Understanding Sources and Composition of Black Carbon and PM2.5 in Urban Environments in East India
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Geographical Location of Sampling Sites
2.2. Measurement of BC Mass Concentration
2.3. Measurement of PM2.5 and Chemical Analysis
2.4. Source Apportionment of BC and PM2.5
3. Results and Discussion
3.1. PM2.5 and BC Mass Concentration
3.2. Characteristics of Ionic Species
3.3. Source Apportionment of PM2.5 and BC
3.4. Role of Transport Using Air Mass Back Trajectory
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahu, L.K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Cubison, M.J.; Jimenez, J.L.; Vay, S.; Diskin, G.S.; Wisthaler, A.; et al. Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008. J. Geophys. Res. 2012, 117, D16302. [Google Scholar] [CrossRef]
- Naudiyal, N.; Schmerbeck, J. The changing Himalayan landscape: Pine-oak forest dynamics and the supply of ecosystem services. J. For. Res. 2017, 28, 431–443. [Google Scholar] [CrossRef]
- Sahu, L.K.; Kondo, Y.; Miyazaki, Y.; Pongkiatkul, P.; Oanh, N.T.K. Seasonal and diurnal variations of black carbon and organic carbon aerosols in Bangkok. J. Geophys. Res. 2011, 116, D15302. [Google Scholar] [CrossRef]
- Pani, S.K.; Chantara, S.; Khamkaew, C.; Lee, C.T.; Lin, N.H. Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmos. Res. 2019, 224, 180–195. [Google Scholar] [CrossRef]
- Gatari, M.J.; Kinney, P.L.; Yan, B.; Sclar, E.; Volavka-Close, N.; Ngo, N.S.; Gaita, S.M.; Law, A.; Nbida, P.K.; Gachanja, A.; et al. High airborne black carbon concentrations measured near roadways in Nairobi, Kenya. Transp. Res. Part Transp. Environ. 2019, 68, 99–109. [Google Scholar] [CrossRef]
- IPCC. Climate Change. In The Physical Science Basis. Working Group, I Contribution to the IPCC 5th Assessment Report; IPCC: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Liu, Y.; Yan, C.; Zheng, M. Source apportionment of black carbon during winter in Beijing. Sci. Total Environ. 2018, 618, 531–541. [Google Scholar] [CrossRef]
- Joshi, H.; Naja, M.; Singh, K.P.; Kumar, R.; Bhardwaj, P.; Babu, S.S.; Satheesh, S.K.; Moorthy, K.K.; Chandola, H.C. Investigations of aerosol black carbon from a semi-urban site in the Indo-Gangetic Plain region. Atmos. Environ. 2016, 125, 346–359. [Google Scholar] [CrossRef]
- Tiwari, S.; Dumka, U.C.; Kaskaoutis, D.G.; Ram, K.; Panicker, A.S.; Srivastava, M.K.; Tiwari, S.; Attri, S.D.; Soni, V.K.; Pandey, A.K. Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central indo-Gangetic plain. Atmos. Environ. 2016, 125, 437–449. [Google Scholar] [CrossRef]
- Ming, J.; Xiao, C.D.; Cachier, H.; Qin, D.H.; Qin, X.; Li, Z.Q.; Pu, J.C. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos. Res. 2009, 92, 114–123. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Health effects of black carbon. In Joint WHO/UNECE Task Force on Health Aspects of Air Pollutants under UNECE’s Long-Range Transboundary Air Pollution Convention (LRTAP); World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2012. [Google Scholar]
- Janssen, N.H.; Janssen, N.; Gerlofs, N.M. Health Effects of Black Carbon; World Health Organization: Copenhagen, Denmark, 2012. [Google Scholar]
- Louwies, T.; Nawrot, T.; Cox, B.; Dons, E.; Penders, J.; Provost, E.; Panis, L.I.; De Boever, P. Blood pressure changes in association with black carbon exposure in a panel of healthy adults are independent of retinal microcirculation. Environ. Int. 2015, 75, 81–86. [Google Scholar] [CrossRef]
- Li, Y.; Henze, D.K.; Jack, D.; Henderson, B.H.; Kinney, P.L. Assessing public health burden associated with exposure to ambient black carbon in the United States. Sci. Total Environ. 2016, 539, 515–525. [Google Scholar] [CrossRef]
- Lin, W.; Dai, J.; Liu, R.; Zhai, Y.; Yue, D.; Hu, Q. Integrated assessment of health risk and climate effects of black carbon in the Pearl River Delta region, China. Environ. Res. 2019, 176, 108522. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tao, S.; Balkanski, Y.; Ciais, P.; Boucher, O.; Liu, J.; Piao, S.; Shen, H.; Vuolo, M.R.; Valari, M.; et al. Exposure to ambient black carbon derived from a unique inventory and high-resolution model. Proc. Natl. Acad. Sci. USA 2014, 111, 2459–2463. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Xu, H.; Xu, Q.; Chen, B.; Kan, H. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ. Health Perspect. 2012, 120, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Mills, I.C.; Walton, H.A.; Anderson, H.R. Fine particle components and health systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 208. [Google Scholar] [CrossRef] [PubMed]
- Ohara, T.; Akimoto, H.; Kurokawa, J.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T. An Asian emission inventory of anthropogenic emission sources for the period 19802020. Atmos. Chem. Phys. 2007, 7, 4419–4444. [Google Scholar] [CrossRef]
- Chernyshev, V.V.; Zakharenko, A.M.; Ugay, S.M.; Hien, T.T.; Hai, L.H.; Olesik, S.M.; Kholodov, A.S.; Zubko, E.; Kokkinakis, M.; Burykina, T.I.; et al. Morphological and chemical composition of particulate matter in buses exhaust. Toxicol. Rep. 2019, 6, 120–125. [Google Scholar] [CrossRef]
- Liu, K.; Wang, F.; Li, J.; Tiwari, S.; Chen, B. Assessment of trends and emission sources of heavy metals from the soil sediments near the Bohai Bay. Environ. Sci. Pollut. R. 2019, 26, 29095–29109. [Google Scholar] [CrossRef]
- Pani, S.K.; Ou-Yang, C.F.; Wang, S.H.; Ogren, J.A.; Sheridan, P.J.; Sheu, G.R.; Lin, N.H. Relationship between long-range transported atmospheric black carbon and carbon monoxide at a high-altitude background station in East Asia. Atmos. Environ. 2019, 210, 86–99. [Google Scholar] [CrossRef]
- WHO. Burden of Disease from Ambient Air Pollution for 2012; Description of Method, Version 1.3; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- WHO. WHO’s Ambient Air Pollution Database e Update 2014.Data Summary of the AAP Database; WHO: Geneva, Switzerland, 2014; Available online: http://www.who.int/phe/health_topics/outdoorair/databases/AAP_database_results_2014b (accessed on 1 August 2022).
- Tiwari, S.; Kaskaoutis, D.; Soni, V.K.; Attri, S.D.; Singh, A.K. Aerosol columnar characteristics and their heterogeneous nature over Varanasi, in the Central Ganges valley. Environ. Sci. Pollut. Res. 2018, 25, 24726–24745. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef] [PubMed]
- World Health Statistics. 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/272596/9789241565585-eng.pdf (accessed on 1 August 2022).
- Singh, A.; Rastogi, N.; Patel, A.; Satish, R.V.; Singh, D. Size-segregated characteristics of carbonaceous aerosols over the northwestern indo-gangetic plain: Year-round temporal behavior. Aerosol Air Qual. Res. 2016, 16, 1615–1624. [Google Scholar] [CrossRef]
- Satsangi, A.; Pachauri, T.; Singla, V.; Lakhani, A.; Kumari, K.M. Water soluble ionic species in atmospheric aerosols: Concentrations and sources at Agra in the indo-Gangetic plain (IGP). Aerosol Air Qual. Res. 2013, 13, 1877–1889. [Google Scholar] [CrossRef]
- Satsangi, P.G.; Pipal, A.S.; Budhavant, K.B.; Rao, P.S.P.; Taneja, A. Study of chemical species associated with fine particles and their secondary particle formation at semi-arid region of India. Atmos. Pollut. Res. 2016, 7, 1110–1118. [Google Scholar] [CrossRef]
- China, S.; Mazzoleni, C.; Gorkowski, K.; Aiken, A.C.; Dubey, M.K. Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nat. Commun. 2013, 4, 2122. [Google Scholar] [CrossRef]
- Tsai, T.C.; Jeng, Y.J.; Chu, D.A.; Chen, J.P.; Chang, S.C. Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmos. Environ. 2011, 45, 4777–4788. [Google Scholar] [CrossRef]
- Rajput, P.; Sarin, M.M.; Sharma, D.; Singh, D. Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in northern India. Environ. Sci. Pollut. Res. 2014, 21, 5724–5729. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M.; Tripathi, S.N. Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: Impact of biomass burning emissions in the Indo-Gangetic Plain. Environ. Sci. Technol. 2012, 46, 686–695. [Google Scholar] [CrossRef]
- Roy, A.; Chatterjee, A.; Tiwari, S.; Sarkar, C.; Das, S.K.; Ghosh, S.K.; Raha, S. Precipitation chemistry over urban, rural and high-altitude Himalayan stations in eastern India. Atmos. Res. 2016, 181, 44–53. [Google Scholar] [CrossRef]
- Goel, V.; Mishra, S.K.; Ahlawat, A.; Sharma, C.; Vijayan, N.; Radhakrishnan, S.R.; Dimri, A.P.; Kotnala, R.K. Effect of reduced traffic density on characteristics of particulate matter over Delhi. Curr. Sci. 2018, 115, 315. [Google Scholar] [CrossRef]
- Verma, S.; Pani, S.K.; Bhanja, S.N. Sources and radiative effects of wintertime black carbon aerosols in an urban atmosphere in east India. Chemosphere 2013, 90, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.A.; Lawrence, J.; Koutrakis, P. Field validation of a semicontinuous method for aerosol black carbon (aethalometer) and temporal patterns of summertime hourly black carbon measurements in southwestern PA. Atmos. Environ. 1999, 33, 817–823. [Google Scholar] [CrossRef]
- Weingartner, E.; Saathoff, H.; Schnaiter, M.; Streit, N.; Bitnar, B.; Baltensperger, U. Absorption of light by soot particles, determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 2003, 34, 1445–1463. [Google Scholar] [CrossRef]
- Fuller, G.W.; Tremper, A.H.; Baker, T.D.; Yttri, K.E.; Butterfield, D. Contribution of wood burning to PM10 in London. Atmos. Environ. 2014, 87, 87–94. [Google Scholar] [CrossRef]
- Thepnuan, D.; Chantara, S.; Lee, C.T.; Lin, N.H.; Tsai, Y.I. Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia. Sci. Total Environ. 2019, 658, 708–722. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Schnelle-Kreis, J.; Abbaszade, G.; Zimmermann, R.; Zotter, P.; Shen, R.-R.; Schäfer, K.; Shao, L.; Prévôt, A.S.H.; Szidat, S. Source apportionment of elemental carbon in Beijing, China: Insights from radiocarbon and organic marker measurements. Environ. Sci. Technol. 2015, 49, 8408–8415. [Google Scholar] [CrossRef] [PubMed]
- Favez, O.; Haddad, E.I.I.; Piot, C.; Bor_eave, A.; Abidi, E.; Marchand, N.; Jaffrezo, J.-L.; Besombes, J.-L.; Personnaz, M.B.; Sciare, J.; et al. Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmos. Chem. Phys. 2010, 10, 5295–5314. [Google Scholar] [CrossRef]
- Larsen, B.R.; Gilardoni, S.; Stenstrom, K.; Niedzialek, J.; Jimenez, J.; Belis, C.A. Sources for PM air pollution in the Po Plain, Italy: II. Probabilistic uncertainty characterization and sensitivity analysis of secondary and primary sources. Atmos. Environ. 2012, 50, 203–213. [Google Scholar] [CrossRef]
- Briggs, N.L.; Long, C.M. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States. Atmos. Environ. 2016, 144, 409–427. [Google Scholar] [CrossRef]
- Zotter, P.; Herich, H.; Gysel, M.; El-Haddad, I.; Zhang, Y.; Mo_cnik, G.; Hüglin, C.; Baltensperger, U.; Szidat, S.; Prevot, A.S.H. Evaluation of the absorption Ångstr€om exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phys. 2017, 17, 4229–4249. [Google Scholar] [CrossRef] [Green Version]
- Dumka, U.C.; Kaskaoutis, D.G.; Tiwari, S.; Safai, P.D.; Attri, S.D.; Soni, V.K.; Singh, N.; Mihalopoulos, N. Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmos. Environ. 2018, 194, 93–109. [Google Scholar] [CrossRef]
- Dumka, U.C.; Kaskaoutis, D.G.; Devara, P.C.S.; Kumar, R.; Kumar, S.; Tiwari, S.; Gerasopoulos, E.; Mihalopoulos, N. Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts. Atmos. Res. 2019, 216, 11–25. [Google Scholar] [CrossRef]
- Wang, Y.; Hopke, P.K.; Utell, M.J. Urban-scale spatial-temporal variability of black carbon and winter residential wood combustion particles. Aerosol Air Qual. Res. 2011, 11, 473–481. [Google Scholar] [CrossRef]
- Herich, H.; Hueglin, C.; Buchmann, B.A. 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmos. Meas. Tech. 2011, 4, 1409–1420. [Google Scholar] [CrossRef]
- Kumar, R.R.; Soni, V.K. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three-year measurements from IMD BC observation network. Sci. Total Environ. 2020, 723, 138060. [Google Scholar] [CrossRef]
- Thurston, G.D.; Ito, K.; Lall, R. A source apportionment of US fine particulate matter air pollution. Atmos. Environ. 2011, 45, 3924–3936. [Google Scholar] [CrossRef]
- Tare, V.; Tripathi, S.N.; Chinnam, N.; Srivastava, A.K.; Dey, S.; Manar, M.; Kanawade, V.P.; Agarwal, A.; Kishore, S.; Lal, R.B.; et al. Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 2. Chemical properties. J. Geophys. Res. Atmos. 2006, 111, 1–14. [Google Scholar] [CrossRef]
- Murari, V.; Kumar, M.; Singh, N.; Singh, R.S.; Banerjee, T. Particulate morphology and elemental characteristics: Variability at middle Indo-Gangetic plain. J. Atmos. Chem. 2016, 73, 165–179. [Google Scholar] [CrossRef]
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Bano, T.; Singh, S.; Behura, S.; Srivastava, M.K.; Chate, D.M.; Padmanabhamurty, B. Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J. Atmos. Chem. 2009, 62, 193–209. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Calori, G. A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India. Atmos. Environ. 2013, 67, 101–111. [Google Scholar] [CrossRef]
- Pipal, A.S.; Jan, R.; Satsangi, P.G.; Tiwari, S.; Taneja, A. Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India. Aerosol Air Qual. Res. 2014, 14, 1685–1700. [Google Scholar] [CrossRef]
- Sen, A.; Abdelmaksoud, A.S.; Ahammed, Y.N.; Banerjee, T.; Bhat, M.A.; Chatterjee, A.; Choudhuri, A.K.; Das, T.; Dhir, A.; Dhyani, P.P.; et al. Variations in particulate matter over indo-Gangetic Plains and indo-Himalayan range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways. Atmos. Environ. 2017, 154, 200–224. [Google Scholar] [CrossRef]
- Pratap, V.; Kumar, A.; Tiwari, S.; Kumar, P.; Tripathi, A.K.; Singh, A.K. Chemical characteristics of particulate matters and their emission sources over Varanasi during winter season. J. Atmos. Chem. 2020, 77, 83. [Google Scholar] [CrossRef]
- Castanho, A.D.A.; Artaxo, P. Wintertime and summertime Sao Paulo aerosol source apportionment study. Atmos. Environ. 2001, 35, 4889–4902. [Google Scholar] [CrossRef]
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Parmita, P.; Srivastava, M.K.; Attri, S.D. Diurnal and seasonal variation of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmos. Res. 2013, 125–126, 50–62. [Google Scholar] [CrossRef]
- Babu, S.S.; Moorthy, K.K. Aerosol black carbon over a tropical station in India. Geophys. Res. Lett. 2002, 29, 2098. [Google Scholar] [CrossRef]
- Safai, P.D.; Kevat, S.; Praveen, P.S.; Rao, P.S.P.; Momin, G.A.; Ali, K.; Devara, P.C.S. Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos. Environ. 2007, 41, 2699–2709. [Google Scholar] [CrossRef]
- Nair, V. Wintertime aerosol characteristics over the Indo-Gangetic plain (IGP): Impacts of local boundary layer processes and long-range transport. J. Geophys. Res. 2007, 112, D13205. [Google Scholar] [CrossRef]
- Rajesh, T.A.; Ramachandran, S. Black carbon aerosols over urban and high-altitude remote regions: Characteristics and radiative implications. Atmos. Environ. 2018, 194, 110–122. [Google Scholar] [CrossRef]
- Cao, J.J.; Zhu, C.S.; Chow, J.C.; Watson, J.G.; Han, Y.M.; Wang, G.H.; Shen, Z.X.; An, Z.S. Black carbon relationships with emissions and meteorology in Xi’an, China. Atmos. Res. 2009, 94, 194–202. [Google Scholar] [CrossRef]
- Bilal, M.; Mhawish, A.; Nichol, J.E.; Qiu, Z.; Nazeer, M.; Ali, M.A.; de Leeuw, G.; Levy, R.C.; Wang, Y.; Chen, Y.; et al. Air pollution scenario over Pakistan: Characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases. Remote Sens. Environ. 2021, 264, 112617. [Google Scholar] [CrossRef]
- Bilal, M.; Ali, M.A.; Nichol, J.E.; Bleiweiss, M.P.; de Leeuw, G.; Mhawish, A.; Shi, Y.; Mazhar, U.; Mehmood, T.; Kim, J.; et al. AEROsol generic classification using a novel Satellite remote sensing Approach (AEROSA). Front. Environ. Sci. 2022, 10, 981522. [Google Scholar] [CrossRef]
- Duce, R.A.; Arimoto, R.; Ray, B.J.; Unni, C.K.; Harder, P.J. Atmospheric trace elements at Enewetak Atoll: 1. Concentrations, sources, and temporal variability. J. Geophys. Res. Ocean. 1983, 88, 5321–5342. [Google Scholar] [CrossRef]
- Sharma, S.K.; Datta, A.; Saud, T.; Saxena, M.; Mandal, T.K.; Ahammed, Y.N.; Arya, B.C. Seasonal variability of ambient NH3, NO, NO2 and SO2 over Delhi. J. Environ. Sci. 2010, 22, 1023–1028. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M.; Tripathi, S.N. A 1 year record of carbonaceous aerosols from an urban site in the Indo Gangetic Plain: Characterization, sources, and temporal variability. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Rajput, P.; Gupta, T.; Kumar, A. The diurnal variability of sulfate and nitrate aerosols during wintertime in the indo-Gangetic plain: Implications for heterogeneous phase chemistry. RSC Adv. 2016, 6, 89879–89887. [Google Scholar] [CrossRef]
- Sarkar, S.; Singh, R.P.; Chauhan, A. Crop residue burning in northern India: Increasing threat to greater India. J. Geophys. Res. Atmos. 2018, 123, 6920–6934. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP/NCAR 50-Year Reanalysis. 1999. Available online: http://metosrv2.umd.edu/ekalnay/Reanalysis%20paper/REANCLOS1.html (accessed on 1 June 2022).
- SAFAR (System for Air Quality Forecasting and Research). A Special Report Emission Inventory for National Capital Region Delhi Ministry of Earth Sciences. Government of India. 2010. Available online: http://safar.tropmet.res.in (accessed on 1 June 2022).
- Lee, B.K.; Hieu, N.T. Seasonal ion characteristics of fine and coarse particles from an urban residential area in a typical industrial city. Atmos. Res. 2013, 122, 362–377. [Google Scholar] [CrossRef]
- Ganguly, D.; Jayaraman, A.; Rajesh, T.A.; Gadhavi, H. Wintertime aerosol properties during foggy and no foggy days over urban center Delhi and their implications for shortwave radiative forcing. J. Geophys. Res. 2006, 111, D15217. [Google Scholar] [CrossRef] [Green Version]
Sites | Type | PM2.5 (µg m−3) | Sampling Period | References |
---|---|---|---|---|
Kanpur | Urban | 203 ± 40 | December 2004 | [53] |
Delhi | Urban | 232 ± 131 | January–December 2007 | [55] |
Raipur | Semi-urban | 150.9 ± 75.6 | July 2009–June 2010 | [55] |
Chennai | Urban | 73 | January–February 2008 | |
Delhi | Urban | 123 ± 87 | 2008–2011 | [56] |
Agra | Semi-urban | 121.2 | 2010–2011 | [57] |
Varanasi | Semi-urban | 81.78 ± 66.4 | January–December 2014 | [54] |
Darjeeling | Hilly area | 24.3 ± 13.5 | Winter 2015 | [58] |
Lucknow | Urban | 130 ± 73 | Winter 2015 | [58] |
Kashmir | Hilly area | 20.3 ± 13.1 | Winter 2015 | [58] |
Kullu | Hilly area | 30.8 ± 17.2 | Winter 2015 | [58] |
Delhi | Urban | 125.7 ± 56.6 | Winter 2015 | [58] |
Varanasi | Semi-urban | 134 ± 48 | November 2016–February 2017 | [59] |
Jamshedpur | Urban | 131 ± 58 | October 2019–February 2020 | Present study |
Kharagpur | Semi-urban | 117 ± 79 | October 2019–February 2020 | Present study |
Place | Location | Period | BC (µg m−3) | Reference |
---|---|---|---|---|
Sao Paulo, Brazil | Urban | July to September 1997 | 7.6 | [60] |
Paris, France | Urban | August to October 1997 | 14 | [63] |
Bangalore, India | Urban | November 2001 | 4.2 | [62] |
Trivandrum, India | Urban Costal | August 2000 to October 2001 | 5 | [62] |
Delhi, India | Urban | December 2004 | 29 | [60] |
Kharagpur, India | Semi-urban | December 2004 | 16.5 | [64] |
Agra, India | Urban | December 2004 | 20.6 | |
Pune, India | Urban | January to December 2005 | 4.1 | [63] |
Lahore, Pakistan | Urban | November 2005 to January 2006 | 21.7 | [65] |
Xi’an, China | Urban | September 2003 to August 2005 | 14.7 | [66] |
Kolkata, India | Urban | December 2009–10 | 35 | [37] |
Delhi, India | Urban | January to December 2011 | 6.64 | [61] |
Ahmedabad, India | Urban | January 2014 to December 2015 | 10.30 | [65] |
Kolkata, India | Urban | 2016 to 2018 | 12.08 | [51] |
Delhi, India | Urban | 2016 to 2018 | 13.57 | [51] |
Jamshedpur, India | Urban | October 2019 to February 2020 | 9.46 | Present study |
Kharagpur, India | Semi-urban | October 2019 to February 2020 | 8.58 | Present study |
Species | JSR | KGP | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Average | SD | Min | Max | Average | SD | |
SO42− | 14.19 | 46.21 | 29.22 | 9.52 | 4.16 | 20.72 | 11.24 | 4.35 |
Cl− | 4.89 | 23.66 | 13.17 | 4.93 | 4.89 | 17.13 | 9.42 | 2.85 |
NO32− | 3.29 | 26.58 | 10.72 | 5.36 | 5.10 | 17.16 | 9.46 | 2.93 |
Na+ | 2.67 | 24.89 | 11.63 | 4.93 | 3.98 | 16.00 | 9.16 | 2.62 |
Mg2+ | 0.26 | 2.06 | 1.05 | 0.41 | 0.43 | 2.11 | 0.99 | 0.43 |
K+ | 2.98 | 18.14 | 9.61 | 4.19 | 2.89 | 13.21 | 8.10 | 3.08 |
Ca2+ | 1.08 | 6.38 | 3.76 | 1.32 | 1.09 | 8.16 | 4.01 | 1.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambade, B.; Sankar, T.K.; Sahu, L.K.; Dumka, U.C. Understanding Sources and Composition of Black Carbon and PM2.5 in Urban Environments in East India. Urban Sci. 2022, 6, 60. https://doi.org/10.3390/urbansci6030060
Ambade B, Sankar TK, Sahu LK, Dumka UC. Understanding Sources and Composition of Black Carbon and PM2.5 in Urban Environments in East India. Urban Science. 2022; 6(3):60. https://doi.org/10.3390/urbansci6030060
Chicago/Turabian StyleAmbade, Balram, Tapan Kumar Sankar, Lokesh K. Sahu, and Umesh Chandra Dumka. 2022. "Understanding Sources and Composition of Black Carbon and PM2.5 in Urban Environments in East India" Urban Science 6, no. 3: 60. https://doi.org/10.3390/urbansci6030060
APA StyleAmbade, B., Sankar, T. K., Sahu, L. K., & Dumka, U. C. (2022). Understanding Sources and Composition of Black Carbon and PM2.5 in Urban Environments in East India. Urban Science, 6(3), 60. https://doi.org/10.3390/urbansci6030060