The Morpho-Physio-Biochemical Attributes of Urban Trees for Resilience in Regional Ecosystems in Cities: A Mini-Review
Abstract
:1. Introduction
1.1. Current Snapshot of Urban Vegetation
1.2. Ecosystem Resilience
1.3. Definition and Importance of Urban Ecosystems
1.4. Role of Urban Forests in Ecosystem Services
1.5. Effects of Climate Change on Urban Trees
2. Urban Tree Growth and Physiology: Synthesis and Discussion
2.1. General Tree Growth Condition in Cities
2.2. General Parameters for Measurement to Abiotic Extremes in Cities
3. Responses of Trees to Water Deficit: Synthesis and Discussion
3.1. Changes in Growth and Morphological Parameters in Response to Drought
3.2. Changes in Physiological Parameters in Response to Drought (Stomata and Leaf Area)
3.3. Changes in Physiological Parameters (Especially Photosynthetic Pigments) in Response to Drought
3.4. Changes in Biochemical Parameters in Response to Drought
4. Responses of Trees to High Temperature and Elevated CO2: Synthesis and Discussion
4.1. Changes of Leaf Gas Exchange in Response to Atmospheric Temperature
4.2. Effects of Elevated CO2 Levels on Abiotic Stress Mitigation
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandez, C.; Monnier, Y.; Santonja, M.; Gallet, C.; Weston, L.A.; Prévosto, B.; Bousquet-Mélou, A. The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species. Front. Plant Sci. 2016, 7, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, R.J.; Labatore, A.; Candeias, M. Allelopathic invasive tree (Rhamnus cathartica) alters native plant communities. Plant Ecol. 2017, 218, 1233–1241. [Google Scholar] [CrossRef]
- Rahman, M.A.; Armson, D.; Ennos, A.R. Effect of urbanization and climate change in the rooting zone on the growth and physiology of Pyrus calleryana. Urban For. Urban Green. 2014, 13, 325–335. [Google Scholar] [CrossRef]
- Calfapietra, C.; Peñuelas, J.; Niinemets, Ü. Urban plant physiology: Adaptation-mitigation strategies under permanent stress. Trends Plant Sci. 2015, 20, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Manes, F.; Incerti, G.; Salvatori, E.; Vitale, M.; Ricotta, C.; Costanza, R. Urban ecosystem services: Tree diversity and stability of tropospheric ozone removal. Ecol. Appl. 2012, 22, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.J.; Park, H.; Ho, C.H.; Kim, J. Impact of urbanization on spring and autumn phenology of deciduous trees in the Seoul Capital Area, South Korea. Int. J. Biometeorol. 2019, 63, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Furukawa, T.; Iwasaki, Y.; Seto, M.; Mori, A.S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 2015, 57, 395–408. [Google Scholar] [CrossRef]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef] [Green Version]
- Kwak, M.J.; Lee, J.K.; Park, S.; Lim, Y.; Kim, H.; Kim, K.N.; Woo, S.Y. Evaluation of the importance of some East Asian tree species for refinement of air quality by estimating air pollution tolerance index, anticipated performance index, and air pollutant uptake. Sustainability 2020, 12, 3067. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Hartmann, C.; Moser-Reischl, A.; von Strachwitz, M.F.; Paeth, H.; Pretzsch, H.; Rötzer, T. Tree cooling effects and human thermal comfort under contrasting species and sites. Agric. For. Meteorol. 2020, 287, 107947. [Google Scholar] [CrossRef]
- Morgenroth, J.; Buchan, G.D. Soil moisture and aeration beneath pervious and impervious pavements. J. Arboric. 2009, 35, 135–141. [Google Scholar] [CrossRef]
- Almas, A.D.; Conway, T.M. The role of native species in urban forest planning and practice: A case study of Carolinian Canada. Urban For. Urban Green. 2016, 17, 54–62. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Côté, I.M.; Darling, E.S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 2010, 8, e1000438. [Google Scholar] [CrossRef] [PubMed]
- Pedro, M.S.; Rammer, W.; Seidl, R. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia 2015, 177, 619–630. [Google Scholar] [CrossRef]
- Whitford, W.G.; Rapport, D.J.; DeSoyza, A.G. Using resistance and resilience measurements for «fitness» tests in ecosystem health. J. Environ. Manag. 1999, 57, 21–29. [Google Scholar] [CrossRef]
- Webb, C.T. What is the role of ecology in understanding ecosystem resilience? BioScience 2007, 57, 470–471. [Google Scholar] [CrossRef] [Green Version]
- Pickett, S.T.; Grove, J.M. Urban ecosystems: What would Tansley do? Urban Ecosyst. 2009, 12, 1–8. [Google Scholar] [CrossRef]
- Kowarik, I.; von der Lippe, M. Plant population success across urban ecosystems: A framework to inform biodiversity conservation in cities. J. Appl. Ecol. 2018, 55, 2354–2361. [Google Scholar] [CrossRef] [Green Version]
- Čeplová, N.; Lososová, Z.; Kalusová, V. Urban ornamental trees: A source of current invaders; a case study from a European City. Urban Ecosyst. 2017, 20, 1135–1140. [Google Scholar] [CrossRef]
- Savard, J.P.L.; Clergeau, P.; Mennechez, G. Biodiversity concepts and urban ecosystems. Landsc. Urban Plan. 2000, 48, 131–142. [Google Scholar] [CrossRef]
- Clarkson, B.D.; Wehi, P.M.; Brabyn, L.K. A spatial analysis of indigenous cover patterns and implications for ecological restoration in urban centres, New Zealand. Urban Ecosyst. 2007, 10, 441–457. [Google Scholar] [CrossRef]
- Clarkson, B.D.; Wehi, P.M.; Brabyn, L.K. Bringing Back Nature into Cities: Urban Land Environments, Indigenous Cover, and Urban Restoration; Centre for Biodiversity and Ecology Research, University of Waikato: Hamilton, New Zealand, 2007; pp. 4–24. [Google Scholar]
- Jeon, J.Y.; Hong, J.Y. Classification of urban park soundscapes through perceptions of the acoustical environments. Landsc. Urban Plan. 2015, 141, 100–111. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Massoni, E.S.; Barton, D.N.; Rusch, G.M.; Gundersen, V. Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces. Ecosyst. Serv. 2018, 31, 502–516. [Google Scholar] [CrossRef]
- Tsai, W.L.; McHale, M.R.; Jennings, V.; Marquet, O.; Hipp, J.A.; Leung, Y.F.; Floyd, M.F. Relationships between characteristics of urban green land cover and mental health in US metropolitan areas. Int. J. Env. Res. Pub. Health 2018, 15, 340. [Google Scholar] [CrossRef] [Green Version]
- Schwendenmann, L.; Mitchell, N.D. Carbon accumulation by native trees and soils in an urban park, Auckland. N. Z. J. Ecol. 2014, 38, 213–220. [Google Scholar]
- Konijnendijk, C.C.; Nilsson, K.; Randrup, T.B.; Schipperijn, J. Urban Forests and Trees; Springer Science & Business Media: Berlin, Germany, 2005; pp. 9–21. [Google Scholar]
- Stoffberg, G.H.; Van Rooyen, M.W.; Van der Linde, M.J.; Groeneveld, H.T. Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa. Urban For. Urban Green. 2010, 9, 9–14. [Google Scholar] [CrossRef]
- De Lacy, P.; Shackleton, C. Aesthetic and spiritual ecosystem services provided by urban sacred sites. Sustainability 2017, 9, 1628. [Google Scholar] [CrossRef] [Green Version]
- Kowarik, I.; Hiller, A.; Planchuelo, G.; Seitz, B.; von der Lippe, M.; Buchholz, S. Emerging urban forests: Opportunities for promoting the wild side of the urban green infrastructure. Sustainability 2019, 11, 6318. [Google Scholar] [CrossRef] [Green Version]
- Meurk, C.D.; Swaffield, S.R. A landscape ecological framework for indigenous regeneration in rural New Zealand-Aotearoa. Landsc. Urban Plan. 2000, 50, 129–144. [Google Scholar] [CrossRef]
- Dunning, C.M.; Black, E.; Allan, R.P. Later wet seasons with more intense rainfall over Africa under future climate change. J. Clim. 2018, 31, 9719–9738. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Ainsworth, E.A.; Rogers, A.; Leakey, A.D. Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol. 2008, 147, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Way, D.A.; Oren, R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data. Tree Physiol. 2010, 30, 669–688. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.; Allen, S.K.; Boschung, J.; Midgley, P.M. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Berkeley Earth. Carbon Dioxide and Global Temperature Visualization. Available online: http://berkeleyearth.org/dv/carbon-dioxide-global-temperature-visualization/ (accessed on 12 December 2021).
- Van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fulé, P.Z.; Veblen, T.T. Widespread increase of tree mortality rates in the western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Zhang, K. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Knapp, A.K.; Hoover, D.L.; Wilcox, K.R.; Avolio, M.L.; Koerner, S.E.; La Pierre, K.J.; Smith, M.D. Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments. Glob. Change Biol. 2015, 21, 2624–2633. [Google Scholar] [CrossRef] [Green Version]
- Allison, I.; Bindof, N.L.; Bindschadler, R.A.; Cox, P.M.; de Noblet, N.; England, M.H.; Francis, J.E.; Gruber, N.; Haywood, A.M.; Karoly, D.J.; et al. The Copenhagen Diagnosis: Updating the World on the Latest Climate Science; Climate Research Centre, The University of New South Wales: Sydney, Australia, 2009; pp. 1–60. [Google Scholar]
- Shiru, M.S.; Shahid, S.; Chung, E.S.; Alias, N. Changing characteristics of meteorological droughts in Nigeria during 1901–2010. Atmos. Res. 2019, 223, 60–73. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Aranda, I.; Cañellas, I.; Dorado-Liñán, I.; Olano, J.M.; Martin-Benito, D. Contrasting species decline but high sensitivity to increasing water stress on a mixed pine–oak ecotone. J. Ecol. 2021, 109, 109–124. [Google Scholar] [CrossRef]
- Zhang, B.; Brack, C.L. Urban forest responses to climate change: A case study in Canberra. Urban For. Urban Green. 2021, 57, 126910. [Google Scholar] [CrossRef]
- Nitschke, C.R.; Nichols, S.; Allen, K.; Dobbs, C.; Livesley, S.J.; Baker, P.J.; Lynch, Y. The influence of climate and drought on urban tree growth in southeast Australia and the implications for future growth under climate change. Landsc. Urban Plan. 2017, 167, 275–287. [Google Scholar] [CrossRef]
- Flagella, Z.; Campanile, R.G.; Stoppelli, M.C.; De Caro, A.; Di Fonzo, N. Drought tolerance of photosynthetic electron transport under CO2-enriched and normal air in cereal species. Physiol. Plant. 1998, 104, 753–759. [Google Scholar] [CrossRef]
- Kunert, N.; Schwendenmann, L.; Hölscher, D. Seasonal dynamics of tree sap flux and water use in nine species in Panamanian forest plantations. Agric. For. Meteorol. 2010, 150, 411–419. [Google Scholar] [CrossRef]
- Kunert, N.; Schwendenmann, L.; Potvin, C.; Hölscher, D. Tree diversity enhances tree transpiration in a Panamanian forest plantation. J. Appl. Ecol. 2012, 49, 135–144. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Schütze, G.; Perkins, D.; Lefer, B. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 2017, 7, 15403. [Google Scholar] [CrossRef]
- Farrell, C.; Szota, C.; Arndt, S.K. Urban plantings: ‘living laboratories’ for climate change response. Trends Plant Sci. 2015, 20, 597–599. [Google Scholar] [CrossRef]
- Kendal, D.; Dobbs, C.; Gallagher, R.V.; Beaumont, L.J.; Baumann, J.; Williams, N.S.G.; Livesley, S.J. A global comparison of the climatic niches of urban and native tree populations. Glob. Ecol. Biogeogr. 2018, 27, 629–637. [Google Scholar] [CrossRef]
- Ow, L.F.; Whitehead, D.; Walcroft, A.S.; Turnbull, M.H. Thermal acclimation of respiration but not photosynthesis in Pinus radiata. Funct. Plant Biol. 2008, 35, 448–461. [Google Scholar] [CrossRef]
- Crous, K.Y.; Quentin, A.G.; Lin, Y.S.; Medlyn, B.E.; Williams, D.G.; Barton, C.V.; Ellsworth, D.S. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Glob. Change Biol. 2013, 19, 3790–3807. [Google Scholar] [CrossRef]
- Lee, T.D.; Reich, P.B.; Bolstad, P.V. Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Funct. Ecol. 2005, 19, 640–647. [Google Scholar] [CrossRef]
- Berry, J.; Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 1980, 31, 491–543. [Google Scholar] [CrossRef]
- Crous, K.Y.; Drake, J.E.; Aspinwall, M.J.; Sharwood, R.E.; Tjoelker, M.G.; Ghannoum, O. Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species. Glob. Change Biol. 2018, 24, 4626–4644. [Google Scholar] [CrossRef]
- Nowak, D.J.; Dwyer, J.F. Urban Forest Structure, Benefits, and Value. In Proceedings of the National Urban Forest Conference, Washington, DC, USA, 5 September 2001; Kollin, C., Ed.; American Forests: Washington, DC, USA, 2001; pp. 24–26. Available online: https://www.fs.usda.gov/treesearch/pubs/15523 (accessed on 4 January 2022).
- McPherson, E.G.; van Doorn, N.; de Goede, J. Structure, function and value of street trees in California, USA. Urban For. Urban Green. 2016, 17, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Berry, B.J. A new urban ecology? Urban Geogr. 2001, 22, 699–701. [Google Scholar] [CrossRef]
- Close, T.J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 1996, 97, 795–803. [Google Scholar] [CrossRef]
- Ugolini, F.; Tognetti, R.; Raschi, A.; Bacci, L. Quercus ilex L. as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban For. Urban Green. 2013, 12, 576–584. [Google Scholar] [CrossRef]
- Craul, P.J. Urban soil: Problems and promise. Arnoldia 1991, 51, 23–32. [Google Scholar]
- Olchowik, J.; Suchocka, M.; Malewski, T.; Baczewska-Dąbrowska, A.; Studnicki, M.; Hilszczańska, D. The ectomycorrhizal community of crimean linden trees in Warsaw, Poland. Forests 2020, 11, 926. [Google Scholar] [CrossRef]
- Akbari, H.; Rose, L.S.; Taha, H. Analyzing the land cover of an urban environment using high-resolution orthophotos. Landsc. Urban Plan 2003, 63, 1–14. [Google Scholar] [CrossRef]
- Jiao, T.; Williams, C.A.; Ghimire, B.; Masek, J.; Gao, F.; Schaaf, C. Global climate forcing from albedo change caused by large-scale deforestation and reforestation: Quantification and attribution of geographic variation. Clim. Change 2017, 142, 463–476. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Gaffin, S.R.; Rosenzweig, C.; Khanbilvardi, R.; Parshall, L.; Mahani, S.; Glickman, H.; Hillel, D. Variations in New York city’s urban heat island strength over time and space. Theor. Appl. Climatol. 2008, 94, 1–11. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Kull, O.; Tenhunen, J.D. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiol. 1998, 18, 681–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyystjärvi, E. Photoinhibition of photosystem II. Int. Rev. Cell Mol. Biol. 2013, 300, 243–303. [Google Scholar] [PubMed]
- Lee, T.Y.; Je, S.M.; Kwak, M.J.; Akhmadi, K.; Tumurbaatar, E.; Khaine, I.; Woo, S.Y. Physiological responses of Populus sibirica to different irrigation regimes for reforestation in arid area. S. Afr. J. Bot. 2017, 112, 329–335. [Google Scholar] [CrossRef]
- Janka, E.; Körner, O.; Rosenqvist, E.; Ottosen, C.O. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora). Plant Physiol. Biochem. 2015, 90, 14–22. [Google Scholar] [CrossRef]
- Joshi, P.C.; Swami, A. Air pollution induced changes in the photosynthetic pigments of selected plant species. J. Environ. Biol. 2009, 30, 295–298. [Google Scholar]
- You, H.N.; Woo, S.Y.; Park, C.R. Physiological and biochemical responses of roadside trees grown under different urban environmental conditions in Seoul. Photosynthetica 2016, 54, 478–480. [Google Scholar] [CrossRef]
- Lee, J.K.; Woo, S.Y.; Kwak, M.J.; Park, S.H.; Kim, H.D.; Lim, Y.J.; Lee, K.A. Effects of elevated temperature and ozone in Brassica juncea L.: Growth, physiology, and ROS accumulation. Forests 2020, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.X.; Chen, L.; Ai, J.; Qin, H.Y.; Liu, Y.X.; Xu, P.L.; Zhang, Q.T. Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.). Photosynthetica 2012, 50, 189–196. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Yordanov, I.; Velikova, V.; Tsonev, T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 2000, 38, 171–186. [Google Scholar] [CrossRef]
- Ferdousee, N.; Kabir, A.; Ahmed, R.; Kwon, M.; Hoque, A.R.; Mohiuddin, M.; Kim, W. Water stress effects on growth of dipterocarpus turbinatus seedlings. For. Sci. Technol. 2010, 6, 18–23. [Google Scholar]
- Rissanen, K.; Hölttä, T.; Bäck, J.; Rigling, A.; Wermelinger, B.; Gessler, A. Drought effects on carbon allocation to resin defences and on resin dynamics in old-grown Scots pine. Environ. Exp. Bot. 2021, 2021, 104410. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—from genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Anderegg, L.D.; HilleRisLambers, J. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Glob. Change Biol. 2016, 22, 1029–1045. [Google Scholar] [CrossRef]
- Eller, C.B.; Lima, A.L.; Oliveira, R.S. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 2016, 211, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Marchin, R.; Zeng, H.; Hoffmann, W. Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought. Oecologia 2010, 163, 845–854. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, G.; Shimizu, H. Plant responses to drought and rewatering. Plant Signal. Behav. 2010, 5, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Macinnis-Ng, C.; Schwendenmann, L. Litterfall, carbon and nitrogen cycling in a southern hemisphere conifer forest dominated by kauri (Agathis australis) during drought. Plant Ecol. 2015, 216, 247–262. [Google Scholar] [CrossRef]
- Weber, J.A.; Gates, D.M. Gas exchange in Quercus rubra (northern red oak) during a drought: Analysis of relations among photosynthesis, transpiration, and leaf conductance. Tree Physiol. 1990, 7, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Crous, K.Y.; Campany, C.; Lopez, R.; Cano, F.J.; Ellsworth, D.S. Canopy position affects photosynthesis and anatomy in mature Eucalyptus trees in elevated CO2. Tree Physiol. 2020, 117, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Loustau, D.; Brahim, M.B.; Gaudillère, J.P.; Dreyer, E. Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiol. 1999, 19, 707–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farquhar, G.D.; von Caemmerer, S.V.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, R.J.; Reynolds, J.F. Potential growth and drought tolerance of eight desert grasses: Lack of a trade-off? Oecologia 2000, 123, 90–98. [Google Scholar] [CrossRef]
- Mayak, S.; Tirosh, T.; Glick, B.R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 2004, 42, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Remkes, C. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 1990, 83, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef] [Green Version]
- Arndt, S.K.; Clifford, S.C.; Wanek, W.; Jones, H.G.; Popp, M. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiol. 2001, 21, 705–715. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Han, A.R.; Han, A.; Kim, H.S. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci. Total Environ. 2021, 779, 146466. [Google Scholar] [CrossRef] [PubMed]
- Doheny-Adams, T.; Hunt, L.; Franks, P.J.; Beerling, D.J.; Gray, J.E. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos. Trans. R. Soc. B 2012, 367, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Keeling, E.G.; Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 2011, 120, 1909–1920. [Google Scholar] [CrossRef]
- Flexas, J.; Briantais, J.M.; Cerovic, Z.; Medrano, H.; Moya, I. Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: A new remote sensing system. Remote Sens. Environ. 2000, 73, 283–297. [Google Scholar] [CrossRef]
- Ge, Z.M.; Zhou, X.; Kellomäki, S.; Wang, K.Y.; Peltola, H.; Martikainen, P.J. Responses of leaf photosynthesis, pigments and chlorophyll fluorescence within canopy position in a boreal grass (Phalaris arundinacea L.) to elevated temperature and CO2 under varying water regimes. Photosynthetica 2011, 49, 172–184. [Google Scholar] [CrossRef]
- Patakas, A.; Nikolaou, N.; Zioziou, E.; Radoglou, K.; Noitsakis, B. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci. 2002, 163, 361–367. [Google Scholar] [CrossRef]
- Karatas, İ.; Öztürk, L.; Demir, Y.; Ünlükara, A.; Kurunç, A.; Düzdemir, O. Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress. Toxicol. Ind. Health 2014, 30, 693–700. [Google Scholar] [CrossRef]
- Hare, P.D.; Cress, W.A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 1997, 21, 79–102. [Google Scholar] [CrossRef]
- Habibi, G. Effects of mild and severe drought stress on the biomass, phenolic compounds production and photochemical activity of Aloe vera (L.) Burm. f. Acta Agric. Slov. 2018, 111, 463–476. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.; Poorter, H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Yin, C.; Wang, X.; Duan, B.; Luo, J.; Li, C. Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress. Environ. Exp. Bot. 2005, 53, 315–322. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.T.; Moutinho-Pereira, J.; Correia, C.M. Drought stress effects and olive tree acclimation under a changing climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Anderson, O.R.; Griffin, K.L. Chloroplast numbers, mitochondrion numbers and carbon assimilation physiology of Nicotiana sylvestris as affected by CO2 concentration. Environ. Exp. Bot. 2004, 51, 21–31. [Google Scholar] [CrossRef]
- Bussotti, F. Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: A critical overview. Glob. Change Biol. 2008, 14, 2727–2739. [Google Scholar] [CrossRef]
- Wilson, K.B.; Baldocchi, D.D.; Hanson, P.J. Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species. Tree Physiol. 2000, 20, 787–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paudel, I.; Halpern, M.; Wagner, Y.; Raveh, E.; Yermiyahu, U.; Hoch, G.; Klein, T. Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environ. Exp. Bot. 2018, 148, 117–127. [Google Scholar] [CrossRef]
- Maes, W.H.; Achten, W.M.; Reubens, B.; Raes, D.; Samson, R.; Muys, B. Plant–water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J. Arid. Environ. 2009, 73, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Franks, P.J.; Doheny-Adams, T.W.; Britton-Harper, Z.J.; Gray, J.E. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol. 2015, 207, 188–195. [Google Scholar] [CrossRef]
- Yin, C.; Peng, Y.; Zang, R.; Zhu, Y.; Li, C. Adaptive responses of Populus kangdingensis to drought stress. Physiol. Plant. 2005, 123, 445–451. [Google Scholar] [CrossRef]
- Stratópoulos, L.M.F.; Zhang, C.; Häberle, K.H.; Pauleit, S.; Duthweiler, S.; Pretzsch, H.; Rötzer, T. Effects of drought on the phenology, growth, and morphological development of three urban tree species and cultivars. Sustainability 2019, 11, 5117. [Google Scholar] [CrossRef] [Green Version]
- Gururani, M.A.; Mohanta, T.K.; Bae, H. Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. Int. J. Mol. Sci. 2015, 16, 19055–19085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vile, D.; Garnier, E.; Shipley, B.; Laurent, G.; Navas, M.L.; Roumet, C.; Wright, I.J. Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann. Bot. 2005, 96, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Irving, H.R.; Gehring, C.A.; Parish, R.W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc. Natl. Acad. Sci. USA 1992, 89, 1790–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tezara, W.; Mitchell, V.; Driscoll, S.P.; Lawlor, D.W. Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J. Exp. Bot. 2002, 53, 1781–1791. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.Z.; Bao, W.K.; Li, F.L.; Wu, N. Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings. Photosynthetica 2008, 46, 40–48. [Google Scholar] [CrossRef]
- Feltrim, D.; Pereira, L.; de Santana Costa, M.G.; Balbuena, T.S.; Mazzafera, P. Stem aquaporins and surfactant-related genes are differentially expressed in two Eucalyptus species in response to water stress. Plant Stress 2021, 1, 100003. [Google Scholar] [CrossRef]
- Schenk, H.J.; Steppe, K.; Jansen, S. Nanobubbles: A new paradigm for air-seeding in xylem. Trends Plant Sci. 2015, 20, 199–205. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Costa, F.R.; van Baalen, E.; de Jonge, A.; Bittencourt, P.R.; Almanza, Y.; Poorter, L. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 2019, 221, 1457–1465. [Google Scholar] [CrossRef] [Green Version]
- Tezara, W.M.V.J.; Mitchell, V.J.; Driscoll, S.D.; Lawlor, D.W. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 1999, 401, 914–917. [Google Scholar] [CrossRef]
- Fu, J.; Huang, B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 2001, 45, 105–114. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, B. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 2001, 41, 436–442. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Riadh, K.; Gopi, R.; Manivannan, P.; Ines, J.; Al-Juburi, H.J.; Panneerselvam, R. Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 2009, 31, 427–436. [Google Scholar] [CrossRef]
- Cannella, D.; Möllers, K.B.; Frigaard, N.U.; Jensen, P.E.; Bjerrum, M.J.; Johansen, K.S.; Felby, C. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat. Commun. 2016, 7, 11134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batjuka, A.; Škute, N.; Petjukevičs, A. The influence of antimycin A on pigment composition and functional activity of photosynthetic apparatus in Triticum aestivum L. under high temperature. Photosynthetica 2017, 55, 251–263. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.; Cescatti, A.; Gao, F.; Schull, M.; Gitelson, A. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC). Remote Sens. Environ. 2015, 159, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef] [Green Version]
- Rissanen, K.; Vanhatalo, A.; Salmon, Y.; Bäck, J.; Hölttä, T. Stem emissions of monoterpenes, acetaldehyde and methanol from Scots pine (Pinus sylvestris L.) affected by tree–water relations and cambial growth. Plant Cell Environ. 2020, 43, 1751–1765. [Google Scholar] [CrossRef]
- Zakar, T.; Laczko-Dobos, H.; Toth, T.N.; Gombos, Z. Carotenoids assist in cyanobacterial photosystem II assembly and function. Front. Plant Sci. 2016, 7, 295. [Google Scholar] [CrossRef] [Green Version]
- Campos, M.D.; Nogales, A.; Cardoso, H.G.; Campos, C.; Grzebelus, D.; Velada, I.; Arnholdt-Schmitt, B. Carrot plastid terminal oxidase gene (dcptox) responds early to chilling and harbors intronic pre-mirnas related to plant disease defense. Plant Gene 2016, 7, 21–25. [Google Scholar] [CrossRef]
- Nagy, L.; Kiss, V.; Brumfeld, V.; Osvay, K.; Börzsönyi, Á.; Magyar, M.; Malkin, S. Thermal effects and structural changes of photosynthetic reaction centers characterized by wide frequency band hydrophone: Effects of carotenoids and terbutryn. Photochem. Photobiol. 2015, 91, 1368–1375. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. Models of photosynthesis. Plant Physiol. 2001, 125, 42–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Iio, A.; Tenhunen, J.; Kakubari, Y. Annual and seasonal variations in photosynthetic capacity of Fagus crenata along an elevation gradient in the Naeba Mountains, Japan. Tree Physiol. 2008, 28, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrams, M.D. Adaptations and responses to drought in Quercus species of North America. Tree Physiol. 1990, 7, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Juárez-López, F.J.; Escudero, A.; Mediavilla, S. Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Tree Physiol. 2008, 28, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Führer, E. Oak Decline in Central Europe: A Synopsis of Hypotheses. In Proceedings of the Population Dynamics, Impacts, and Integrated Management of Forest Defoliating Insects, Banska Stiavnica, Slovakia, 18–23 August 1996; USDA Forest Service General Technical Report NE-247. USDA Forest Service: Newtown Square, PA, USA, 1998. [Google Scholar]
- Loewenstein, N.J.; Pallardy, S.G. Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: A comparison of canopy trees of three temperate deciduous angiosperms. Tree Physiol. 1998, 18, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quero, J.L.; Villar, R.; Marañón, T.; Zamora, R. Interactions of drought and shade effects on seedlings of four Quercus species: Physiological and structural leaf responses. New Phytol. 2006, 170, 819–834. [Google Scholar] [CrossRef] [Green Version]
- Delauney, A.J.; Verma, D.P.S. Proline biosynthesis and osmoregulation in plants. Plant J. 1993, 4, 215–223. [Google Scholar] [CrossRef]
- Miller, G.A.; Suzuki, N.; Ciftci-Yilmaz, S.U.; Mittler, R.O. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010, 33, 453–467. [Google Scholar] [CrossRef]
- Suchocka, M.; Swoczyna, T.; Kosno-Jończy, J.; Kalaji, H.M. Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill. trees. PLoS ONE 2021, 16, e0256465. [Google Scholar] [CrossRef]
- Swoczyna, T.; Borowski, J. Impact of airborne salinity deposition on shoot growth and leaf phenology of London plane (Platanus × hispanica Mill. ex Münchh. ‘Acerifolia’). In Proceedings of the Plants in Urban Areas and Landscape, Nitra, Slovakia, 7–8 November 2019; pp. 59–65. [Google Scholar]
- Kirschbaum, M.U.F. Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol. 2004, 6, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.R.; Lukac, M.; Hood, R.; Healey, J.R.; Miglietta, F.; Godbold, D.L. Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytol. 2013, 198, 156–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricke, W. Night-time transpiration–favouring growth? Trends Plant Sci. 2019, 24, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Allen Jr, L.H. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environ. Qual. 1990, 19, 15–34. [Google Scholar] [CrossRef]
- Bert, D.; Leavitt, S.W.; Dupouey, J.L. Variations of wood δ13C and water-use efficiency of Abies alba during the last century. Ecology 1997, 78, 1588–1596. [Google Scholar]
- Chater, C.; Peng, K.; Movahedi, M.; Dunn, J.A.; Walker, H.J.; Liang, Y.K.; Hetherington, A.M. Elevated CO2-induced responses in stomata require ABA and ABA signaling. Curr. Biol. 2015, 25, 2709–2716. [Google Scholar] [CrossRef] [Green Version]
- Schippers, P.; Sterck, F.; Vlam, M.; Zuidema, P.A. Tree growth variation in the tropical forest: Understanding effects of temperature, rainfall and CO2. Glob. Change Biol. 2015, 21, 2749–2761. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef]
- Gamar, M.I.A.; Kisiala, A.; Emery, R.N.; Yeung, E.C.; Stone, S.L.; Qaderi, M.M. Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana. Planta 2019, 250, 1191–1214. [Google Scholar] [CrossRef]
- Kitao, M.; Lei, T.T.; Koike, T.; Kayama, M.; Tobita, H.; Maruyama, Y. Interaction of drought and elevated CO2 concentration on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch seedlings grown with limited N availability. Tree Physiol. 2007, 27, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Yin, X. Responses of leaf nitrogen concentration and specific leaf area to atmospheric CO2 enrichment: A retrospective synthesis across 62 species. Glob. Change Biol. 2002, 8, 631–642. [Google Scholar] [CrossRef]
- Lin, J.; Jach, M.E.; Ceulemans, R. Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytol. 2001, 150, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Woo, S.Y. Native Trees as a Provider of Vital Urban Ecosystem Services in Urbanizing New Zealand: Status Quo, Challenges and Prospects. Land 2022, 11, 92. [Google Scholar] [CrossRef]
- Duan, H.; Amthor, J.S.; Duursma, R.A.; O’grady, A.P.; Choat, B.; Tissue, D.T. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Tree Physiol. 2013, 33, 779–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Independent Variable | Rationale of Measurement | Reference |
---|---|---|
Leaf gas exchange (Auto-log; seasonal pattern) | Leaf gas exchange rate measurement can provide important information of abiotic stress extent through photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 contents. | [72,88,89] |
Light response curve (PN-photosynthetically active radiation (PAR) curve; A/Q curves; diurnal pattern) | Photosynthesis is influenced by physiological patterns over time and diurnal patterns are linked to tree growth, development, and environmental acclimation over time. | [72,89] |
Estimation of derived parameters (Vcmax and Jmax; A/Ci curves; indirect Rubisco activity measurement) | A/Ci curve also can be utilised for estimation of indirect Rubisco activity extent as an abiotic stress indicator. the plateau of the A/Ci curve related to the rate of maximum electron transport (μmol m−2 s−1). As Jmax (the rate of maximum electron transport (μmol m−2 s−1)) is related to the plateau of the A/Ci curve. The parameters from the A/Ci curves (i.e., Vcmax (maximum Rubisco activity) and Rd (the rate of dark respiration in μmol m−2 s−1)) can be calculated from the following equations: Vcmax (maximum Rubisco activity) = {k × [Ci + Kc × (1 + O/K0)]2/[Γ* + Kc × (1 + O/K0)]}; Rd (dark respiration rate) = {Vcmax × (Ci − Γ *)/[Ci + Kc × (1 + O/Kc)] − (k × Ci + i)}; Jmax (election transport capacity) = {[4 × (P′max + Rd) × (Ci + 2 × Γ*)]/(Ci − Γ*)}. The rate of Vcmax can be used to estimate stress extent through the initial slope of the A/Ci curve using the linear equation (A = k Ci + i) within 50–200 μmol mol−1. where Kc and K0 are normally 404.9 μmol mol−1 and 278.4 mmol mol−1 at 25 °C, respectively, and O is 210 mmol mol−1. Ci, where k, the initial slope of the A/Ci curve, can be described as CE (carboxylation efficiency), and –i/k is equal to Γ* (CO2 compensation point in μmol mol−1) in the absence of the mitochondrial respiration. | [90] |
Photopigment (chlorophyll and carotenoid contents) | Destructive photopigment measurement can be used as an accurate abiotic stress indicator for plant species. Chlorophyll a (Chla) = 12.7 × A663 − 2.69 × A645; Chlorophyll b (Chlb) = 22.9 × A645 − 4.68 × A663; Total Chlorophyll (ChlT) = 20.2 × A645 + 8.02 × A663; Total Carotenoid (CarT) = (1000 × A470 − 1.82 × Chla − 85.02 × Chlb)/198. AXX means the absorbance of the extract solution in a 1 cm path-length cuvette at a specific wavelength. The pigment concentration will be calculated as g kg−1 of FW from a 1 g m−3 (μg mL−1) cuvette of extract. | [72] |
Photosynthetic water use efficiency (WUE) | WUE is a key parameter related to photosynthetic activity during the drought and water deficit. WUE = Anet/Tr; WUE: Water use efficiency (μmol CO2 mmol−1 H2O); Anet: Photosynthetic rate (μmol CO2 m−2 s−1); Tr: Transpiration rate (mmol H2O m−2 s−1) | [91] |
Leaf water status (LWP, leaf water potential; RWC, relative water content) | In physiological aspects, RWC and LWP are important indicators to estimate and quantify the extent of net water loss and water stress for plant species. RWC (%) = [(fresh weight − dry weight)/(turgid weight − dry weight)] × 100 | [92,93] |
Growth measurement (HRGR, Height relative growth rate; DRGR, Root collar diameter relative growth rate) | The relative growth rate provides more accurate changes of plant growth during the experimental period. RGR (cm day−1) = (ln Mf − ln Mi)/T, Mi and Mf are initial and final growth data (seedling height and diameter), respectively, and T is the time interval (number of days). | [94] |
Specific leaf area (SLA) | This is because SLA measurement is highly connected to osmotic adjustment and leaf longevity under abiotic stresses such as drought. SLA (cm2 g−1) = leaf area (cm2)/leaf dry weight (g) | [95,96] |
Leaf mass per area (LMA; inversion value of SLA) | Leaf area is decreased while weight and leaf-thickness are increased during the drought. LMA (is increased in drought conditions) and Rd are positively correlated on the tree’s drought resistance study. Namely, if trees are increased their LMA values as a drought stress response, their root collar diameter can be increased relatively, as a resistance. | [97,98] |
Stomatal characteristics and density (scanning electron microscopy; SEM) | This way can demonstrate thermal and drought stress induce reduced stomatal size (i.e., length and width) to control stomatal conductance (Gs) through the visible method. | [99] |
Drought resistance index by root collar diameter (Rd) | This aims to evaluate drought resistance among different species, Rd and comparison study of relative change in morpho-physio-biochemical attributes at the same page can be more accurate to choose superior species amid the abiotic extremes. Drought resistance index by root collar diameter (Rd) = XDrought/XControl | [100] |
Determination of chlorophyll fluorescence | Chlorophyll fluorescence measurement is one of the easiest ways to measure plants’ stress responses through a non-destructive way. Environmental favourable conditions of plant species can be evaluated by chlorophyll fluorescence and its transient measurement (PSII behaviour). | [72,101,102] |
Determination of proline contents | Through osmoprotectants proline contents, trees’ abiotic stress extent can be quantified as one of the defence mechanisms. | [72,103,104] |
Determination of lipid peroxidation (malondialdehyde; MDA) | MDA is a key parameter to quantify abiotic stress extent of the plant. MDA (nmol g−1 FW) = ((A532 − A600)/155,000) × 106 | [72,105,106] |
Total leaf nitrogen content (T-N) assessment | Quantifying foliar nitrogen (N) budget is linked to tree health and environmental adaptation. As it is an important contributor to plant vigour, and key source of photosynthesis and photopigment. | [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.; Leung, D.W.M. The Morpho-Physio-Biochemical Attributes of Urban Trees for Resilience in Regional Ecosystems in Cities: A Mini-Review. Urban Sci. 2022, 6, 37. https://doi.org/10.3390/urbansci6020037
Jang J, Leung DWM. The Morpho-Physio-Biochemical Attributes of Urban Trees for Resilience in Regional Ecosystems in Cities: A Mini-Review. Urban Science. 2022; 6(2):37. https://doi.org/10.3390/urbansci6020037
Chicago/Turabian StyleJang, Jihwi, and David W. M. Leung. 2022. "The Morpho-Physio-Biochemical Attributes of Urban Trees for Resilience in Regional Ecosystems in Cities: A Mini-Review" Urban Science 6, no. 2: 37. https://doi.org/10.3390/urbansci6020037
APA StyleJang, J., & Leung, D. W. M. (2022). The Morpho-Physio-Biochemical Attributes of Urban Trees for Resilience in Regional Ecosystems in Cities: A Mini-Review. Urban Science, 6(2), 37. https://doi.org/10.3390/urbansci6020037