Integrating Biophysical and Economic Assessment: Review of Nature-Based Adaptation to Urban Flood Extremes
Abstract
:1. Introduction
2. Systematic Literature Review: Methodology
2.1. Search Strategy and Inclusion Criteria
- -
- Governance and institutional aspects;
- -
- Hydrological and engineering aspects;
- -
- Different hazards from urban and coastal flood;
- -
- Inland cities or rural areas.
2.2. Review Focus Areas
3. Results and Analysis
3.1. Statistical Overview
3.2. Background: Framimg the Application of NBS
3.2.1. Emergent Theme: Climate Change Perspective into NBS Analysis
3.2.2. Emergent Theme: Economic Perspective into NBS Analysis
3.2.3. Emergent Theme: Adaptation Perspective into NBS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Reference | Authors | Title | Year | Journal |
---|---|---|---|---|
[45] | Connop S., Vandergert P., Eisenberg B., Collier M.J., Nash C., Clough J., Newport D. | Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure | 2016 | Environmental Science and Policy |
[83] | Senosiain J.L. | Urban regreeneration: Green urban infrastructure as a response to climate change mitigation and adaptation | 2020 | International Journal of Design and Nature and Ecodynamics |
[75] | Karamouz M., Heydari Z. | Conceptual Design Framework for Coastal Flood Best Management Practices | 2020 | Journal of Water Resources Planning and Management |
[84] | Chan F.K.S., Griffiths J.A., Higgitt D., Xu S., Zhu F., Tang Y.-T., Xu Y., Thorne C.R. | “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context | 2018 | Land Use Policy |
[47] | Boelee E., Janse J., Le Gal A., Kok M., Alkemade R., Ligtvoet W. | Overcoming water challenges through nature-based solutions | 2017 | Water Policy |
[63] | Alves A., Gómez J.P., Vojinovic Z., Sánchez A., Weesakul S. | Combining co-benefits and stakeholders perceptions into green infrastructure selection for flood risk reduction | 2018 | Environments |
[68] | Duy P.N., Chapman L., Tight M., Linh P.N., Thuong L.V. | Increasing vulnerability to floods in new development areas: evidence from Ho Chi Minh City | 2018 | International Journal of Climate Change Strategies and Management |
[64] | Bertilsson L., Wiklund K., de Moura Tebaldi I., Rezende O.M., Veról A.P., Miguez M.G. | Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning | 2019 | Journal of Hydrology |
[58] | Sörensen J., Emilsson T. | Evaluating flood risk reduction by urban blue-green infrastructure using insurance data | 2019 | Journal of Water Resources Planning and Management |
[32] | O’Donnell E.C., Lamond J.E., Thorne C.R. | Recognising barriers to implementation of Blue-Green Infrastructure: a Newcastle case study | 2017 | Urban Water Journal |
[54] | El Hattab M.H., Theodoropoulos G., Rong X., Mijic A. | Applying the systems approach to decompose the SuDS decision-making process for appropriate hydrologic model selection | 2020 | Water |
[39] | O’Sullivan J.J., Bruen M., Purcell P.J., Gebre F. | Urban drainage in Ireland—embracing sustainable systems | 2012 | Water and Environment Journal |
[49] | Ramírez J.I., Qi K., Xiaobo L. | Sustainable stormwater management in Yinchuan New Town | 2016 | Water Practice and Technology |
[56] | Dong X., Guo H., Zeng S. | Enhancing future resilience in urban drainage system: Green versus grey infrastructure | 2017 | Water Research |
[92] | Hasala D., Supak S., Rivers L. | Green infrastructure site selection in the Walnut Creek wetland community: A case study from southeast Raleigh, North Carolina | 2020 | Landscape and Urban Planning |
[72] | Kunapo J., Fletcher T.D., Ladson A.R., Cunningham L., Burns M.J. | A spatially explicit framework for climate adaptation | 2018 | Urban Water Journal |
[38] | Butt N., Shanahan D.F., Shumway N., Bekessy S.A., Fuller R.A., Watson J.E.M., Maggini R., Hole D.G. | Opportunities for biodiversity conservation as cities adapt to climate change | 2018 | Geo: Geography and Environment |
[67] | Pimentel-Rodrigues C., Silva-Afonso A. | Adaptation measures to climate change. Integration of green roofs with rainwater harvesting systems | 2018 | WSEAS Transactions on Environment and Development |
[51] | Schubert J.E., Burns M.J., Fletcher T.D., Sanders B.F. | A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards | 2017 | Advances in Water Resources |
[74] | Zidar K., Belliveau-Nance M., Cucchi A., Denk D., Kricun A., O’Rourke S., Rahman S., Rangarajan S., Rothstein E., Shih J., Montalto F. | A framework for multifunctional green infrastructure investment in Camden, NJ | 2017 | Urban Planning |
[79] | Xie J., Chen H., Liao Z., Gu X., Zhu D., Zhang J. | An integrated assessment of urban flooding mitigation strategies for robust decision making | 2017 | Environmental Modelling and Software |
[85] | Voskamp I.M., Van de Ven F.H.M. | Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events | 2015 | Building and Environment |
[93] | Farrugia S., Hudson M.D., McCulloch L. | An evaluation of flood control and urban cooling ecosystem services delivered by urban green infrastructure | 2013 | International Journal of Biodiversity Science, Ecosystem Services and Management |
[48] | Rozos E., Makropoulos C., Maksimović Č. | Rethinking urban areas: An example of an integrated blue-green approach | 2013 | Water Science and Technology: Water Supply |
[33] | Xie X., Qin S., Gou Z., Yi M. | Engaging professionals in urban stormwater management: the case of China’s Sponge City | 2020 | Building Research and Information |
[77] | Bu J., Peng C., Li C., Wang X., Zhang Y., Yang Z., Cai Y. | A method for determining reasonable water area ratio based on flood risk and cost-effectiveness in Rainy City | 2020 | Environmental Earth Sciences |
[66] | Wu H.-L., Cheng W.-C., Shen S.-L., Lin M.-Y., Arulrajah A. | Variation of hydro-environment during past four decades with underground sponge city planning to control flash floods in Wuhan, China: An overview | 2020 | Underground Space (China) |
[53] | Lancia M., Zheng C., He X., Lerner D.N., Andrews C., Tian Y. | Hydrogeological constraints and opportunities for “Sponge City” development: Shenzhen, southern China | 2020 | Journal of Hydrology: Regional Studies |
[36] | Rubinato M., Nichols A., Peng Y., Zhang J.-M., Lashford C., Cai Y.-P., Lin P.-Z., Tait S. | Urban and river flooding: Comparison of flood risk management approaches in the UK and China and an assessment of future knowledge needs | 2019 | Water Science and Engineering |
[42] | O’Donnell E.C., Thorne C.R., Yeakley J.A., Chan F.K.S. | Sustainable Flood Risk and Stormwater Management in Blue-Green Cities; an Interdisciplinary Case Study in Portland, Oregon | 2020 | Journal of the American Water Resources Association |
[43] | Lawson E., Thorne C., Ahilan S., Allen D., Arthur S., Everett G., Fenner R., Glenis V., Guan D., Hoang L., Kilsby C., Lamond J., Mant J., Maskrey S., Mount N., Sleigh A., Smith L., Wright N. | Delivering and evaluating the multiple flood risk benefits in Blue-Green cities: An interdisciplinary approach | 2014 | WIT Transactions on Ecology and the Environment |
[71] | Kirshen P., Borrelli M., Byrnes J., Chen R., Lockwood L., Watson C., Starbuck K., Wiggin J., Novelly A., Uiterwyk K., Thurson K., McMann B., Foster C., Sprague H., Roberts H.J., Bosma K., Jin D., Herst R. | Integrated assessment of storm surge barrier systems under present and future climates and comparison to alternatives: a case study of Boston, USA | 2020 | Climatic Change |
[94] | Lafortezza R., Sanesi G. | Nature-based solutions: Settling the issue of sustainable urbanization | 2019 | Environmental Research |
[76] | McClymont K., Fernandes Cunha D.G., Maidment C., Ashagre B., Vasconcelos A.F., Batalini de Macedo M., Nóbrega dos Santos M.F., Gomes Júnior M.N., Mendiondo E.M., Barbassa A.P., Rajendran L., Imani M. | Towards urban resilience through Sustainable Drainage Systems: A multi-objective optimisation problem | 2020 | Journal of Environmental Management |
[31] | Hanson H.I., Wickenberg B., Alkan Olsson J. | Working on the boundaries—How do science use and interpret the nature-based solution concept? | 2020 | Land Use Policy |
[57] | Watkin L.J., Ruangpan L., Vojinovic Z., Weesakul S., Torres A.S. | A framework for assessing benefits of implemented nature-based solutions | 2019 | Sustainability |
[95] | Sutton-Grier A.E., Sandifer P.A. | Conservation of Wetlands and Other Coastal Ecosystems: a Commentary on their Value to Protect Biodiversity, Reduce Disaster Impacts, and Promote Human Health and Well-Being | 2019 | Wetlands |
[89] | Huang, YJ; Tian, Z; Ke, Q; Liu, JG; Irannezhad, M; Fan, DL; Hou, MF; Sun, LX | Nature-based solutions for urban pluvial flood risk management | 2020 | Water |
[80] | Gunasekara R., Pecnik G., Girvan M., De La Rosa T. | Delivering integrated water management benefits: The North West Bicester development, UK | 2018 | Proceedings of the Institution of Civil Engineers: Water Management |
[61] | Diaz-Nieto J., Lerner D.N., Saul A.J. | Least-cost path analysis to identify retrofit surface-water conveyance solutions | 2016 | Journal of Hydrologic Engineering |
[73] | Jenkins K., Surminski S., Hall J., Crick F. | Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model | 2017 | Science of the Total Environment |
[96] | Li L., Uyttenhove P., Van Eetvelde V. | Planning green infrastructure to mitigate urban surface water flooding risk—A methodology to identify priority areas applied in the city of Ghent | 2020 | Landscape and Urban Planning |
[52] | Alves A., Gersonius B., Kapelan Z., Vojinovic Z., Sanchez A. | Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management | 2019 | Journal of Environmental Management |
[46] | Fenner R., O’Donnell E., Ahilan S., Dawson D., Kapetas L., Krivtsov V., Ncube S., Vercruysse K. | Achieving urban flood resilience in an uncertain future | 2019 | Water |
[59] | Webber J.L., Fu G., Butler D. | Rapid surface water intervention performance comparison for urban planning | 2018 | Water Science and Technology |
[69] | Moore T.L., Gulliver J.S., Stack L., Simpson M.H. | Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts | 2016 | Climatic Change |
[81] | Zellner M., Massey D., Minor E., Gonzalez-Meler M. | Exploring the effects of green infrastructure placement on neighborhood-level flooding via spatially explicit simulations | 2016 | Computers, Environment and Urban Systems |
[65] | Cook E.A. | Green site design: Strategies for storm water management | 2007 | Journal of Green Building |
[41] | Li L., Collins A.M., Cheshmehzangi A., Chan F.K.S. | Identifying enablers and barriers to the implementation of the Green Infrastructure for urban flood management: A comparative analysis of the UK and China | 2020 | Urban Forestry and Urban Greening |
[97] | Li Y., Li H.X., Huang J., Liu C. | An approximation method for evaluating flash flooding mitigation of sponge city strategies—A case study of Central Geelong | 2020 | Journal of Cleaner Production |
[55] | Brink E., Aalders T., Ádám D., Feller R., Henselek Y., Hoffmann A., Ibe K., Matthey-Doret A., Meyer M., Negrut N.L., Rau A.-L., Riewerts B., von Schuckmann L., Törnros S., von Wehrden H., Abson D.J., Wamsler C. | Cascades of green: A review of ecosystem-based adaptation in urban areas | 2016 | Global Environmental Change |
[98] | Ellis J.B., Lundy L. | Implementing sustainable drainage systems for urban surface water management within the regulatory framework in England and Wales | 2016 | Journal of Environmental Management |
[44] | Everard M., McInnes R. | Systemic solutions for multi-benefit water and environmental management | 2013 | Science of the Total Environment |
[62] | Im J. | Green streets to serve urban sustainability: Benefits and typology | 2019 | Sustainability |
[78] | Liu W., Chen W., Feng Q., Peng C., Kang P. | Cost-Benefit Analysis of Green Infrastructures on Community Stormwater Reduction and Utilization: A Case of Beijing, China | 2016 | Environmental Management |
[70] | Locatelli L., Guerrero M., Russo B., Martí nez-Gomariz E., Sunyer D., Martí nez M. | Socio-economic assessment of green infrastructure for climate change adaptation in the context of urban drainage planning | 2020 | Sustainability |
[50] | Porse E. | Risk-based zoning for urbanizing floodplains | 2014 | Water Science and Technology |
[82] | Yu C. | Sustainable urban drainable systems for management of surface water | 2013 | Design and Management of Sustainable Built Environments |
[99] | Sharma D., Kansal A. | Sustainable city: A case study of stormwater management in economically developed urban catchments | 2013 | Mechanism Design for Sustainability: Techniques and Cases |
[100] | Watkins S., Charlesworth S.M. | Sustainable Drainage Systems—Features and Designs | 2014 | Water Resources in the Built Environment: Management Issues and Solutions |
[101] | Coupe S.J., Faraj A.S., Nnadi E.O., Charlesworth S.M. | Integrated Sustainable Urban Drainage Systems | 2013 | Water Efficiency in Buildings: Theory and Practice |
[102] | Nasr M., Shmroukh A.N. | Gray-to-Green Infrastructure for Stormwater Management: An Applicable Approach in Alexandria City, Egypt | 2020 | Advances in Science, Technology and Innovation |
[103] | Kalantari Z., Ferreira C.S.S., Keesstra S., Destouni G. | Nature-based solutions for flood-drought risk mitigation in vulnerable urbanizing parts of East-Africa | 2018 | Current Opinion in Environmental Science and Health |
[37] | Saleh F., Weinstein M.P. | The role of nature-based infrastructure (NBI) in coastal resiliency planning: A literature review | 2016 | Journal of Environmental Management |
[60] | Venkataramanan V., Lopez D., McCuskey D.J., Kiefus D., McDonald R.I., Miller W.M., Packman A.I., Young S.L. | Knowledge, attitudes, intentions, and behavior related to green infrastructure for flood management: A systematic literature review | 2020 | Science of the Total Environment |
[14] | Hobbie S.E., Grimm N.B. | Nature-based approaches to managing climate change impacts in cities | 2020 | Philosophical Transactions of the Royal Society B: Biological Sciences |
[34] | Faivre N., Sgobbi A., Happaerts S., Raynal J., Schmidt L. | Translating the Sendai Framework into action: The EU approach to ecosystem-based disaster risk reduction | 2018 | International Journal of Disaster Risk Reduction |
[35] | Morris R.L., Konlechner T.M., Ghisalberti M., Swearer S. | From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence | 2018 | Global Change Biology |
[40] | Aerts J.C.J.H. | A review of cost estimates for flood adaptation | 2018 | Water |
References
- Zhou, Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Okem, A.; et al. (Eds.) IPCC Summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019; ISBN 978-0-521-88010-7. [Google Scholar]
- Costa, S.; Peters, R.; Martins, R.; Postmes, L.; Keizer, J.J.; Roebeling, P. Effectiveness of nature-based solutions on pluvial flood hazard mitigation: The case study of the city of eindhoven (the netherlands). Resources 2021, 10, 24. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Quagliolo, C.; Comino, E.; Pezzoli, A. Experimental Flash Floods Assessment Through Urban Flood Risk Mitigation (UFRM) Model: The Case Study of Ligurian Coastal Cities. Front. Water 2021, 3, 663378. [Google Scholar] [CrossRef]
- Scholz, M. Water Quality Improvement Performance of Geotextiles Within Permeable Pavement Systems: A Critical Review. Water 2013, 5, 462–479. [Google Scholar] [CrossRef] [Green Version]
- Voskamp, I.M.; de Luca, C.; Polo-Ballinas, M.B.; Hulsman, H.; Brolsma, R. Nature-based solutions tools for planning urban climate adaptation: State of the art. Sustainability 2021, 13, 6381. [Google Scholar] [CrossRef]
- Shanableh, A.; Al-Ruzouq, R.; Yilmaz, A.G.; Siddique, M.; Merabtene, T.; Imteaz, M.A. Effects of land cover change on urban floods and rainwater harvesting: A case study in Sharjah, UAE. Water 2018, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Berndtsson, R.; Becker, P.; Persson, A.; Aspegren, H.; Haghighatafshar, S.; Jönsson, K.; Larsson, R.; Mobini, S.; Mottaghi, M.; Nilsson, J.; et al. Drivers of changing urban flood risk: A framework for action. J. Environ. Manag. 2019, 240, 47–56. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global—scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef]
- Wu, J.; Wu, T. Ecological Resilience as a Foundation for Urban Design and Sustainability. In Resilience in Ecology and Urban Design; Pickett, S., Cadenasso, M., McGrath, B., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 3, pp. 211–229. ISBN 978-94-007-5340-2. [Google Scholar]
- Mendes, R.; Fidélis, T.; Roebeling, P.; Teles, F. The institutionalization of nature-based solutions-a discourse analysis of emergent literature. Resources 2020, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Dushkova, D.; Haase, D. Not simply green: Nature-based solutions as a concept and practical approach for sustainability studies and planning agendas in cities. Land 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Hobbie, S.E.; Grimm, N.B. Nature-based approaches to managing climate change impacts in cities. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 375, 20190124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based solutions: New influence for environmental management and research in Europe. Gaia 2015, 24, 243–248. [Google Scholar] [CrossRef]
- European Commission Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions & Re-Naturing Cities’ of European Commission. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/environment/nature-based-solutions_en (accessed on 12 January 2022).
- Vincent, S.U.; Radhakrishnan, M.; Hayde, L.; Pathirana, A. Enhancing the economic value of large investments in Sustainable Drainage Systems (SuDS) through inclusion of ecosystems services benefits. Water 2017, 9, 841. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.; Vojinovic, Z.; Kapelan, Z.; Sanchez, A.; Gersonius, B. Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci. Total Environ. 2020, 703, 134980. [Google Scholar] [CrossRef]
- Quagliolo, C.; Comino, E.; Pezzoli, A. Nature-based Simulation to Address Climate Change-Related Flooding. Preliminary Insights on a Small-Sized Italian City. In International Conference on Computational Science and Its Applications; Springer: Cham, Switzerland, 2021; Volume 12955, pp. 544–553. [Google Scholar] [CrossRef]
- Lee, J.; Hyun, K.; Choi, J. Analysis of the impact of low impact development on runoff from a new district in Korea. Water Sci. Technol. 2013, 68, 1315–1321. [Google Scholar] [CrossRef]
- Bae, C.; Lee, D.K. Effects of low-impact development practices for flood events at the catchment scale in a highly developed urban area. Int. J. Disaster Risk Reduct. 2020, 44, 101412. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Yang, Z.; Ding, X.; Shao, W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef]
- Salata, S.; Ronchi, S.; Giaimo, C.; Arcidiacono, A.; Pantaloni, G.G. Performance-Based Planning to Reduce Flooding Vulnerability Insights from the Case of Turin (North-West Italy). Sustainability 2021, 13, 5697. [Google Scholar] [CrossRef]
- Pagano, A.; Pluchinotta, I.; Pengal, P.; Cokan, B.; Giordano, R. Engaging stakeholders in the assessment of NBS effectiveness in flood risk reduction: A participatory System Dynamics Model for benefits and co-benefits evaluation. Sci. Total Environ. 2019, 690, 543–555. [Google Scholar] [CrossRef]
- Davis, M.; Krüger, I.; Hinzmann, M. Coastal Protection and Suds-Nature-Based Solutions. Available online: https://www.ecologic.eu/sites/default/files/publication/2017/2723-recreate-pb-nature-based-solutions.pdf (accessed on 13 November 2021).
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, J.; Bertone, E.; Burton, P. SeaCities: Urban Tactics for Sea-Level Rise; Baumeister, J., Bertone, E., Burton, P., Eds.; Springer Nature: Southport, QLD, Australia, 2021; ISBN 9789811587474. [Google Scholar]
- Leite, L.; Pita, C. Review of participatory fisheries management arrangements in the European Union. Mar. Policy 2016, 74, 268–278. [Google Scholar] [CrossRef]
- Ganann, R.; Ciliska, D.; Thomas, H. Expediting systematic reviews: Methods and implications of rapid reviews. Implement. Sci. 2010, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Hanson, H.I.; Wickenberg, B.; Alkan, J. Working on the boundaries—How do science use and interpret the nature- based solution concept? Land Use Policy 2020, 90, 104302. [Google Scholar] [CrossRef]
- O’Donnell, E.C.; Lamond, J.E.; Thorne, C.R. Recognising barriers to implementation of Blue-Green Infrastructure: A Newcastle case study. Urban Water J. 2017, 14, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Qin, S.; Gou, Z.; Yi, M. Engaging professionals in urban stormwater management: The case of China’s Sponge City. Build. Res. Inf. 2019, 48, 719–730. [Google Scholar] [CrossRef]
- Faivre, N.; Sgobbi, A.; Happaerts, S.; Raynal, J.; Schmidt, L. Translating the Sendai Framework into action: The EU approach to ecosystem-based disaster risk reduction. Int. J. Disaster Risk Reduct. 2018, 32, 4–10. [Google Scholar] [CrossRef]
- Morris, R.L.; Konlechner, T.M.; Ghisalberti, M.; Swearer, S.E. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Glob. Chang. Biol. 2018, 24, 1827–1842. [Google Scholar] [CrossRef]
- Rubinato, M.; Nichols, A.; Peng, Y.; Zhang, J.M.; Lashford, C.; Cai, Y.P.; Lin, P.Z.; Tait, S. Urban and river flooding: Comparison of flood risk management approaches in the UK and China and an assessment of future knowledge needs. Water Sci. Eng. 2019, 12, 274–283. [Google Scholar] [CrossRef]
- Saleh, F.; Weinstein, M.P. The role of nature-based infrastructure (NBI) in coastal resiliency planning: A literature review. J. Environ. Manag. 2016, 183, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Butt, N.; Shanahan, D.F.; Shumway, N.; Bekessy, S.A.; Fuller, R.A.; Watson, J.E.M.; Maggini, R.; Hole, D.G. Opportunities for biodiversity conservation as cities adapt to climate change. Geo Geogr. Environ. 2018, 5, e00052. [Google Scholar] [CrossRef]
- O’Sullivan, J.J.; Bruen, M.; Purcell, P.J.; Gebre, F. Urban drainage in Ireland—Embracing sustainable systems. Water Environ. J. 2012, 26, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Aerts, J.C.J.H. A review of cost estimates for flood adaptation. Water 2018, 10, 1646. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Collins, A.M.; Cheshmehzangi, A.; Chan, F.K.S. Identifying enablers and barriers to the implementation of the Green Infrastructure for urban flood management: A comparative analysis of the UK and China. Urban For. Urban Green. 2020, 54, 126770. [Google Scholar] [CrossRef]
- O’Donnell, E.C.; Thorne, C.R.; Yeakley, J.A.; Chan, F.K.S. Sustainable Flood Risk and Stormwater Management in Blue-Green Cities; an Interdisciplinary Case Study in Portland, Oregon. J. Am. Water Resour. Assoc. 2020, 56, 757–775. [Google Scholar] [CrossRef]
- Lawson, E.; Thorne, C.; Ahilan, S.; Allen, D.; Arthur, S.; Everett, G.; Fenner, R.; Glenis, V.; Guan, D.; Hoang, L.; et al. Delivering and evaluating the multiple flood risk benefits in Blue-Green cities: An interdisciplinary approach. WIT Trans. Ecol. Environ. 2014, 184, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Everard, M.; McInnes, R. Systemic solutions for multi-benefit water and environmental management. Sci. Total Environ. 2013, 461–462, 170–179. [Google Scholar] [CrossRef]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environ. Sci. Policy 2016, 62, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Fenner, R.; O’Donnell, E.; Ahilan, S.; Dawson, D.; Kapetas, L.; Krivtsov, V.; Ncube, S.; Vercruysse, K. Achieving Urban Flood Resilience in an Uncertain Future. Water 2019, 11, 1082. [Google Scholar] [CrossRef] [Green Version]
- Boelee, E.; Janse, J.; Le Gal, A.; Kok, M.; Alkemade, R.; Ligtvoet, W. Overcoming water challenges through nature-based solutions. Water Policy 2017, 19, 820–836. [Google Scholar] [CrossRef] [Green Version]
- Rozos, E.; Makropoulos, C.; Maksimović, Č. Rethinking urban areas: An example of an integrated blue-green approach. Water Sci. Technol. Water Supply 2013, 13, 1534–1542. [Google Scholar] [CrossRef]
- Ramírez, J.I.; Qi, K.; Xiaobo, L. Sustainable stormwater management in Yinchuan New Town. Water Pract. Technol. 2016, 11, 469–479. [Google Scholar] [CrossRef]
- Porse, E. Risk-based zoning for urbanizing floodplains. Water Sci. Technol. 2014, 70, 1755–1763. [Google Scholar] [CrossRef]
- Schubert, J.E.; Burns, M.J.; Fletcher, T.D.; Sanders, B.F. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards. Adv. Water Resour. 2017, 108, 55–68. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef]
- Lancia, M.; Zheng, C.; He, X.; Lerner, D.N.; Andrews, C.; Tian, Y. Hydrogeological constraints and opportunities for “Sponge City” development: Shenzhen, southern China. J. Hydrol. Reg. Stud. 2020, 28, 100679. [Google Scholar] [CrossRef]
- El Hattab, M.H.; Theodoropoulos, G.; Rong, X.; Mijic, A. Applying the systems approach to decompose the SuDS decision-making process for appropriate hydrologic model selection. Water 2020, 12, 632. [Google Scholar] [CrossRef] [Green Version]
- Brink, E.; Aalders, T.; Ádám, D.; Feller, R.; Henselek, Y.; Hoffmann, A.; Ibe, K.; Matthey-Doret, A.; Meyer, M.; Negrut, N.L.; et al. Cascades of green: A review of ecosystem-based adaptation in urban areas. Glob. Environ. Chang. 2016, 36, 111–123. [Google Scholar] [CrossRef]
- Dong, X.; Guo, H.; Zeng, S. Enhancing future resilience in urban drainage system: Green versus grey infrastructure. Water Res. 2017, 124, 280–289. [Google Scholar] [CrossRef]
- Watkin, L.J.; Ruangpan, L.; Vojinovic, Z.; Weesakul, S.; Torres, A.S. A Framework for Assessing Benefits of Implemented Nature-Based Solutions. Sustainability 2019, 11, 6788. [Google Scholar] [CrossRef] [Green Version]
- Sörensen, J.; Emilsson, T. Evaluating Flood Risk Reduction by Urban Blue-Green Infrastructure Using Insurance Data. J. Water Resour. Plan. Manag. 2019, 145, 04018099. [Google Scholar] [CrossRef]
- Webber, J.L.; Fu, G.; Butler, D. Rapid surface water intervention performance comparison for urban planning. Water Sci. Technol. 2018, 77, 2084–2092. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Lopez, D.; McCuskey, D.J.; Kiefus, D.; McDonald, R.I.; Miller, W.M.; Packman, A.I.; Young, S.L. Knowledge, attitudes, intentions, and behavior related to green infrastructure for flood management: A systematic literature review. Sci. Total Environ. 2020, 720, 137606. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Nieto, J.; Lerner, D.N.; Saul, A.J. Least-cost path analysis to identify retrofit surface-water conveyance solutions. J. Hydrol. Eng. 2016, 21, 04015071. [Google Scholar] [CrossRef]
- Im, J. Green streets to serve urban sustainability: Benefits and typology. Sustainability 2019, 11, 6483. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.; Gómez, J.P.; Vojinovic, Z.; Sánchez, A.; Weesakul, S. Combining co-benefits and stakeholders perceptions into green infrastructure selection for flood risk reduction. Environments 2018, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Bertilsson, L.; Wiklund, K.; de Moura Tebaldi, I.; Rezende, O.M.; Veról, A.P.; Miguez, M.G. Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning. J. Hydrol. 2019, 573, 970–982. [Google Scholar] [CrossRef]
- Cook, E.A. Green site design: Strategies for storm water management. J. Green Build. 2007, 2, 46–56. [Google Scholar] [CrossRef]
- Wu, H.L.; Cheng, W.C.; Shen, S.L.; Lin, M.Y.; Arulrajah, A. Variation of hydro-environment during past four decades with underground sponge city planning to control flash floods in Wuhan, China: An overview. Undergr. Sp. 2020, 5, 184–198. [Google Scholar] [CrossRef]
- Pimentel-Rodrigues, C.; Silva-Afonso, A. Adaptation measures to climate change. Integration of green roofs with rainwater harvesting systems. WSEAS Trans. Environ. Dev. 2018, 14, 53–61. [Google Scholar]
- Duy, P.N.; Chapman, L.; Tight, M.; Linh, P.N.; Thuong, L.V. Increasing vulnerability to floods in new development areas: Evidence from Ho Chi Minh City. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 197–212. [Google Scholar] [CrossRef]
- Moore, T.L.; Gulliver, J.S.; Stack, L.; Simpson, M.H. Stormwater management and climate change: Vulnerability and capacity for adaptation in urban and suburban contexts. Clim. Chang. 2016, 138, 491–504. [Google Scholar] [CrossRef]
- Locatelli, L.; Guerrero, M.; Russo, B.; Martinez-Gomariz, E.; Sunyer, D.; Martinez, M. Socio-Economic Assessment of Green Infrastructure for Climate Change Adaptation in the Context of Urban Drainage Planning. Sustainability 2020, 12, 3792. [Google Scholar] [CrossRef]
- Kirshen, P.; Borrelli, M.; Byrnes, J.; Chen, R.; Lockwood, L.; Watson, C.; Starbuck, K.; Wiggin, J.; Novelly, A.; Uiterwyk, K.; et al. Integrated assessment of storm surge barrier systems under present and future climates and comparison to alternatives: A case study of Boston, USA. Clim. Chang. 2020, 162, 445–464. [Google Scholar] [CrossRef]
- Kunapo, J.; Fletcher, T.D.; Ladson, A.R.; Cunningham, L.; Burns, M.J. A spatially explicit framework for climate adaptation. Urban Water J. 2018, 15, 159–166. [Google Scholar] [CrossRef]
- Jenkins, K.; Surminski, S.; Hall, J.; Crick, F. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Sci. Total Environ. 2017, 595, 159–168. [Google Scholar] [CrossRef]
- Zidar, K.; Belliveau-Nance, M.; Cucchi, A.; Denk, D.; Kricun, A.; O’Rourke, S.; Rahman, S.; Rangarajan, S.; Rothstein, E.; Shih, J.; et al. A framework for multifunctional green infrastructure investment in Camden, NJ. Urban Plan. 2017, 2, 56–73. [Google Scholar] [CrossRef] [Green Version]
- Karamouz, M.; Heydari, Z. Conceptual Design Framework for Coastal Flood Best Management Practices. J. Water Resour. Plan. Manag. 2020, 146, 04020041. [Google Scholar] [CrossRef]
- McClymont, K.; Fernandes Cunha, D.G.; Maidment, C.; Ashagre, B.; Vasconcelos, A.F.; de Macedo, B.M.; Nóbrega dos Santos, M.F.; Gomes Júnior, M.N.; Mendiondo, E.M.; Barbassa, A.P.; et al. Towards urban resilience through Sustainable Drainage Systems: A multi-objective optimisation problem. J. Environ. Manag. 2020, 275, 2008. [Google Scholar] [CrossRef]
- Bu, J.; Peng, C.; Li, C.; Wang, X.; Zhang, Y.; Yang, Z.; Cai, Y. A method for determining reasonable water area ratio based on flood risk and cost-effectiveness in Rainy City. Environ. Earth Sci. 2020, 79, 450. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Feng, Q.; Peng, C.; Kang, P. Cost-Benefit Analysis of Green Infrastructures on Community Stormwater Reduction and Utilization: A Case of Beijing, China. Environ. Manag. 2016, 58, 1015–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Chen, H.; Liao, Z.; Gu, X.; Zhu, D.; Zhang, J. An integrated assessment of urban flooding mitigation strategies for robust decision making. Environ. Model. Softw. 2017, 95, 143–155. [Google Scholar] [CrossRef]
- Gunasekara, R.; Pecnik, G.; Girvan, M.; De La Rosa, T. Delivering integrated water management benefits: The North West Bicester development, UK. Water Manag. 2018, 171, 110–121. [Google Scholar] [CrossRef]
- Zellner, M.; Massey, D.; Minor, E.; Gonzalez-Meler, M. Exploring the effects of green infrastructure placement on neighborhood-level flooding via spatially explicit simulations. Comput. Environ. Urban Syst. 2016, 59, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Yu, C. Sustainable Urban Drainable Systems for Management of Surface Water. In Design and Management of Sustainable Built Environments; Yao, R., Ed.; Springer: London, UK, 2013; pp. 119–140. ISBN 9781447147817. [Google Scholar]
- Senosiain, J.L. Urban regreeneration: Green urban infrastructure as a response to climate change mitigation and adaptation. Int. J. Des. Nat. Ecodynamics 2020, 15, 33–38. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Voskamp, I.M.; Van de Ven, F.H.M. Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events. Build. Environ. 2015, 83, 159–167. [Google Scholar] [CrossRef]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [Google Scholar] [CrossRef]
- European Environmental Agency (EEA). Looking Back on Looking Forward: A Review of Evaluative Scenario Literature; EEA: Copenhagen, Denmark, 2009; Volume 55. [Google Scholar]
- Huang, Y.; Tian, Z.; Ke, Q.; Liu, J.; Irannezhad, M.; Fan, D.; Hou, M.; Sun, L. Nature-based solutions for urban pluvial flood risk management. WIREs Water 2020, 7, e1421. [Google Scholar] [CrossRef]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Hansen, R.; Olafsson, A.S.; van der Jagt, A.P.N.; Rall, E.; Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecol. Indic. 2019, 96, 99–110. [Google Scholar] [CrossRef]
- Hasala, D.; Supak, S.; Rivers, L. Green infrastructure site selection in the Walnut Creek wetland community: A case study from southeast Raleigh, North Carolina. Landsc. Urban Plan. 2020, 196, 103743. [Google Scholar] [CrossRef]
- Farrugia, S.; Hudson, M.D.; McCulloch, L. An evaluation of flood control and urban cooling ecosystem services delivered by urban green infrastructure. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2013, 9, 136–145. [Google Scholar] [CrossRef]
- Lafortezza, R.; Chen, J.; van den Bosch, C.K.; Randrup, T.B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 2018, 165, 431–441. [Google Scholar] [CrossRef]
- Sutton-Grier, A.E.; Sandifer, P.A. Conservation of Wetlands and Other Coastal Ecosystems: A Commentary on their Value to Protect Biodiversity, Reduce Disaster Impacts, and Promote Human Health and Well-Being. Wetlands 2019, 39, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Uyttenhove, P.; Van Eetvelde, V. Planning green infrastructure to mitigate urban surface water flooding risk—A methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 2020, 194, 7393. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.X.; Huang, J.; Liu, C. An approximation method for evaluating flash flooding mitigation of sponge city strategies—A case study of Central Geelong. J. Clean. Prod. 2020, 275, 7393. [Google Scholar] [CrossRef]
- Ellis, J.B.; Lundy, L. Implementing sustainable drainage systems for urban surface water management within the regulatory framework in England and Wales. J. Environ. Manag. 2016, 183, 630–636. [Google Scholar] [CrossRef]
- Sharma, D.; Kansal, A. Sustainable City: A Case Study of Stormwater Management in Economically Developed Urban Catchments. In Mechanism Design for Sustainability; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Watkins, S.; Charlesworth, S. Sustainable Drainage Systems—Features and Designs. In Water Resources in the Built Environment: Management Issues and Solutions; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Coupe, S.J.; Faraj, A.S.; Nnadi, E.O.; Charlesworth, S.M. Integrated Sustainable Urban Drainage Systems. In Water Efficiency in Buildings: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Nasr, M.; Shmroukh, A.N. Gray-to-Green Infrastructure for Stormwater Management: An Applicable Approach in Alexandria City, Egypt. In Flash Floods in Egypt; Negm, A.M., Ed.; Springer Nature: Berlin, Germany, 2020. [Google Scholar]
- Kalantari, Z.; Ferreira, C.S.S.; Keesstra, S.; Destouni, G. Nature-based solutions for flood-drought risk mitigation in vulnerable urbanizing parts of East-Africa. Curr. Opin. Environ. Sci. Health 2018, 5, 73–78. [Google Scholar] [CrossRef]
Category | Description | Indicator |
---|---|---|
Background information | ||
Temporal scale | Time of analysis | Reference year(s), NA |
Spatial scale | Scale of analysis | Global, national, regional, local/city, district, neighborhood |
Geographical area | Setting of conducted analysis | Country—Region—City, NA |
Study type | Kind of methodology used | Conceptual/empirical framework, spatial assessment, modelling |
Data used | Type of information and data employed for the analysis | (Short explanation) |
Data provided | Kind of data provided by the study | Qualitative, quantitative, spatial, and mixed data (quantitative and qualitative) |
Climate risk information | ||
Climate hazard | Climate and natural hazards addressed by the studies | Single, compound, and multiple hazards |
Climate Change perspective | How climate change issue has been addressed by the studies | Background, analytical, scenarios, NA |
Economic information | ||
Economic assessment | Kind of approach employed in the analysis | Cost–benefit analysis, Life-cycle cost analysis (LCCA), flood depth damage analysis, unit cost value analysis, cost effectiveness analysis, NA |
Currency | Currency used for the analysis | |
Unit | Unit used for the analysis | |
Adaptation information | ||
Adaptation planning perspective | How adaptation through NBS implementation is integrated into urban planning | (Short explanation) |
NBS type | Specific NBS to reduce flood-related effects | (Most common measures to flood reduction) |
NBS approach | Kind of information provided on NBS | Qualitative, quantitative, NA |
Biophysical assessment | Numeric value of biophysical flood reduction | Runoff reduction values |
Type of Information on NBS | |||||
---|---|---|---|---|---|
No. of Times NBS is Studied | Quantitative | Qualitative | Quantitative and Qualitative | NA | |
Green facade | 2 | 1 | 0 | 1 | 0 |
Green park | 3 | 0 | 2 | 1 | 0 |
Green street | 3 | 0 | 1 | 2 | 0 |
Green roof | 20 | 10 | 7 | 2 | 1 |
Infiltration basin | 10 | 6 | 2 | 2 | 0 |
Permeable paving | 19 | 10 | 7 | 2 | 0 |
Pond | 10 | 3 | 5 | 1 | 1 |
Rain garden | 11 | 4 | 6 | 1 | 0 |
Swale | 11 | 4 | 5 | 1 | 1 |
Wetland | 9 | 3 | 4 | 2 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quagliolo, C.; Roebeling, P.; Mendonça, R.; Pezzoli, A.; Comino, E. Integrating Biophysical and Economic Assessment: Review of Nature-Based Adaptation to Urban Flood Extremes. Urban Sci. 2022, 6, 53. https://doi.org/10.3390/urbansci6030053
Quagliolo C, Roebeling P, Mendonça R, Pezzoli A, Comino E. Integrating Biophysical and Economic Assessment: Review of Nature-Based Adaptation to Urban Flood Extremes. Urban Science. 2022; 6(3):53. https://doi.org/10.3390/urbansci6030053
Chicago/Turabian StyleQuagliolo, Carlotta, Peter Roebeling, Rita Mendonça, Alessandro Pezzoli, and Elena Comino. 2022. "Integrating Biophysical and Economic Assessment: Review of Nature-Based Adaptation to Urban Flood Extremes" Urban Science 6, no. 3: 53. https://doi.org/10.3390/urbansci6030053
APA StyleQuagliolo, C., Roebeling, P., Mendonça, R., Pezzoli, A., & Comino, E. (2022). Integrating Biophysical and Economic Assessment: Review of Nature-Based Adaptation to Urban Flood Extremes. Urban Science, 6(3), 53. https://doi.org/10.3390/urbansci6030053