Mental Models for Assessing Impacts of Stormwater on Urban Social–Ecological Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Puget Sound Study System
2.2. Expert Elicitation of Mental Models
2.3. Analysis of Mental Models
Network Structure
2.4. Characterization of the Puget Sound Stormwater SES
2.5. Development and Analysis of Aggregate Models
3. Results
3.1. Structural Characterization of the Mental Models
3.2. Aggregate Mental Model of the Puget Sound Social–Ecological System
3.3. Characterization of the Social–Ecological System
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Interview Guide
- Educational background?
- Highest degree, Major, and Where?
- Who is your employer?
- E.g. government, state, local, federal, university, consultant, etc.
- How would you describe your role in stormwater management?
- E.g. science, policy, management, communication
- How long have you worked on this topic?
- Birth year?
- Preferred pronoun?
- How much stormwater needs to be treated to ensure a healthy Puget Sound?
- I see that you put a (negative/0/positive) from (stormwater to herring/species), I’m wondering how much would you guess that I have to reduce this toxicity to change this negative to a zero?
- Would you say 50% or would I have to get rid of all of it?
- Like what is your ballpark guess?
- How confident are you on a scale from 0 to 100%?
- How would this change make the Puget Sound species respond?
- How come?
- Would you expect to see a response higher in some species rather than others?
- Would some species decline if stormwater pollution decreased?
- If they have other species on their mental model
- Which species are most at risk?
- What is the dynamic response of the food web?
- How would you describe the difference between one negative/positive to two negative/positives?
- Ask them to clarify what they mean by each relationship.
- Ask them to define the node.
Appendix B
References
- Folke, C.; Biggs, R.; Norström, A.V.; Reyers, B.; Rockström, J. Social-Ecological Resilience and Biosphere-Based Sustainability Science. Ecol. Soc. 2016, 21, 43. [Google Scholar] [CrossRef]
- Leach, M.; Rockström, J.; Raskin, P.; Scoones, I.; Stirling, A.C.; Smith, A.; Thompson, J.; Millstone, E.; Ely, A.; Arond, E.; et al. Transforming Innovation for Sustainability. Ecol. Soc. 2012, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Clark, W.C.; Munn, R.E. Sustainable Development of the Biosphere; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Gray, S.; Sterling, E.J.; Aminpour, P.; Goralnik, L.; Singer, A.; Wei, C.; Akabas, S.; Jordan, R.C.; Giabbanelli, P.J.; Hodbod, J.; et al. Assessing (Social-Ecological) Systems Thinking by Evaluating Cognitive Maps. Sustainability 2019, 11, 5753. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Levin, P.S.; Poe, M.R. Conservation for the Anthropocene Ocean: Interdisciplinary Science for Nature and People; Academic Press: London, UK, 2017. [Google Scholar]
- McGinnis, M.D.; Ostrom, E. Social-Ecological System Framework: Initial Changes and Continuing Challenges. Ecol. Soc. 2014, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Del Mar Delgado-Serrano, M.; Ramos, P. Making Ostrom’s Framework Applicable to Characterise Social Ecological Systems at the Local Level. Int. J. Commons 2015, 9, 808–830. [Google Scholar] [CrossRef]
- Rehr, A.P.; Williams, G.D.; Tolimieri, N.; Levin, P.S. Impacts of Terrestrial and Shoreline Stressors on Eelgrass in Puget Sound: An Expert Elicitation. Coast. Manag. 2014, 42, 246–262. [Google Scholar] [CrossRef]
- Burgman, M.; Carr, A.; Godden, L.; Gregory, R.; McBride, M.; Flander, L.; Maguire, L. Redefining Expertise and Improving Ecological Judgment. Conserv. Lett. 2011, 4, 81–87. [Google Scholar] [CrossRef]
- Martin, T.G.; Burgman, M.A.; Fidler, F.; Kuhnert, P.M.; Low-Choy, S.; Mcbride, M.; Mengersen, K. Eliciting Expert Knowledge in Conservation Science. Conserv. Biol. 2012, 26, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Stier, A.C.; Samhouri, J.F.; Gray, S.; Martone, R.G.; Mach, M.E.; Halpern, B.S.; Kappel, C.V.; Scarborough, C.; Levin, P.S. Integrating Expert Perceptions into Food Web Conservation and Management. Conserv. Lett. 2016, 10, 67–76. [Google Scholar] [CrossRef]
- Dietz, T. Bringing Values and Deliberation to Science Communication. Proc. Natl. Acad. Sci. USA 2013, 110, 14081–14087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, D.L. Integrating Qualitative and Quantitative Methods: A Pragmatic Approach; SAGE Publications, Inc.: London, UK, 2014; ISBN 978-0-7619-1523-2. [Google Scholar]
- Levin, P.S.; Gray, S.A.; Möllmann, C.; Stier, A.C. Perception and Conflict in Conservation: The Rashomon Effect. Bioscience 2020, 71, 64–72. [Google Scholar] [CrossRef]
- Elsawah, S.; Guillaume, J.H.; Filatova, T.; Rook, J.; Jakeman, A.J. A Methodology for Eliciting, Representing, and Analysing Stakeholder Knowledge for Decision Making on Complex Socio-Ecological Systems: From Cognitive Maps to Agent-Based Models. J. Environ. Manag. 2015, 151, 500–516. [Google Scholar] [CrossRef]
- Özesmi, U.; Özesmi, S.L. Ecological Models Based on People’s Knowledge: A Multi-Step Fuzzy Cognitive Mapping Approach. Ecol. Model. 2004, 176, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Vasslides, J.M.; Jensen, O.P. Quantitative vs. Semiquantitative Ecosystem Models: Comparing Alternate Representations of an Estuarine Ecosystem. J. Coast. Res. 2017, 78, 287–296. [Google Scholar] [CrossRef]
- Ziegler, J.P.; Jones, S.E.; Solomon, C.T. Local Stakeholders Understand Recreational Fisheries as Social-Ecological Systems but Do Not View Governance Systems as Influential for System Dynamics. Int. J. Commons 2019, 13, 1035–1048. [Google Scholar] [CrossRef]
- Gray, S.; Chan, A.; Clark, D.; Jordan, R. Modeling the Integration of Stakeholder Knowledge in Social–Ecological Decision-Making: Benefits and Limitations to Knowledge Diversity. Ecol. Model. 2012, 229, 88–96. [Google Scholar] [CrossRef]
- Gray, S.A.; Gray, S.; de Kok, J.L.; Helfgott, A.E.R.; O’Dwyer, B.; Jordan, R.; Nyaki, A. Using Fuzzy Cognitive Mapping as a Participatory Approach to Analyze Change, Preferred States, and Perceived Resilience of Social-Ecological Systems. Ecol. Soc. 2015, 20, 11. [Google Scholar] [CrossRef]
- Gray, S.; Jordan, R.; Crall, A.; Newman, G.; Hmelo-Silver, C.; Huang, J.; Novak, W.; Mellor, D.; Frensley, T.; Prysby, M.; et al. Combining Participatory Modelling and Citizen Science to Support Volunteer Conservation Action. Biol. Conserv. 2017, 208, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Henly-Shepard, S.; Gray, S.A.; Cox, L.J. The Use of Participatory Modeling to Promote Social Learning and Facilitate Community Disaster Planning. Environ. Sci. Policy 2015, 45, 109–122. [Google Scholar] [CrossRef]
- Nyaki, A.; Gray, S.A.; Lepczyk, C.A.; Skibins, J.C.; Rentsch, D. Local-Scale Dynamics and Local Drivers of Bushmeat Trade. Conserv. Biol. 2014, 28, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Puget Sound Regional Council 2050 Forecast of People and Jobs; Puget Sound Regional Council: Seattle WA, USA, 2018; Available online: https://www.psrc.org/planning-2050/vision-2050 (accessed on 18 January 2023).
- Ruckelshaus, M.; Essington, T.; Levin, P. Puget Sound, Washington, USA. In Ecosystem-Based Management for the Oceans; McLeod, K., Leslie, H., Eds.; Island Press: Washington, DC, USA, 2009; pp. 201–226. [Google Scholar]
- Baker, J.; Biedenweg, K.; Birkeland, C.; Christie, P.J.; Dunagan, C.; Francis, T.; Gaydos, J.; Genther, K.; Georgiadis, N.; Howe, E.; et al. Puget Sound Factbook Version 3; University of Washington: Tacoma, WA, USA, 2015. [Google Scholar]
- James, C.A.; Lanksbury, J.; Khangaonkar, T.; West, J. Evaluating Exposures of Bay Mussels (Mytilus trossulus) to Contaminants of Emerging Concern through Environmental Sampling and Hydrodynamic Modeling. Sci. Total. Environ. 2019, 709, 136098. [Google Scholar] [CrossRef] [PubMed]
- Krahn, M.M.; Hanson, M.B.; Baird, R.W.; Boyer, R.H.; Burrows, D.G.; Emmons, C.K.; Ford, J.K.; Jones, L.L.; Noren, D.P.; Ross, P.S.; et al. Persistent Organic Pollutants and Stable Isotopes in Biopsy Samples (2004/2006) from Southern Resident Killer Whales. Mar. Pollut. Bull. 2007, 54, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; et al. A Ubiquitous Tire Rubber–Derived Chemical Induces Acute Mortality in Coho Salmon. Science 2021, 371, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Incardona, J.P.; Carls, M.G.; Holland, L.; Linbo, T.L.; Baldwin, D.H.; Myers, M.S.; Peck, K.A.; Tagal, M.; Rice, S.D.; Scholz, N. Very Low Embryonic Crude Oil Exposures Cause Lasting Cardiac Defects in Salmon and Herring. Sci. Rep. 2015, 5, 13499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongillo, T.M.; Ylitalo, G.M.; Rhodes, L.D.; O’Neill, S.M.; Noren, D.P.; Hanson, B.M. Exposure to a Mixture of Toxic Chemicals: Implications for the Health of Endangered Southern Resident Killer Whales. NOAA Tech. Memo. 2016, 107, 1–118. [Google Scholar] [CrossRef]
- Levin, P.S.; Howe, E.R.; Robertson, J.C. Impacts of Stormwater on Coastal Ecosystems: The Need to Match the Scales of Management Objectives and Solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190460. [Google Scholar] [CrossRef]
- Bernard, H.R. Social Research Methods; Sage: Los Angeles, CA, USA, 2011. [Google Scholar]
- Carley, K.; Palmquist, M. Extracting, Representing, and Analyzing Mental Models. Soc. Forces 1992, 70, 601–636. [Google Scholar] [CrossRef]
- Puget Sound Partnership The 2022-2026 Action Agenda for Puget Sound; Puget Sound Partnership. Available online: https://www.psp.wa.gov/2022AAupdate.php/ (accessed on 13 January 2023).
- Harvey, C.J.; Williams, G.D.; Levin, P.S. Food Web Structure and Trophic Control in Central Puget Sound. Estuaries Coasts 2012, 35, 821–838. [Google Scholar] [CrossRef]
- West, J.E.; O’Neill, S.M.; Ylitalo, G.M. Time Trends of Persistent Organic Pollutants in Benthic and Pelagic Indicator Fishes from Puget Sound, Washington, USA. Arch. Environ. Contam. Toxicol. 2017, 73, 207–229. [Google Scholar] [CrossRef]
- Cabin, R.J.; Mitchell, R.J. To Bonferroni or Not to Bonferroni: When and How Are the Questions. Bull. Ecol. Soc. Am. 2000, 81, 246–248. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘Vegan’: Community Ecology Package; R Package Version 2.5-6; 2017. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 18 January 2023).
- O’Connor, C.B. Variation in Perceptions of the Stormwater Social-Ecological System in Puget Sound: Insights for Management Across the Land-Sea Interface; University of Washington: Seattle, WA, USA, 2020; ISBN 9798662579101. [Google Scholar]
- Ghermandi, A.; Nunes, P.A.D. A Global Map of Coastal Recreation Values: Results from a Spatially Explicit Meta-Analysis. Ecol. Econ. 2013, 86, 1–15. [Google Scholar] [CrossRef]
- King, O.H. Estimating the Value of Marine Resources: A Marine Recreation Case. Ocean Coast. Manag. 1995, 27, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Poe, M.R.; Norman, K.C.; Levin, P.S. Cultural Dimensions of Socioecological Systems: Key Connections and Guiding Principles for Conservation in Coastal Environments. Conserv. Lett. 2013, 7, 166–175. [Google Scholar] [CrossRef]
- Safford, T.G.; Norman, K.C.; Henly, M.; Mills, K.E.; Levin, P.S. Environmental Awareness and Public Support for Protecting and Restoring Puget Sound. Environ. Manag. 2014, 53, 757–768. [Google Scholar] [CrossRef]
- Farr, B.D.; Otto, C.M.; Szymczak, J.E. Expert Perspectives on the Performance of Explosive Detection Canines: Operational Requirements. Animals 2021, 11, 1976. [Google Scholar] [CrossRef]
- Jalkanen, J.; Vierikko, K.; Moilanen, A. Spatial Prioritization for Urban Biodiversity Quality Using Biotope Maps and Expert Opinion. Urban For. Urban Green. 2020, 49, 126586. [Google Scholar] [CrossRef]
- Tarancón, A.A.; Kim, Y.-S.; Padilla, T.; Fulé, P.Z.; Meador, A.J.S. Co-construction of Ecosystem Services Management in Tribal Lands: Elicit Expert Opinion Approach. Weather. Clim. Soc. 2020, 12, 487–499. [Google Scholar] [CrossRef]
- Reed, M.S. Stakeholder Participation for Environmental Management: A Literature Review. Biol. Conserv. 2008, 141, 2417–2431. [Google Scholar] [CrossRef]
- Hemming, V.; Hanea, A.M.; Walshe, T.; Burgman, M.A. Weighting and Aggregating Expert Ecological Judgments. Ecol. Appl. 2020, 30, e02075. [Google Scholar] [CrossRef]
- Crawford, B.A.; Olds, M.J.; Maerz, J.C.; Moore, C.T. Estimating Population Persistence for At-Risk Species Using Citizen Science Data. Biol. Conserv. 2020, 243, 108489. [Google Scholar] [CrossRef]
- McAndrew, T.; Wattanachit, N.; Gibson, G.C.; Reich, N.G. Aggregating Predictions from Experts: A Review of Statistical Methods, Experiments, and Applications. WIREs Comput. Stat. 2020, 13, e1514. [Google Scholar] [CrossRef] [PubMed]
- Siqueiros-García, J.M.; Lerner, A.M.; Eakin, H.C.; Aguilar, B.H. A Standardization Process for Mental Model Analysis in Socio-ecological Systems. Environ. Model. Softw. 2018, 112, 108–111. [Google Scholar] [CrossRef]
- Levy, M.A.; Lubell, M.N.; McRoberts, N. The Structure of Mental Models of Sustainable Agriculture. Nat. Sustain. 2018, 1, 413–420. [Google Scholar] [CrossRef]
- Puget Sound Partnership Puget Sound Vital Signs. Available online: https://vitalsigns.pugetsoundinfo.wa.gov/ (accessed on 18 January 2023).
- Alexandridis, K.; Takemura, S.; Webb, W.; Lausche, B.; Culter, J.; Sato, T. Semantic Knowledge Network Inference Across a Range of Stakeholders and Communities of Practice. Environ. Model. Softw. 2018, 109, 202–222. [Google Scholar] [CrossRef]
- Hämäläinen, R.P. Behavioural Issues in Environmental Modelling—The Missing Perspective. Environ. Model. Softw. 2015, 73, 244–253. [Google Scholar] [CrossRef]
- Jones, N.A.; Ross, H.; Lynam, T.; Perez, P. Eliciting Mental Models: A Comparison of Interview Procedures in the Context of Natural Resource Management. Ecol. Soc. 2014, 19, 13. [Google Scholar] [CrossRef]
- Singer, A.; Gray, S.; Sadler, A.; Olabisi, L.S.; Metta, K.; Wallace, R.; Lopez, M.C.; Introne, J.; Gorman, M.; Henderson, J. Translating Community Narratives into Semi-Quantitative Models to Understand the Dynamics of Socio-Environmental Crises. Environ. Model. Softw. 2017, 97, 46–55. [Google Scholar] [CrossRef]
- Folke, C. Traditional Knowledge in Social–Ecological Systems. Ecol. Soc. 2004, 9, 7. [Google Scholar] [CrossRef]
- Ludwig, D.; Mangel, M.; Haddad, B. Ecology, Conservation, and Public Policy. Annu. Rev. Ecol. Syst. 2001, 32, 481–517. [Google Scholar] [CrossRef]
- McLain, R.J.; Lee, R.G. Adaptive Management: Promises and Pitfalls. Environ. Manag. 1996, 20, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Varjopuro, R.; Gray, T.; Hatchard, J.; Rauschmayer, F.; Wittmer, H. Introduction: Interaction between Environment and Fisheries—The Role of Stakeholder Participation. Mar. Policy 2008, 32, 147–157. [Google Scholar] [CrossRef]
- Levin, P.S.; Williams, G.D.; Rehr, A.; Norman, K.C.; Harvey, C.J. Developing Conservation Targets in Social-Ecological Systems. Ecol. Soc. 2015, 20, 6. [Google Scholar] [CrossRef] [Green Version]
- Shelton, A.O.; Samhouri, J.F.; Stier, A.C.; Levin, P.S. Assessing Trade-Offs to Inform Ecosystem-Based Fisheries Management of Forage Fish. Sci. Rep. 2014, 4, 7110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stave, K. Participatory System Dynamics Modeling for Sustainable Environmental Management: Observations from Four Cases. Sustainability 2010, 2, 2762–2784. [Google Scholar] [CrossRef] [Green Version]
- Carey, M.P.; Levin, P.S.; Townsend, H.; Minello, T.; Sutton, G.R.; Francis, T.B.; Harvey, C.J.; Toft, J.E.; Arkema, K.K.; Burke, J.L.; et al. Characterizing Coastal Foodwebs with Qualitative Links to Bridge the Gap between the Theory and the Practice of Ecosystem-Based Management. ICES J. Mar. Sci. 2013, 71, 713–724. [Google Scholar] [CrossRef]
- Reum, J.C.P.; McDonald, P.S.; Ferriss, B.E.; Farrell, D.M.; Harvey, C.J.; Levin, P.S. Qualitative Network Models in Support of Ecosystem Approaches to Bivalve Aquaculture. ICES J. Mar. Sci. 2015, 72, 2278–2288. [Google Scholar] [CrossRef] [Green Version]
- Voinov, A.; Bousquet, F. Modelling with Stakeholders. Environ. Model. Softw. 2010, 25, 1268–1281. [Google Scholar] [CrossRef]
- Goulding, R.; Jayasuriya, N.; Horan, E. A Bayesian Network Model to Assess the Public Health Risk Associated with Wet Weather Sewer Overflows Discharging into Waterways. Water Res. 2012, 46, 4933–4940. [Google Scholar] [CrossRef]
- Francis, T.B.; Levin, P.S.; Punt, A.E.; Kaplan, I.C.; Varney, A.; Norman, K. Linking Knowledge to Action in Ocean Ecosystem Management: The Ocean Modeling Forum. Elementa Sci. Anthr. 2018, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Bednarek, A.T.; Wyborn, C.; Cvitanovic, C.; Meyer, R.; Colvin, R.M.; Addison, P.F.E.; Close, S.L.; Curran, K.; Farooque, M.; Goldman, E.; et al. Boundary Spanning at the Science–Policy Interface: The Practitioners’ Perspectives. Sustain. Sci. 2018, 13, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Carwardine, J.; Klein, C.J.; Wilson, K.A.; Pressey, R.L.; Possingham, H.P. Hitting the Target and Missing the Point: Target-Based Conservation Planning in Context. Conserv. Lett. 2009, 2, 4–11. [Google Scholar] [CrossRef]
- Puget Sound Partnership State of the Sound Report. Olympia, Washington. 2019. Available online: www.stateofthesound.wa.gov (accessed on 18 January 2023).
Mental Model, Structural Measurement | Description of Measure and Cognitive Inference |
---|---|
Components | Number of variables included in the model; higher number of concepts indicates more concepts in the mental model |
Connections | Number of connections included between components; a higher number of connections indicates a higher degree of interaction between components in a mental model |
Drivers | Components with only arrows out—this means that they are not affected by other components and have influence over other variables, and, consequently, over the entire system |
Receivers | Components with only arrows in—this means they are impacted by other components, but have no effect on the system |
Centrality | Absolute value of either (a) overall influence in the model (all + and − relationships indicated, for the entire model), or (b) influence of individual concepts, as indicated by positive (+) or negative (−) values placed on connections between components. Indicates (a) the total influence (positive and negative) in the system or (b) the conceptual weight/importance of individual concepts. The higher the value, the greater the importance of all concepts or the individual weight of a concept in the overall model |
Complexity | Ratio of receiver variables to transmitter variables. Indicates the degree of resolution and is a measure of the degree to which outcomes of driving forces are considered. Higher complexity indicates more complicated systems. |
Connections per component (C/N) | Number of connections divided by number of variables (concepts). The lower the C/N score, the higher the degree of connectedness in a system. |
Density | Number of connections compared to number of all possible connections. The higher the density, the more potential management policies exist [17]. |
Mental Model Component | Aggregate Rank | Scientist Rank | Manager Rank |
---|---|---|---|
Stormwater | 1 | 1 | 1 |
Biotic Habitat | 2 | 2 | 2 |
Management Practices | 8 | 3 | 4 |
Stormwater Quantity | 6 | 4 | 5 |
Salmon | 4 | 5 | 9 |
Impervious Surface | 3 | 6 | 3 |
Plankton | 14 | 7 | 20 |
Herring | 11 | 8 | 13 |
Agriculture | 15 | 9 | 19 |
Freshwater Quality Health | 9 | 10.5 | 6 |
Human Well-Being | 10 | 10.5 | 11 |
Human Population | 7 | 12 | 7 |
Orcas | 16 | 13 | 15 |
Climate: Precipitation | 13 | 14 | 12 |
Economy/Funding | 5 | 15 | 8 |
Nutrients | 17 | 16 | 14 |
Regulation | 12 | 17 | 10 |
Transportation | 18 | 18 | 16 |
Combined Sewer Overflows | 20 | 19 | 18 |
Education | 19 | 20 | 17 |
Politics | 21 | 21 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connor, C.B.; Levin, P.S. Mental Models for Assessing Impacts of Stormwater on Urban Social–Ecological Systems. Urban Sci. 2023, 7, 14. https://doi.org/10.3390/urbansci7010014
O’Connor CB, Levin PS. Mental Models for Assessing Impacts of Stormwater on Urban Social–Ecological Systems. Urban Science. 2023; 7(1):14. https://doi.org/10.3390/urbansci7010014
Chicago/Turabian StyleO’Connor, Caitlyn B., and Phillip S. Levin. 2023. "Mental Models for Assessing Impacts of Stormwater on Urban Social–Ecological Systems" Urban Science 7, no. 1: 14. https://doi.org/10.3390/urbansci7010014
APA StyleO’Connor, C. B., & Levin, P. S. (2023). Mental Models for Assessing Impacts of Stormwater on Urban Social–Ecological Systems. Urban Science, 7(1), 14. https://doi.org/10.3390/urbansci7010014