Rapid Damage Estimation of Texas Winter Storm Uri from Social Media Using Deep Neural Networks
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. DNN Structure
3.2. Social Media Data and Keywords Calculation
3.3. Damage Statistics from FEMA
4. Analysis and Results
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kemabonta, T. Grid Resilience analysis and planning of electric power systems: The case of the 2021 Texas electricity crises caused by winter storm Uri (\# TexasFreeze). Electr. J. 2021, 34, 107044. [Google Scholar]
- Bottner, R.; Weems, J.; Hill, L.G.; Ziebell, C.; Long, S.; Young, S.; Sasser, M.; Ferguson, A.; Tirado, C. Addiction Treatment Networks Cannot Withstand Acute Crises: Lessons from 2021 Winter Storm Uri in Texas. NAM Perspect. 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Federal Emergency Management Agency. Damage Assessment Operations Manual; Federal Emergency Management Agency: Washington, DC, USA, 2019.
- Gao, H.; Barbier, G.; Goolsby, R. Harnessing the Crowdsourcing Power of Social Media for Disaster Relief. IEEE Intell. Syst. 2011, 26, 10–14. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, X. Social media analytics for natural disaster management. Int. J. Geogr. Inf. Sci. 2018, 32, 49–72. [Google Scholar] [CrossRef]
- Ye, X.; Wei, X. A multi-dimensional analysis of El Niño on Twitter: Spatial, social, temporal, and semantic perspectives. ISPRS Int. J. Geo-Inf. 2019, 8, 436. [Google Scholar] [CrossRef]
- Heglund, J.; Hopkinson, K.M.; Tran, H.T. Social sensing: Towards social media as a sensor for resilience in power systems and other critical infrastructures. Sustain. Resilient Infrastruct. 2021, 6, 94–106. [Google Scholar] [CrossRef]
- Yaqub, W.; Kakhidze, O.; Brockman, M.L.; Memon, N.; Patil, S. Effects of credibility indicators on social media news sharing intent. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–14. [Google Scholar]
- Yuan, F.X.; Liu, R. Mining Social Media Data for Rapid Damage Assessment during Hurricane Matthew: Feasibility Study. J. Comput. Civ. Eng. 2020, 34, 5020001. [Google Scholar] [CrossRef]
- Yue, Y.; Dong, K.; Zhao, X.; Ye, X. Assessing wild fire risk in the United States using social media data. J. Risk Res. 2021, 24, 972–986. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, X.; Tsou, M.H. Spatial, temporal, and content analysis of Twitter for wildfire hazards. Nat. Hazards 2016, 83, 523–540. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, X. Space, time, and situational awareness in natural hazards: A case study of Hurricane Sandy with social media data. Cartogr. Geogr. Inf. Sci. 2019, 46, 334–346. [Google Scholar] [CrossRef]
- Hao, H.; Wang, Y. Leveraging multimodal social media data for rapid disaster damage assessment. Int. J. Disaster Risk Reduct. 2020, 51, 101760. [Google Scholar] [CrossRef]
- Lee, C.C.; Maron, M.; Mostafavi, A. Community-scale Big Data Reveals Disparate Impacts of the Texas Winter Storm of 2021 and its Managed Power Outage. arXiv 2021, arXiv:2108.06046. [Google Scholar]
- Gong, Z.; Cai, T.; Thill, J.C.; Hale, S.; Graham, M. Measuring relative opinion from location-based social media: A case study of the 2016 US presidential election. PLoS ONE 2020, 15, e0233660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yin, D.; Virrantaus, K.; Ye, X.; Wang, S. Modeling human activity dynamics: An object-class oriented space–time composite model based on social media and urban infrastructure data. Comput. Urban Sci. 2021, 1, 1–13. [Google Scholar] [CrossRef]
- Malik, M.; Lamba, H.; Nakos, C.; Pfeffer, J. Population bias in geotagged tweets. In Proceedings of the International AAAI Conference on Web and Social Media, Oxford, UK, 26–29 May 2015; Volume 9, pp. 18–27. [Google Scholar]
- Ye, X.; Wu, L.; Lemke, M.; Valera, P.; Sackey, J. Defining computational urban science. In New Thinking in GIScience; Springer: Berlin/Heidelberg, Germany, 2022; pp. 293–300. [Google Scholar]
- Luna, S.; Pennock, M.J. Social media applications and emergency management: A literature review and research agenda. Int. J. Disaster Risk Reduct. 2018, 28, 565–577. [Google Scholar] [CrossRef]
- Ye, X.; Niyogi, D. Resilience of human settlements to climate change needs the convergence of urban planning and urban climate science. Comput. Urban Sci. 2022, 2, 1–4. [Google Scholar] [CrossRef]
- Beigi, G.; Hu, X.; Maciejewski, R.; Liu, H. An overview of sentiment analysis in social media and its applications in disaster relief. Sentim. Anal. Ontol. Eng. 2016, 313–340. [Google Scholar]
- Purohit, H.; Sheth, A. Twitris v3: From citizen sensing to analysis, coordination and action. In Proceedings of the International AAAI Conference on Web and Social Media, Cambridge, MA, USA, 8–11 July 2013; Volume 7, pp. 746–747. [Google Scholar]
- Wang, Q.; Taylor, J.E. Quantifying human mobility perturbation and resilience in Hurricane Sandy. PLoS ONE 2014, 9, e112608. [Google Scholar]
- Wang, Q.; Taylor, J.E. Patterns and limitations of urban human mobility resilience under the influence of multiple types of natural disaster. PLoS ONE 2016, 11, e0147299. [Google Scholar] [CrossRef]
- Kryvasheyeu, Y.; Chen, H.; Obradovich, N.; Moro, E.; Van Hentenryck, P.; Fowler, J.; Cebrian, M. Rapid assessment of disaster damage using social media activity. Sci. Adv. 2016, 2, e1500779. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Ofli, F.; Imran, M.; Mitra, P. Damage assessment from social media imagery data during disasters. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Sydney, Australia, 31 July–3 August 2017; pp. 569–576. [Google Scholar]
- Mouzannar, H.; Rizk, Y.; Awad, M. Damage Identification in Social Media Posts using Multimodal Deep Learning. In Proceedings of the ISCRAM, Rochester, NY, USA, 20–23 May 2018. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed]
- Behler, J.; Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 2007, 98, 146401. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Song, Y.; Akagi, F. Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock market. Chaos Solitons Fractals 2016, 85, 1–7. [Google Scholar] [CrossRef]
- Varoquaux, G.; Buitinck, L.; Louppe, G.; Grisel, O.; Pedregosa, F.; Mueller, A. Scikit-learn: Machine learning without learning the machinery. GetMobile Mob. Comput. Commun. 2015, 19, 29–33. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010, Paris, France, 22–27 August 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–186. [Google Scholar]
- Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef]
- Ahmed, W. Using Twitter as a data source an overview of social media research tools (2021). In Impact of Social Sciences Blog; London School of Economics and Political Science: London, UK, 2021. [Google Scholar]
- Liang, Y.; Caverlee, J.; Cao, C. A noise-filtering approach for spatio-temporal event detection in social media. In Proceedings of the European Conference on Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2015; pp. 233–244. [Google Scholar]
- Campos, R.; Mangaravite, V.; Pasquali, A.; Jorge, A.; Nunes, C.; Jatowt, A. YAKE! Keyword extraction from single documents using multiple local features. Inf. Sci. 2020, 509, 257–289. [Google Scholar] [CrossRef]
- Lahitani, A.R.; Permanasari, A.E.; Setiawan, N.A. Cosine similarity to determine similarity measure: Study case in online essay assessment. In Proceedings of the 2016 4th International Conference on Cyber and IT Service Management, Bandung, Indonesia, 26–27 April 2016; pp. 1–6. [Google Scholar]
- Zheng, X.; Han, J.; Sun, A. A survey of location prediction on twitter. IEEE Trans. Knowl. Data Eng. 2018, 30, 1652–1671. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency. OpenFEMA Dataset; Federal Emergency Management Agency: Washington, DC, USA, 2022.
- Shahraki, Z.K.; Fatemi, A.; Malazi, H.T. Evidential fine-grained event localization using Twitter. Inf. Process. Manag. 2019, 56, 102045. [Google Scholar] [CrossRef]
FB | FD | FA | OC | |
---|---|---|---|---|
FB | 100 | 52.22 | 65.55 | 22.22 |
FD | 52.22 | 100 | 56.66 | 15.55 |
FA | 65.55 | 56.66 | 100 | 21.11 |
OC | 22.22 | 15.55 | 21.11 | 100 |
Category | Description | Source |
---|---|---|
ihpAmount | Total individual and households program (IHP) amount awarded in USD for eligible applicants. | IA owner, IA renter, IHP |
haAmount | Amount awarded for housing assistance (HA) in USD from IHP. | IHP |
onaAmount | Amount awarded in USD for other needs assistance (ONA) from IHP. | IHP |
rpfvl | Real property damage amount. | IHP, IHP large |
ppfvl | Value of disaster-caused damage to personal property components, including appliances and furniture. | IHP, IHP large |
rentalAssistanceAmount | Amount of rental assistance awarded in USD. | IA renter, IHP |
repairAmount | Amount of repair assistance awarded in USD. | IA owner, IHP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pi, Y.; Ye, X.; Duffield, N.; on behalf of the Microsoft AI for Humanitarian Action Group. Rapid Damage Estimation of Texas Winter Storm Uri from Social Media Using Deep Neural Networks. Urban Sci. 2022, 6, 62. https://doi.org/10.3390/urbansci6030062
Pi Y, Ye X, Duffield N, on behalf of the Microsoft AI for Humanitarian Action Group. Rapid Damage Estimation of Texas Winter Storm Uri from Social Media Using Deep Neural Networks. Urban Science. 2022; 6(3):62. https://doi.org/10.3390/urbansci6030062
Chicago/Turabian StylePi, Yalong, Xinyue Ye, Nick Duffield, and on behalf of the Microsoft AI for Humanitarian Action Group. 2022. "Rapid Damage Estimation of Texas Winter Storm Uri from Social Media Using Deep Neural Networks" Urban Science 6, no. 3: 62. https://doi.org/10.3390/urbansci6030062
APA StylePi, Y., Ye, X., Duffield, N., & on behalf of the Microsoft AI for Humanitarian Action Group. (2022). Rapid Damage Estimation of Texas Winter Storm Uri from Social Media Using Deep Neural Networks. Urban Science, 6(3), 62. https://doi.org/10.3390/urbansci6030062