Chemical Fractionation of Sediment Phosphorus in Residential Urban Stormwater Ponds in Florida, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment and Water Sampling
2.2. Stormwater Pond P Fractionation Analysis
3. Results and Discussion
3.1. Pond Water Column Phosphorus
3.2. Phosphorus Fractions in Stormwater Pond Sediments
3.3. Implications for Stormwater Monitoring and Management
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gold, A.; Thompson, S.; Piehler, M. Water quality before and after watershed-scale implementation of stormwater wet ponds in the coastal plain. Ecol. Eng. 2017, 105, 240–251. [Google Scholar] [CrossRef]
- Collins, K.A.; Lawrence, T.J.; Stander, E.K.; Jontos, R.J.; Kaushal, S.S.; Newcomer-Johnson, T.; Grimm, N.B.; Ekberg, M.L.C. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis. Ecol. Eng. 2010, 36, 1507–1519. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Lusk, M.G. Nutrients in Urban Stormwater Runoff: Current State of the Science and Potential Miti-gation Options. Curr. Pollut. Rep. 2018, 4, 112–127. [Google Scholar] [CrossRef]
- Sidhu, J.; Hodgers, L.; Ahmed, W.; Chong, M.; Toze, S. Prevalence of human pathogens and indicators in storm-water runoff in Brisbane, Australia. Water Res. 2012, 46, 6652–6660. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.N.; Peake, B.M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Sci. Total Environ. 2006, 359, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Jani, J.; Lusk, M.G.; Yang, Y.-Y.; Toor, G.S. Wet season nitrogen export from a residential stormwater pond. PLoS ONE 2020, 15, e0230908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdi, M.N.; Scott, D.; Sample, D.J.; Wang, X. Efficacy of a retention pond in treating stormwater nutrients and sediment. J. Clean. Prod. 2021, 290, 125787. [Google Scholar] [CrossRef]
- Persaud, A.; Alsharif, K.; Monaghan, P.; Akiwumi, F.; Morera, M.C.; Ott, E. Landscaping practices, community perceptions, and social indicators for stormwater nonpoint source pollution management. Sustain. Cities Soc. 2016, 27, 377–385. [Google Scholar] [CrossRef]
- Lusk, M.G.; Chapman, K. Copper concentration data for water, sediments, and vegetation of urban stormwater ponds treated with copper sulfate algaecide. Data Brief 2020, 31, 105982. [Google Scholar] [CrossRef]
- Sinclair, J.S.; Reisinger, A.J.; Bean, E.; Adams, C.R.; Reisinger, L.S.; Iannone, B.V., III. Stormwater ponds: An overlooked but plentiful urban designer ecosystem provides invasive plant habitat in a subtropical region (Florida, USA). Sci. Total Environ. 2020, 711, 135133. [Google Scholar] [CrossRef] [PubMed]
- Phlips, E.J.; Badylak, S.; Nelson, N.G.; Havens, K.E. Hurricanes, El Niño and harmful algal blooms in two sub-tropical Florida estuaries: Direct and indirect impacts. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Accoroni, S.; Totti, C.; Romagnoli, T.; Giulietti, S.; Glibert, P.M. Distribution and potential toxicity of benthic harm-ful dinoflagellates in waters of Florida Bay and the Florida Keys. Mar. Environ. Res. 2020, 155, 104891. [Google Scholar] [CrossRef]
- Harper, H.H.; Baker, D.M. Evaluation of Current Stormwater Design Criteria within the State of Florida; Environmental Research & Design, Inc.: Orlando, FL, USA, 2007. [Google Scholar]
- Lusk, M.G.; Toor, G.S. Biodegradability and Molecular Composition of Dissolved Organic Nitrogen in Urban Stormwater Runoff and Outflow Water from a Stormwater Retention Pond. Environ. Sci. Technol. 2016, 50, 3391–3398. [Google Scholar] [CrossRef] [PubMed]
- Gold, A.C.; Thompson, S.P.; Piehler, M.F. Nitrogen cycling processes within stormwater control measures: A re-view and call for research. Water Res. 2019, 149, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J.; Frost, P.C.; Xenopoulos, M.A. Beyond best management practices: Pelagic biogeochemical dynamics in urban stormwater ponds. Ecol. Appl. 2013, 23, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, B.R.; Smith, J.A.; Baeck, M.L.; Jaffe, P.R. Monitoring Nitrogen Loading and Retention in an urban strormwater Detention Pond. J. Enviromental Qual. 2011, 40, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Sønderup, M.J.; Egemose, S.; Hansen, A.S.; Grudinina, A.; Madsen, M.H.; Flindt, M.R. Factors affecting retention of nu-trients and organic matter in stormwater ponds. Ecohydrology 2016, 9, 796–806. [Google Scholar] [CrossRef] [Green Version]
- Sinke, A.J.C.; Cornelese, A.A.; Keizer, P.; VAN Tongeren, O.F.R.; Cappenberg, T.E. Mineralization, pore water chemistry and phosphorus release from peaty sediments in the eutrophic Loosdrecht lakes, The Netherlands. Freshw. Biol. 1990, 23, 587–599. [Google Scholar] [CrossRef]
- Song, K.; Burgin, A.J. Perpetual Phosphorus Cycling: Eutrophication Amplifies Biological Control on Internal Phosphorus Loading in Agricultural Reservoirs. Ecosystems 2017, 20, 1483–1493. [Google Scholar] [CrossRef]
- Duan, S.; Newcomer-Johnson, T.; Mayer, P.; Kaushal, S. Phosphorus Retention in Stormwater Control Structures across Streamflow in Urban and Suburban Watersheds. Water 2016, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Frost, P.C.; Prater, C.; Scott, A.B.; Song, K.; Xenopoulos, M.A. Mobility and Bioavailability of Sediment Phosphorus in Urban Stormwater Ponds. Water Resour. Res. 2019, 55, 3680–3688. [Google Scholar] [CrossRef]
- Song, K.; Xenopoulos, M.A.; Marsalek, J.; Frost, P.C. The fingerprints of urban nutrients: Dynamics of phosphorus speciation in water flowing through developed landscapes. Biogeochemistry 2015, 125, 1–10. [Google Scholar] [CrossRef]
- Song, K.; Winters, C.; Xenopoulos, M.A.; Marsalek, J.; Frost, P.C. Phosphorus cycling in urban aquatic ecosystems: Connecting biological processes and water chemistry to sediment P fractions in urban stormwater management ponds. Biogeochemistry 2017, 132, 203–212. [Google Scholar] [CrossRef]
- Cavalcante, H.; Araújo, F.; Noyma, N.; Becker, V. Phosphorus fractionation in sediments of tropical semiarid res-ervoirs. Sci. Total Environ. 2018, 619, 1022–1029. [Google Scholar] [CrossRef]
- Richardson, C.J.; Reddy, K. Methods for Soil Phosphorus Characterization and Analysis of Wetland Soils. Methods Biogeochem. Wetl. 2013, 10, 603–638. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Toor, G.S. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. Water Res. 2017, 112, 176–184. [Google Scholar] [CrossRef]
- Ma, J.; Ying, G.; Sansalone, J.J. Transport and distribution of particulate matter phosphorus fractions in rain-fall-runoff from roadway source areas. J. Environ. Eng. 2010, 136, 1197–1205. [Google Scholar] [CrossRef]
- Arias, M.E.; Brown, M.T.; Sansalone, J.J. Characterization of Storm Water–Suspended Sediments and Phosphorus in an Urban Catchment in Florida. J. Environ. Eng. 2013, 139, 277–288. [Google Scholar] [CrossRef]
- Harrison, J.A.; Bouwman, A.; Mayorga, E.; Seitzinger, S. Magnitudes and sources of dissolved inorganic phospho-rus inputs to surface fresh waters and the coastal zone: A new global model. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef] [Green Version]
- Badruzzaman, M.; Pinzon, J.; Oppenheimer, J.; Jacangelo, J.G. Sources of nutrients impacting surface waters in Florida: A review. J. Environ. Manag. 2012, 109, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Fytianos, K.; Kotzakioti, A. Sequential fractionation of phosphorus in lake sediments of Northern Greece. Environ. Monit. Assess. 2005, 100, 191–200. [Google Scholar] [CrossRef]
- Olila, O.; Reddy, K.; Harris, W. Forms and distribution of inorganic phosphorus in sediments of two shallow eu-trophic lakes in Florida. Hydrobiologia 1995, 302, 147–161. [Google Scholar] [CrossRef]
- Amirbahman, A.; Lake, B.A.; Norton, S.A. Seasonal phosphorus dynamics in the surficial sediment of two shallow temperate lakes: A solid-phase and pore-water study. Hydrobiologia 2013, 701, 65–77. [Google Scholar] [CrossRef]
- Si, Q.; Lusk, M.; Inglett, P. Inorganic Nitrogen Production and Removal along the Sediment Gradient of a Stormwater Infiltration Basin. Water 2021, 13, 320. [Google Scholar] [CrossRef]
- Grella, C.; Wright, I.A.; Findlay, S.J.; Jonasson, O.J. Geochemical contamination of urban water by concrete storm-water infrastructure: Applying an epoxy resin coating as a control treatment. Urban Water J. 2016, 13, 212–219. [Google Scholar] [CrossRef]
- Vadas, T.M.; Smith, M.; Luan, H. Leaching and retention of dissolved metals in particulate loaded pervious con-crete columns. J. Environ. Manag. 2017, 190, 1–8. [Google Scholar] [CrossRef]
- Jin, X.; Wang, S.; Pang, Y.; Wu, F.C. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environ. Pollut. 2006, 139, 288–295. [Google Scholar] [CrossRef]
- Reddy, K.R.; Wang, Y.; DeBusk, W.F.; Fisher, M.M.; Newman, S. Forms of Soil Phosphorus in Selected Hydrologic Units of the Florida Everglades. Soil Sci. Soc. Am. J. 1998, 62, 1134–1147. [Google Scholar] [CrossRef] [Green Version]
- Janke, B.D.; Finlay, J.C.; Hobbie, S.E. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution. Environ. Sci. Technol. 2017, 51, 9569–9579. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506–509, 135–145. [Google Scholar] [CrossRef]
- Taguchi, V.J.; Olsen, T.A.; Natarajan, P.; Janke, B.D.; Gulliver, J.S.; Finlay, J.C.; Stefan, H.G. Internal loading in stormwater ponds as a phosphorus source to downstream waters. Limnol. Oceanogr. Lett. 2020, 5, 322–330. [Google Scholar] [CrossRef]
- Kim, I.; Choi, E.; Stenstrom, M.K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 2002, 50, 53–61. [Google Scholar] [CrossRef]
Pond Morphology | Mean Surface Water Chemistry | ||||
---|---|---|---|---|---|
Pond ID | Area, m2 | Year Constructed (Age at Sampling) | Depth, m | pH | Surface DO (% Saturation) |
A | 1796 | 1999 (20) | 1.2 | 8.3 | 72 |
B | 3882 | 1999 (20) | 1.8 | 8.3 | 88 |
C | 2801 | 1999 (20) | 1.8 | 7.9 | 69 |
D | 5662 | 1987 (31) | 2.0 | 7.7 | 101 |
E | 4423 | 1987 (31) | 1.8 | 7.6 | 73 |
F | 8284 | 1987 (31) | 1.4 | 7.8 | 86 |
P Forms | A | B | C | D | E | F |
---|---|---|---|---|---|---|
----------------------------------mg kg−1-------------------------------------- | ||||||
Inorganic P | ||||||
KCl-Pi (labile P) | 0.99 (0.42) | 2.01 (0.57) | 1.79 (0.93) | 2.70 (2.3) | 1.38 (0.25) | 2.18 (0.69) |
NaOH-Pi (Fe/Al P) | 12.53 (1.3) | 6.28 (0.72) | 15.37 (6.8) | 27.88 (9.2) | 14.18 (3.3) | 26.56 (2.4) |
HCl-Pi (Ca/Mg P) | 6.05 (1.0) | 26.9 (32.8) | 65.1 (94.4) | 12.6 (17.5) | 1.94 (1.2) | 57.2 (44.7) |
Total Pi | 19.57 (2.2) | 32.3 (32.9) | 82.2 (92.5) | 43.2 (28.4) | 17.49 (2.5) | 85.9 (43.0) |
Organic P | ||||||
NaOH-Po | 28.27 (7.3) | 17.91 (3.7) | 18.00 (5.6) | 40.2 (28.8) | 18.28 (6.6) | 19.98 (7.7) |
Residue P | 30.54 (3.6) | 32.1 (15.2) | 34.9 (14.6) | 41.1 (22.4) | 31.98 (2.1) | 42.0 (15.2) |
Total Po | 58.8 (11.0) | 50.0 (11.6) | 52.9 (20.0) | 81.3 (51.3) | 50.3 (8.7) | 62.0 (22.3) |
Total P | 78.4 (10.2) | 85.3 (41.5) | 135 (96.6) | 125 (79.7) | 67.8 (6.2) | 148 (65.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lusk, M.G.; Chapman, K. Chemical Fractionation of Sediment Phosphorus in Residential Urban Stormwater Ponds in Florida, USA. Urban Sci. 2021, 5, 81. https://doi.org/10.3390/urbansci5040081
Lusk MG, Chapman K. Chemical Fractionation of Sediment Phosphorus in Residential Urban Stormwater Ponds in Florida, USA. Urban Science. 2021; 5(4):81. https://doi.org/10.3390/urbansci5040081
Chicago/Turabian StyleLusk, Mary G., and Kylie Chapman. 2021. "Chemical Fractionation of Sediment Phosphorus in Residential Urban Stormwater Ponds in Florida, USA" Urban Science 5, no. 4: 81. https://doi.org/10.3390/urbansci5040081
APA StyleLusk, M. G., & Chapman, K. (2021). Chemical Fractionation of Sediment Phosphorus in Residential Urban Stormwater Ponds in Florida, USA. Urban Science, 5(4), 81. https://doi.org/10.3390/urbansci5040081