Q.; Wentz, E.A.; Murray, A.T. Tree shade coverage optimization in an urban residential environment. Build. Environ. 2017, 115, 269–280. [Google Scholar] [CrossRef]
- Zhao, Q. Evaluating the Effectiveness of Tree Locations and Arrangements for Improving Urban Thermal Environment. Ph.D. Thesis, Arizona State University, Tempe, Arizona, 2017. [Google Scholar]
- McPherson, E.G.; Simpson, J.R.; Livingston, M. Effects of three landscape treatments on residential energy and water use in Tucson, Arizona. Energy Build. 1989, 13, 127–138. [Google Scholar] [CrossRef]
- Middel, A.; Selover, N.; Hagen, B.; Chhetri, N. Impact of shade on outdoor thermal comfort—A seasonal field study in Tempe, Arizona. Int. J. Biometeorol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, Z.-H. Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ. Build. Environ. 2015, 94, 558–568. [Google Scholar] [CrossRef]
- Berry, R.; Livesley, S.J.; Aye, L. Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Build. Environ. 2013, 69, 91–100. [Google Scholar] [CrossRef]
- Aguiar, A.C. Urban Heat Islands: Differentiating between the Benefits and Draw. Mater’s Thesis, University of Wollongong, Wollongong, Australia, 2012. [Google Scholar]
- Vanos, J.K.; Middel, A.; McKercher, G.R.; Kuras, E.R.; Ruddell, B.L. Hot playgrounds and children’s health: A multiscale analysis of surface temperatures in Arizona, USA. Landsc. Urban Plan. 2016, 146, 29–42. [Google Scholar] [CrossRef]
- Krayenhoff, E.S.; Christen, A.; Martilli, A.; Oke, T.R. A Multi-layer Radiation Model for Urban Neighbourhoods with Trees. Bound.-Layer Meteorol. 2014, 151, 139–178. [Google Scholar] [CrossRef]
- Wang, Z.H. Monte Carlo simulations of radiative heat exchange in a street canyon with trees. Sol. Energy 2014, 110, 704–713. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S. On the development of an urban passive thermal comfort system in Cairo, Egypt. Build. Environ. 2009, 44, 1907–1916. [Google Scholar] [CrossRef]
- Stathopoulos, T.; Chiovitti, D.; Dodaro, L. Wind shielding effects of trees on low buildings. Build. Environ. 1994, 29, 141–150. [Google Scholar] [CrossRef]
- Robitu, M.; Musy, M.; Inard, C.; Groleau, D. Modeling the influence of vegetation and water pond on urban microclimate. Sol. Energy 2006, 80, 435–447. [Google Scholar] [CrossRef]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Taleghani, M.; Sailor, D.J.; Tenpierik, M.; van den Dobbelsteen, A. Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Build. Environ. 2014, 73, 138–150. [Google Scholar] [CrossRef]
- Roberts, S.M. Three-Dimensional Radiation Flux Source Areas in Urban Areas. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2010. [Google Scholar]
- Imam Syafii, N.; Ichinose, M.; Kumakura, E.; Jusuf, S.K.; Chigusa, K.; Wong, N.H. Thermal environment assessment around bodies of water in urban canyons: A scale model study. Sustain. Cities Soc. 2017, 34, 79–89. [Google Scholar] [CrossRef]
- Kanda, M. Progress in the scale modeling of urban climate: Review. Theor. Appl. Climatol. 2005, 84, 23–33. [Google Scholar] [CrossRef]
- Kanda, M.; Kanega, M.; Kawai, T.; Moriwaki, R.; Sugawara, H. Roughness Lengths for Momentum and Heat Derived from Outdoor Urban Scale Models. J. Appl. Meteorol. Climatol. 2007, 46, 1067–1079. [Google Scholar] [CrossRef]
- Kanda, M.; Kawai, T.; Moriwaki, R.; Narita, K.; Hagishima, A.; Sugawara, H. Comprehensive outdoor scale model experiments for urban climate (COSMO). In Proceedings of the 6th International Conference on Urban Climate, Göteborg, Sweden, 12–16 June 2006; pp. 270–273. [Google Scholar]
- Kanda, M.; Moriizumi, T. Momentum and Heat Transfer over Urban-like Surfaces. Bound.-Layer Meteorol. 2009, 131, 385–401. [Google Scholar] [CrossRef]
- Kawai, T.; Kanda, M. Urban Energy Balance Obtained from the Comprehensive Outdoor Scale Model Experiment. Part I: Basic Features of the Surface Energy Balance. J. Appl. Meteorol. Climatol. 2010, 49, 1341–1359. [Google Scholar] [CrossRef]
- Kawai, T.; Kanda, M. Urban Energy Balance Obtained from the Comprehensive Outdoor Scale Model Experiment. Part II: Comparisons with Field Data Using an Improved Energy Partition. J. Appl. Meteorol. Climatol. 2010, 49, 1360–1376. [Google Scholar] [CrossRef]
- Nottrott, A.; Onomura, S.; Inagaki, A.; Kanda, M.; Kleissl, J. Convective heat transfer on leeward building walls in an urban environment: Measurements in an outdoor scale model. Int. J. Heat Mass Transf. 2011, 54, 3128–3138. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Krüger, E.L.; Berliner, P. The role of evaporation in the energy balance of an open-air scaled urban surface. Int. J. Climatol. 2009, 29, 911–920. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Integrated modeling of pedestrian energy exchange and thermal comfort in urban street canyons. Build. Environ. 2007, 42, 2396–2409. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Physical modeling of pedestrian energy exchange within the urban canopy. Build. Environ. 2006, 41, 783–795. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Evaluation of Urban Surface Energy Fluxes Using an Open-Air Scale Model. J. Appl. Meteorol. 2005, 44, 532–545. [Google Scholar] [CrossRef]
- Lirola, J.M.; Castañeda, E.; Lauret, B.; Khayet, M. A review on experimental research using scale models for buildings: Application and methodologies. Energy Build. 2017, 142, 72–110. [Google Scholar] [CrossRef]
- Wang, Y.; Bakker, F.; de Groot, R.; Wortche, H.; Leemans, R. Effects of urban trees on local outdoor microclimate: synthesizing field measurements by numerical modelling. Urban Ecosyst. 2015, 18, 1305–1331. [Google Scholar] [CrossRef]
- Park, M.; Hagishima, A.; Tanimoto, J.; Narita, K. Effect of urban vegetation on outdoor thermal environment: Field measurement at a scale model site. Build. Environ. 2012, 56, 38–46. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierik, M.; van den Dobbelsteen, A.; Sailor, D.J. Heat mitigation strategies in winter and summer: Field measurements in temperate climates. Build. Environ. 2014, 81, 309–319. [Google Scholar] [CrossRef]
- Upreti, R.; Wang, Z.-H.; Yang, J. Radiative shading effect of urban trees on cooling the regional built environment. Urban For. Urban Green. 2017, 26, 18–24. [Google Scholar] [CrossRef]
- US Census Bureau. Demographic Profile Data. 2010. Available online: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=CF (accessed on 15 September 2016).
- Western Regional Climate Center (WRCC). Available online: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?az8499 (accessed on 9 July 2017).
- Daily Summaries Station Details: PHOENIX SKY HARBOR INTERNATIONAL AIRPORT, AZ US, GHCND:USW00023183|Climate Data Online (CDO)|National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00023183/detail (accessed on 2 January 2017).
- Casa Grande Arizona. Available online: https://wrcc.dri.edu/cgi-bin/rawMAIN.pl?azACSG (accessed on 17 December 2017).
- Maricopa County Assessor’s Office. Available online: https://mcassessor.maricopa.gov/index.php (accessed on 11 September 2017).
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 2011, 31, 1498–1506. [Google Scholar] [CrossRef]
- Jang, H.S.; Kim, H.J.; Jeon, J.Y. Scale-model method for measuring noise reduction in residential buildings by vegetation. Build. Environ. 2015, 86, 81–88. [Google Scholar] [CrossRef]
- Peterson, T.C.; Schmidt, R.A. Outdoor scale modeling of shrub barriers in drifting snow. Agric. For. Meteorol. 1984, 31, 167–181. [Google Scholar] [CrossRef]
- DS1921G Thermochron iButton Device-Maxim. Available online: https://www.maximintegrated.com/en/products/digital/data-loggers/DS1921G.html (accessed on 15 December 2017).
- P-Series|FLIR Systems. Available online: http://www.flir.com/instruments/display/?id=60087 (accessed on 15 December 2017).
- Taha, H.; Sailor, D.; Akbari, H. High-Albedo Materials for Reducing Building Cooling Energy Use; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1992.
- NOAA National Weather Service: Weather Conditions for KPHX. Available online: http://www.wrh.noaa.gov/mesowest/timeseries.php?sid=KPHX&num=168 (accessed on 17 July 2017).
- Papadakis, G.; Tsamis, P.; Kyritsis, S. An experimental investigation of the effect of shading with plants for solar control of buildings. Energy Build. 2001, 33, 831–836. [Google Scholar] [CrossRef]
- Jim, C.Y. Intense summer heat fluxes in artificial turf harm people and environment. Landsc. Urban Plan. 2017, 157, 561–576. [Google Scholar] [CrossRef]
- Jim, C.Y. Solar–terrestrial radiant-energy regimes and temperature anomalies of natural and artificial turfs. Appl. Energy 2016, 173, 520–534. [Google Scholar] [CrossRef]
- Serensits, T.J.; McNitt, A.S.; Petrunak, D.M. Human health issues on synthetic turf in the USA. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2011, 225, 139–146. [Google Scholar] [CrossRef]
- Villacañas, V.; Sánchez-Sánchez, J.; García-Unanue, J.; López, J.; Gallardo, L. The influence of various types of artificial turfs on football fields and their effects on the thermal profile of surfaces. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2017, 231, 21–32. [Google Scholar] [CrossRef]
- Brabyn, L.; Zawar-Reza, P.; Stichbury, G.; Cary, C.; Storey, B.; Laughlin, D.C.; Katurji, M. Accuracy assessment of land surface temperature retrievals from Landsat 7 ETM+ in the Dry Valleys of Antarctica using iButton temperature loggers and weather station data. Environ. Monit. Assess. 2014, 186, 2619–2628. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.-O.; Gubler, S.; Fiddes, J.; Gruber, S. Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures. Cryosphere 2012, 6, 1127–1139. [Google Scholar] [CrossRef] [Green Version]
- Sohrabinia, M.; Rack, W.; Zawar-Reza, P. Analysis of MODIS LST Compared with WRF Model and in situ Data over the Waimakariri River Basin, Canterbury, New Zealand. Remote Sens. 2012, 4, 3501–3527. [Google Scholar] [CrossRef]
- Sternberg, T.; Viles, H.; Cathersides, A. Evaluating the role of ivy (Hedera helix) in moderating wall surface microclimates and contributing to the bioprotection of historic buildings. Build. Environ. 2011, 46, 293–297. [Google Scholar] [CrossRef]
- Lechner, N. Sustainable Cities Are Solar-Responsive Cities. 2014. Available online: https://books.google.co.uk/books?hl=en&lr=&id=jDqDBAAAQBAJ&oi=fnd&pg=PA97&dq=Sustainable+cities+are+solar-responsive+cities&ots=SKOoY1A2we&sig=aErpxQA4Pno_cdqzZrvzyYZUxbU#v=onepage&q=Sustainable%20cities%20are%20solar-responsive%20cities&f=false (accessed on 8 January 2018).
- Lin, Y.-H.; Tsai, K.-T. Screening of Tree Species for Improving Outdoor Human Thermal Comfort in a Taiwanese City. Sustainability 2017, 9, 340. [Google Scholar] [CrossRef]
- Sanusi, R.; Johnstone, D.; May, P.; Livesley, S.J. Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landsc. Urban Plan. 2017, 157, 502–511. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Rafiee, A.; Dias, E.; Koomen, E. Local impact of tree volume on nocturnal urban heat island: A case study in Amsterdam. Urban For. Urban Green. 2016, 16, 50–61. [Google Scholar] [CrossRef]
- Jim, C.Y. Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosyst. 2013, 16, 741–761. [Google Scholar] [CrossRef]
- Brown, R.D.; Vanos, J.; Kenny, N.; Lenzholzer, S. Designing urban parks that ameliorate the effects of climate change. Landsc. Urban Plan. 2015, 138, 118–131. [Google Scholar] [CrossRef]
- Klemm, W.; van Hove, B.; Lenzholzer, S.; Kramer, H. Towards guidelines for designing parks of the future. Urban For. Urban Green. 2017, 21, 134–145. [Google Scholar] [CrossRef]
- Olgyay, V. Design with Climate: Bioclimatic Approach to Architectural Regionalism; Princeton University Press: Princeton, NJ, USA, 2015; ISBN 978-1-4008-7368-5. [Google Scholar]
- de Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Tree and Shade Master Plan. Available online: https://www.phoenix.gov:443/parks/parks/urban-forest/tree-and-shade (accessed on 17 December 2017).
- Plant Savings with Free Shade Trees. Available online: http://www.savewithsrp.com/RD/shadetrees.aspx (accessed on 9 June 2016).
- Camacho-Cervantes, M.; Schondube, J.E.; Castillo, A.; MacGregor-Fors, I. How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city. Urban Ecosyst. 2014, 17, 761–773. [Google Scholar] [CrossRef]
Date | Maximum Air Temperature (°C) | Minimum Air Temperature (°C) | Average Air Temperature (°C) | Precipitation (cm) | Total Solar Radiation (kWh/m2) | Cloudiness |
---|---|---|---|---|---|---|
12 August 2016 | 40.6 | 27.8 | 34.7 | 0.00 | 7.28 | Mostly clear |
13 August 2016 | 42.2 | 28.9 | 35.7 | 0.00 | 7.29 | Mostly clear |
14 August 2016 | 41.1 | 30.0 | 35.3 | 0.00 | 7.39 | Mostly clear |
15 August 2016 | 43.3 | 30.0 | 36.7 | 0.00 | 7.30 | Mostly clear |
16 August 2016 | 43.9 | 30.6 | 37.0 | 0.00 | 7.20 | Mostly clear |
17 August 2016 | 42.8 | 28.9 | 36.7 | 0.25 | 7.12 | Mostly clear |
18 August 2016 | 40.0 | 27.8 | 34.5 | 0.03 | 5.73 | Mostly clear |
20 August 2016 | 37.8 | 26.7 | 31.9 | 0.00 | 6.67 | Clear |
30 August 2016 | 41.6 | 28.9 | 35.1 | 0.00 | 6.62 | Clear |
31 August 2016 | 41.1 | 27.8 | 34.9 | 0.00 | 6.72 | Clear |
Group No. | Tree Numbers | Tree Locations | Tree Arrangements |
---|---|---|---|
Group 1 | 0 | N/A | N/A |
Group 2 | 1 | (1), (2), (3), (4), (5), (6), (7) | N/A |
Group 3 | 2 | (3,5), (4,6) | Cluster |
Group 4 | 2 | (2,5) | Disperse |
Treatment Group | Control Group | Key Factors |
---|---|---|
Group 2 | Group 1 | Tree density and location (one tree vs. no tree) |
Groups 3 and 4 | Group 1 | Tree density (two trees vs. no tree) |
Groups 3 and 4 | Group 2 | Tree density (two trees vs. one tree) |
Group 4 | Group 3 | Tree arrangement (cluster vs. disperse) |
RMSE (°C) | MAE (°C) | |
---|---|---|
North urban canyon (with tree) | 1.7 | 1.5 |
South urban canyon (without tree) | 2.0 | 1.9 |
West Facade | Central Facade | East Facade | ||
---|---|---|---|---|
One tree scenarios | ||||
West | L1 1 | 1.5 | 3.6 | 5.9 |
L2 | 0.4 | 3.8 | 7.1 | |
L3 | −0.5 | 1.1 | 4.5 | |
to | L4 | 3.1 | −1.6 | 5.1 |
L5 | 2.6 | −1.3 | 1.5 | |
L6 | 1.5 | 0.7 | −2.3 | |
East | L7 | 3.4 | 2.5 | −0.4 |
Two trees scenarios | ||||
Cluster | L3 & L5 | −0.3 | −3.9 | 2.5 |
Cluster | L4 & L6 | −3.3 | −6.6 | −5.1 |
Disperse | L2 & L5 | −5.5 | −0.2 | −0.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Yang, J.; Wang, Z.-H.; Wentz, E.A. Assessing the Cooling Benefits of Tree Shade by an Outdoor Urban Physical Scale Model at Tempe, AZ. Urban Sci. 2018, 2, 4. https://doi.org/10.3390/urbansci2010004
Zhao Q, Yang J, Wang Z-H, Wentz EA. Assessing the Cooling Benefits of Tree Shade by an Outdoor Urban Physical Scale Model at Tempe, AZ. Urban Science. 2018; 2(1):4. https://doi.org/10.3390/urbansci2010004
Chicago/Turabian StyleZhao, Qunshan, Jiachuan Yang, Zhi-Hua Wang, and Elizabeth A. Wentz. 2018. "Assessing the Cooling Benefits of Tree Shade by an Outdoor Urban Physical Scale Model at Tempe, AZ" Urban Science 2, no. 1: 4. https://doi.org/10.3390/urbansci2010004
APA StyleZhao, Q., Yang, J., Wang, Z. -H., & Wentz, E. A. (2018). Assessing the Cooling Benefits of Tree Shade by an Outdoor Urban Physical Scale Model at Tempe, AZ. Urban Science, 2(1), 4. https://doi.org/10.3390/urbansci2010004