A Geographical Analysis of Socioeconomic and Environmental Drivers of Physical Inactivity in Post Pandemic Cities: The Case Study of Chicago, IL, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spatial Distribution of Physical Inactivity
2.2. Spatial Correlates of Physical Inactivity
3. Results
3.1. Spatial Distribution of Physical Inactivity
3.2. Spatial Correlates of Physical Inactivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orstad, S.L.; Szuhany, K.; Tamura, K.; Thorpe, L.E.; Jay, M. Park proximity and use for physical activity among urban residents: Associations with mental health. Int. J. Environ. Res. Public Health 2020, 17, 4885. [Google Scholar] [CrossRef] [PubMed]
- Buck, C.; Eiben, G.; Lauria, F.; Konstabel, K.; Page, A.; Ahrens, W.; Pigeot, I. Urban moveability and physical activity in children: Longitudinal results from the IDEFICS and I. Family cohort. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Dishman, R.K.; Heath, G.; Schmidt, M.D.; Lee, I.M. Physical Activity Epidemiology; Human Kinetics: Champaign, IL, USA, 2022. [Google Scholar]
- Ding, D.; Lawson, K.D.; Kolbe-Alexander, T.L.; Finkelstein, E.A.; Katzmarzyk, P.T.; van Mechelen, W.; Pratt, M. The economic burden of physical inactivity: A global analysis of major non-communicable diseases. Lancet 2016, 388, 1311–1324. [Google Scholar] [CrossRef]
- Department of Health and Human Services. Physical Activity Guidelines for Americans (PAGA); Department of Health and Human Services: Washington, DC, USA, 2018. Available online: https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf (accessed on 20 December 2021).
- de Souza Andrade, A.C.; Mingoti, S.A.; da Silva Costa, D.A.; Xavier, C.C.; Proietti, F.A.; Caiaffa, W.T. Built and social environment by systematic social observation and leisure-time physical activity report among Brazilian adults: A population-based study. J. Urban Health 2019, 96, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.C.; Loos, R.J.; Martin, B.W. Correlates of physical activity: Why are some people physically active and others not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cervero, R.B.; Ascher, W.; Henderson, K.A.; Kraft, M.K.; Kerr, J. An ecological approach to creating active living communities. Annu. Rev. Public Health 2006, 27, 297–322. [Google Scholar] [CrossRef] [Green Version]
- Kohl, H.W., 3rd; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Seefeldt, V.; Malina, R.M.; Clark, M.A. Factors affecting levels of physical activity in adults. Sports Med. 2002, 32, 143–168. [Google Scholar] [CrossRef]
- Macfarlane, G.S.; Boyd, N.; Taylor, J.E.; Watkins, K. Modeling the impacts of park access on health outcomes: A utility-based accessibility approach. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2289–2306. [Google Scholar] [CrossRef]
- Sallis, J.F.; Floyd, M.F.; Rodríguez, D.A.; Saelens, B.E. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Carl, J.A.; Geidl, W.; Schuler, M.; Mino, E.; Lehbert, N.; Wittmann, M.; Schultz, K.; Pfeifer, K. Towards a better understanding of physical activity in people with COPD: Predicting physical activity after pulmonary rehabilitation using an integrative competence model. Chronic Respir. Dis. 2021, 18, 1479973121994781. [Google Scholar] [CrossRef] [PubMed]
- Sentell, T.; Vamos, S.; Okan, O. Interdisciplinary Perspectives on Health Literacy Research Around the World: More Important Than Ever in a Time of COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 3010. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Lam, J.; Kwan, M.P. The effects of the built environment on the general health, physical activity and obesity of adults in Queensland, Australia. Spat. Spatio-Temporal Epidemiol. 2021, 39, 100456. [Google Scholar] [CrossRef]
- Bentlage, E.; Ammar, A.; How, D.; Ahmed, M.; Trabelsi, K.; Chtourou, H.; Brach, M. Practical recommendations for maintaining active lifestyle during the COVID-19 pandemic: A systematic literature review. Int. J. Environ. Res. Public Health 2020, 17, 6265. [Google Scholar] [CrossRef]
- Faka, A.; Chalkias, C.; Georgousopoulou, E.N.; Tripitsidis, A.; Pitsavos, C.; Panagiotakos, D.B. Identifying determinants of obesity in Athens, Greece through global and local statistical models. Spat. Spatio-Temporal Epidemiol. 2019, 29, 31–41. [Google Scholar] [CrossRef]
- Kondo, M.C.; Morrison, C.; Jacoby, S.F.; Elliott, L.; Poche, A.; Theall, K.P.; Branas, C.C. Blight abatement of vacant land and crime in New Orleans. Public Health Rep. 2018, 133, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.M.; Ferreira, F.A.; Spahr, R.W.; Sunderman, M.A.; Govindan, K.; Meidutė-Kavaliauskienė, I. Analyzing blight impacts on urban areas: A multi-criteria approach. Land Use Policy 2021, 108, 105661. [Google Scholar] [CrossRef]
- Cheezum, R.R.; Rosso, M.T.; Niewolak, N.; Cobb, T. Using PhotoVoice to understand health determinants of formerly homeless individuals living in permanent housing in Detroit. Qual. Health Res. 2019, 29, 1043–1055. [Google Scholar] [CrossRef]
- Heinen, E.; Kamruzzaman, M.; Turrell, G. The public bicycle-sharing scheme in Brisbane, Australia: Evaluating the influence of its introduction on changes in time spent cycling amongst a middle-and older-age population. J. Transp. Health 2018, 10, 56–73. [Google Scholar] [CrossRef]
- Porter, A.K.; Kohl III, H.W.; Perez, A.; Reininger, B.; Gabriel, K.P.; Salvo, D. Peer reviewed: Perceived social and built environment correlates of transportation and recreation-only bicycling among adults. Prev. Chronic Dis. 2018, 15, E135. [Google Scholar] [CrossRef] [PubMed]
- Astell-Burt, T.; Feng, X.; Kolt, G.S. Green space is associated with walking and moderate-to-vigorous physical activity (MVPA) in middle-to-older-aged adults: Findings from 203 883 Australians in the 45 and Up Study. Br. J. Sports Med. 2014, 48, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.M.; Rice, J.; Gustat, J.; Ruley, J.; Spriggs, A.; Johnson, C. Effect of bike lane infrastructure improvements on ridership in one New Orleans neighborhood. Ann. Behav. Med. 2013, 45 (Suppl. S1), S101–S107. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.B.; Werner, C.M. A new rail stop: Tracking moderate physical activity bouts and ridership. Am. J. Prev. Med. 2007, 33, 306–309. [Google Scholar] [CrossRef]
- Carver, A.; Timperio, A.; Hesketh, K.; Crawford, D. Are safety-related features of the road environment associated with smaller declines in physical activity among youth? J. Urban Health 2010, 87, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Tainio, M.; Jovanovic Andersen, Z.; Nieuwenhuijsen, M.J.; Hu, L.; de Nazelle, A.; An, R.; Garcia, L.M.T.; Goenka, S.; Zapata-Diomedi, B.; Bull, F.; et al. Air pollution, physical activity and health: A mapping review of the evidence. Environ. Int. 2021, 147, 105954. [Google Scholar] [CrossRef]
- An, R.; Ji, M.; Yan, H.; Guan, C. Impact of ambient air pollution on obesity: A systematic review. Int. J. Obes. 2018, 42, 1112–1126. [Google Scholar] [CrossRef]
- Nilsson, K.; Bentsen, P.; Grahn, P.; Mygind, L. What is the scientific evidence with regard to the effects of forests, trees on human health and well-being? Sante Publique 2019, 190, 219–240. [Google Scholar] [CrossRef] [Green Version]
- Turner-Skoff, J.B.; Cavender, N. The benefits of trees for livable and sustainable communities. Plants People Planet 2019, 1, 323–335. [Google Scholar] [CrossRef]
- Aina, Y.A. Achieving smart sustainable cities with GeoICT support: The Saudi evolving smart cities. Cities 2017, 71, 49–58. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Dupont-Courtade, L.; Oueslati, W. Air pollution and urban structure linkages: Evidence from European cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Ding, D.; Sallis, J.F.; Kerr, J.; Lee, S.; Rosenberg, D.E. Neighborhood environment and physical activity among youth: A review. Am. J. Prev. Med. 2011, 41, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Sit, C.H.; Lindner, K.J.; Sherrill, C. Sport participation of Hong Kong Chinese children with disabilities in special schools. Adapt. Phys. Act. Q. 2002, 19, 453–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foh, E.P.; Brown, R.R.; Denzongpa, K.; Echeverria, S. Legacies of environmental injustice on neighborhood violence, poverty and active living in an African American community. Ethn. Dis. 2021, 31, 425. [Google Scholar]
- Armstrong, S.; Wong, C.A.; Perrin, E.; Page, S.; Sibley, L.; Skinner, A. Association of physical activity with income, race/ethnicity, and sex among adolescents and young adults in the United States: Findings from the National Health and Nutrition Examination Survey, 2007–2016. JAMA Pediatrics 2018, 172, 732–740. [Google Scholar] [CrossRef]
- Spinney, J.; Millward, H. Time and money: A new look at poverty and the barriers to physical activity in Canada. Soc. Indic. Res. 2010, 99, 341–356. [Google Scholar] [CrossRef]
- Baker, B.J.; Zhou, X.; Pizzo, A.D.; Du, J.; Funk, D.C. Collaborative self-study: Lessons from a study of wearable fitness technology and physical activity. Sport Manag. Rev. 2017, 20, 114–127. [Google Scholar] [CrossRef]
- Langøien, L.J.; Terragni, L.; Rugseth, G.; Nicolaou, M.; Holdsworth, M.; Stronks, K.; Lien, N.; Roos, G. Systematic mapping review of the factors influencing physical activity and sedentary behaviour in ethnic minority groups in Europe: A DEDIPAC study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 99. [Google Scholar] [CrossRef] [Green Version]
- Christie, C.D.; Consoli, A.; Ronksley, P.E.; Vena, J.E.; Friedenreich, C.M.; McCormack, G.R. Associations between the built environment and physical activity among adults with low socio-economic status in Canada: A systematic review. Can. J. Public Health 2021, 112, 152–165. [Google Scholar] [CrossRef]
- Yu, J.; Yang, C.; Zhang, S.; Zhai, D.; Wang, A.; Li, J. The Effect of the Built Environment on Older Men’ s and Women′ s Leisure-Time Physical Activity in the Mid-Scale City of Jinhua, China. Int. J. Environ. Res. Public Health 2021, 18, 1039. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Adult Physical Inactivity Prevalence Maps by Race/Ethnicity. 2021. Available online: https://www.cdc.gov/physicalactivity/data/inactivity-prevalence-maps/index.html (accessed on 20 December 2021).
- Kulldorff, M. A spatial scan statistic. Commun. Stat. -Theory Methods 1997, 26, 1481–1496. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics. A Companion to Theoretical Econometrics; Blackwell Publishing Ltd.: Malden, MA, USA, 2001; p. 310330. [Google Scholar]
- Wallet Hub. 2022′s Best & Worst Cities for an Active Lifestyle. 2022. Available online: https://wallethub.com/edu/best-and-worst-cities-for-an-active-lifestyle/8817 (accessed on 5 December 2021).
- Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey Data; Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021. Available online: https://www.cdc.gov/brfss/index.html (accessed on 27 December 2021).
- Centers for Disease Control and Prevention (CDC). PLACES Project. Local Data for Better Health. 2021. Available online: https://www.cdc.gov/places (accessed on 15 December 2021).
- U.S. Census Bureau. American Community Survey (ACS), 2014–2018 (5-Year) Socioeconomic Data. 2018. Available online: https://data.census.gov/cedsci/deeplinks?url=https%3A%2F%2Ffactfinder.census.gov%2F (accessed on 25 December 2021).
- Chicago Metropolitan Agency for Planning (CMAP). 2015 Land Use Inventory for Northeastern Illinois, Version 1.0. 2020. Available online: https://datahub.cmap.illinois.gov/sl/dataset/land-use-inventory-for-northeast-illinois-2015 (accessed on 10 December 2021).
- Chicago Health Atlas (CHA). 2021. Available online: https://chicagohealthatlas.org/ (accessed on 10 December 2021).
- Kulldorff, M. SaT ScanTM User Guide for Version 9.6; Department of Medicine, Harvard Medical School: Boston, MA, USA, 2018; Available online: www.satscan.org (accessed on 10 December 2021).
- Kulldorff, M.; Huang, L.; Konty, K. A scan statistic for continuous data based on the normal probability model. Int. J. Health Geogr. 2009, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohl, A.; Delmelle, E.M.; Desjardins, M.R.; Lan, Y. Daily surveillance of COVID-19 using the prospective space-time scan statistic in the United States. Spat. Spatio-Temporal Epidemiol. 2020, 34, 100354. [Google Scholar] [CrossRef] [PubMed]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Yuan, Y.; Cave, M.; Zhang, C. Using Local Moran’s I to identify contamination hotspots of rare earth elements in urban soils of London. Appl. Geochem. 2018, 88, 167–178. [Google Scholar] [CrossRef]
- Craney, T.A.; Surles, J.G. Model-dependent variance inflation factor cutoff values. Qual. Eng. 2002, 14, 391–403. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. Soc. Ser. D 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and temporal weighted regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef] [Green Version]
- Wende, D. Spatial risk adjustment between health insurances: Using GWR in risk adjustment models to conserve incentives for service optimisation and reduce MAUP. Eur. J. Health Econ. 2019, 20, 1079–1091. [Google Scholar] [CrossRef]
- Li, S.; Lyu, D.; Huang, G.; Zhang, X.; Gao, F.; Chen, Y.; Liu, X. Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China. J. Transp. Geogr. 2020, 82, 102631. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. Spatial variability of urban climate in response to quantitative trait of land cover based on GWR model. Environ. Monit. Assess. 2019, 191, 194. [Google Scholar] [CrossRef] [PubMed]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Van Rossum, G.; Drake, F.L., Jr. Python Tutorial; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 August 2021).
- RStudio Team. RStudio: Integrated Development Environment for R. RStudio; PBC: Boston, MA, USA, 2021; Available online: http://www.rstudio.com/ (accessed on 1 August 2021).
- Esri Inc. ArcGIS Pro, Version 2.5; Esri Inc.: Redlands, CA, USA, 2020. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview(accessed on 15 December 2021).
- Tennekes, M. Tmap: Thematic Maps in R. J. Stat. Softw. 2018, 84, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Lotfata, A. Walkable Access and Walking Quality of Built Environment: A Case Study of Englewood, Chicago City Metropolitan, in The Palgrave Encyclopedia of Urban and Regional Futures; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–16. [Google Scholar]
- Timmermans, E.J.; Veldhuizen, E.M.; Mäki-Opas, T.; Snijder, M.B.; Lakerveld, J.; Kunst, A.E. Associations of neighbourhood safety with leisure-time walking and cycling in population subgroups: The HELIUS study. Spat. Spatio-Temporal Epidemiol. 2019, 31, 100300. [Google Scholar] [CrossRef] [PubMed]
- Lotfata, A.; Hohl, A. Spatial association of respiratory health with social and environmental factors: Case study of Cook County, Illinois, USA. Cities Health 2021, 38, 1–13. [Google Scholar] [CrossRef]
- Kim, Y. Impacts of the perception of physical environments and the actual physical environments on self-rated health. Int. J. Urban Sci. 2016, 20, 73–87. [Google Scholar] [CrossRef]
- Gregg, K.; Hess, P. Complete streets at the municipal level: A review of American municipal Complete Street Policy. Int. J. Sustain. Transp. 2019, 13, 407–418. [Google Scholar] [CrossRef]
- Wong, D.W. The modifiable areal unit problem (MAUP). In WorldMinds: Geographical Perspectives on 100 Problems; Springer: Dordrecht, The Netherlands, 2004; pp. 571–575. [Google Scholar] [CrossRef]
- Gale, S.L.; Magzamen, S.L.; Radke, J.D.; Tager, I.B. Crime, neighborhood deprivation, and asthma: A GIS approach to define and assess neighborhoods. Spat. Spatio-Temporal Epidemiol. 2011, 2, 59–67. [Google Scholar] [CrossRef]
ID | Prevalence | Tracts | Mean Inside (%) | Mean Outside (%) | Variance | LLR | p-Value |
---|---|---|---|---|---|---|---|
1 | Low | 152 | 14.10 | 29.43 | 42.04 | 823,303.73 | 0.00 |
2 | High | 180 | 36.35 | 23.87 | 54.70 | 444,515.03 | 0.00 |
Variables | Estimate | Std Error | t-Statistic | p-Value | VIF |
---|---|---|---|---|---|
Intercept | 8.52 | 0.42 | 20.19 | 0.00 | - |
Poverty | 9.47 | 0.59 | 15.88 | 0.00 | 2.00 |
No high school | 20.35 | 0.55 | 36.78 | 0.00 | 2.31 |
Disability | 2.78 | 0.48 | 5.71 | 0.00 | 1.87 |
Limited English | −4.24 | 0.44 | −9.50 | 0.00 | 1.82 |
Tree ratio | 1.66 | 0.39 | 4.16 | 0.00 | 1.18 |
Vacant housing | 0.10 | 0.01 | 6.18 | 0.00 | 1.49 |
Mixed land use | −14.22 | 3.24 | −4.37 | 0.00 | 1.23 |
Bike ratio | −1.19 | 0.34 | −3.51 | 0.00 | 1.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hohl, A.; Lotfata, A. A Geographical Analysis of Socioeconomic and Environmental Drivers of Physical Inactivity in Post Pandemic Cities: The Case Study of Chicago, IL, USA. Urban Sci. 2022, 6, 28. https://doi.org/10.3390/urbansci6020028
Hohl A, Lotfata A. A Geographical Analysis of Socioeconomic and Environmental Drivers of Physical Inactivity in Post Pandemic Cities: The Case Study of Chicago, IL, USA. Urban Science. 2022; 6(2):28. https://doi.org/10.3390/urbansci6020028
Chicago/Turabian StyleHohl, Alexander, and Aynaz Lotfata. 2022. "A Geographical Analysis of Socioeconomic and Environmental Drivers of Physical Inactivity in Post Pandemic Cities: The Case Study of Chicago, IL, USA" Urban Science 6, no. 2: 28. https://doi.org/10.3390/urbansci6020028
APA StyleHohl, A., & Lotfata, A. (2022). A Geographical Analysis of Socioeconomic and Environmental Drivers of Physical Inactivity in Post Pandemic Cities: The Case Study of Chicago, IL, USA. Urban Science, 6(2), 28. https://doi.org/10.3390/urbansci6020028