Do Socially Vulnerable Urban Populations Have Access to Walkable, Transit-Accessible Neighborhoods? A Nationwide Analysis of Large U.S. Metropolitan Areas
Abstract
:1. Introduction
2. Background
3. Methods
3.1. Social Vulnerability
3.2. Walkability
3.3. Transit Accessibility
4. Modeling
5. Results
5.1. Overall Accessibility
5.2. SV and Accessibility
5.3. Equity in Accessibility
5.4. Model Results
6. Discussion
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Metropolitan Area | % SV in High Walk Tracts | % Total in High Walk Tracts | Ratio |
---|---|---|---|
New York, NY | 85.3 | 50.8 | 1.7 |
Lancaster, PA | 79.4 | 9.1 | 8.7 |
Philadelphia, PA | 73.1 | 25.3 | 2.9 |
Boston, MA | 71.0 | 28.2 | 2.5 |
Providence, RI | 68.6 | 21.7 | 3.2 |
Bridgeport, CT | 61.7 | 19.9 | 3.1 |
Allentown, PA | 56.6 | 14.1 | 4.0 |
Springfield, MA | 49.2 | 13.4 | 3.7 |
Los Angeles, CA | 48.2 | 33.6 | 1.4 |
Syracuse, NY | 47.7 | 7.9 | 6.0 |
Portland, ME | 47.2 | 5.9 | 8.0 |
Harrisburg, PA | 46.3 | 7.5 | 6.2 |
Milwaukee, WI | 44.4 | 19.5 | 2.3 |
Chicago, IL | 43.5 | 25.3 | 1.7 |
Scranton, PA | 39.5 | 9.5 | 4.1 |
New Haven, CT | 38.9 | 12.7 | 3.1 |
Hartford, CT | 37.6 | 7.6 | 5.0 |
Albany, NY | 37.5 | 10.4 | 3.6 |
Rochester, NY | 37.5 | 9.1 | 4.1 |
Urban Honolulu, HI | 37.0 | 19.6 | 1.9 |
Baltimore, MD | 36.2 | 9.5 | 3.8 |
Minneapolis-St. Paul, MN | 33.4 | 10.9 | 3.1 |
Buffalo, NY | 32.1 | 10.1 | 3.2 |
Worcester, MA | 30.9 | 8.1 | 3.8 |
Grand Rapids, MI | 29.1 | 8.6 | 3.4 |
San Diego, CA | 28.4 | 15.3 | 1.9 |
San Jose, CA | 23.3 | 15.3 | 1.5 |
Miami, FL | 22.9 | 13.1 | 1.7 |
Pittsburgh, PA | 20.5 | 8.9 | 2.3 |
Stockton, CA | 20.0 | 9.6 | 2.1 |
Cleveland, OH | 19.4 | 6.2 | 3.1 |
Oxnard, CA | 18.7 | 6.9 | 2.7 |
Seattle, WA | 17.2 | 16.8 | 1.0 |
St. Louis, MO | 16.9 | 5.3 | 3.2 |
Spokane, WA | 16.1 | 6.2 | 2.6 |
Salt Lake City, UT | 15.9 | 8.2 | 1.9 |
Omaha, NE | 15.2 | 4.9 | 3.1 |
Toledo, OH | 14.8 | 2.4 | 6.2 |
Denver, CO | 14.7 | 9.8 | 1.5 |
Cincinnati, OH | 13.8 | 5.2 | 2.6 |
Louisville, KY | 13.5 | 4.8 | 2.8 |
Portland, OR | 11.8 | 15.4 | 0.8 |
New Orleans, LA | 11.6 | 14.3 | 0.8 |
Detroit, MI | 11.6 | 4.6 | 2.5 |
Boise City, ID | 11.5 | 5.6 | 2.1 |
Washington, DC | 11.4 | 13.3 | 0.9 |
Des Moines, IA | 10.1 | 4.4 | 2.3 |
Santa Rosa, CA | 9.9 | 4.9 | 2.0 |
Las Vegas, NV | 9.5 | 2.8 | 3.4 |
Columbus, OH | 8.2 | 5.6 | 1.5 |
Riverside-San Bernardino, CA | 8.1 | 3.6 | 2.2 |
Tucson, AZ | 7.8 | 5.1 | 1.5 |
Charleston, SC | 6.8 | 3.1 | 2.2 |
Sacramento, CA | 6.8 | 4.9 | 1.4 |
Dallas-Fort Worth, TX | 6.5 | 4.0 | 1.6 |
Albuquerque, NM | 6.5 | 4.9 | 1.3 |
Virginia Beach-Norfolk, VA | 6.5 | 3.3 | 1.9 |
Tampa-St. Petersburg, FL | 6.2 | 3.5 | 1.8 |
Fresno, CA | 6.1 | 4.4 | 1.4 |
Deltona-Daytona Beach, FL | 6.0 | 1.8 | 3.3 |
El Paso, TX | 5.4 | 3.6 | 1.5 |
Lexington, KY | 5.2 | 5.2 | 1.0 |
Ogden, UT | 5.1 | 3.1 | 1.7 |
Durham-Chapel Hill, NC | 4.4 | 2.2 | 2.0 |
Youngstown, OH | 4.3 | 0.5 | 8.7 |
Kansas City, MO | 4.2 | 3.6 | 1.2 |
Houston, TX | 4.0 | 4.1 | 1.0 |
San Antonio, TX | 3.9 | 2.4 | 1.6 |
Richmond, VA | 3.6 | 5.0 | 0.7 |
Phoenix, AZ | 3.5 | 1.8 | 2.0 |
Bakersfield, CA | 3.2 | 1.8 | 1.8 |
Oklahoma City, OK | 3.0 | 2.2 | 1.3 |
McAllen, TX | 3.0 | 2.6 | 1.2 |
Fayetteville, AR | 2.5 | 2.0 | 1.2 |
Tulsa, OK | 2.4 | 1.6 | 1.5 |
Austin, TX | 2.2 | 6.2 | 0.4 |
Lakeland-Winter Haven, FL | 2.0 | 0.8 | 2.5 |
Nashville, TN | 2.0 | 2.8 | 0.7 |
Birmingham, AL | 1.9 | 1.2 | 1.6 |
Jacksonville, FL | 1.8 | 2.4 | 0.8 |
Modesto, CA | 1.7 | 2.7 | 0.6 |
Memphis, TN | 1.5 | 1.4 | 1.1 |
Columbia, SC | 1.4 | 1.5 | 0.9 |
Indianapolis, IN | 1.1 | 1.5 | 0.7 |
Atlanta, GA | 0.7 | 2.3 | 0.3 |
Orlando, FL | 0.2 | 1.5 | 0.1 |
Madison, WI | 0.0 | 10.0 | 0.0 |
Provo-Orem, UT | 0.0 | 5.2 | 0.0 |
Dayton, OH | 0.0 | 2.6 | 0.0 |
Knoxville, TN | 0.0 | 1.9 | 0.0 |
Akron, OH | 0.0 | 1.6 | 0.0 |
Chattanooga, TN-GA | 0.0 | 1.6 | 0.0 |
Raleigh, NC | 0.0 | 1.5 | 0.0 |
Greensboro, NC | 0.0 | 1.2 | 0.0 |
North Port-Sarasota, FL | 0.0 | 1.2 | 0.0 |
Greenville, SC | 0.0 | 1.1 | 0.0 |
Little Rock, AR | 0.0 | 1.1 | 0.0 |
Wichita, KS | 0.0 | 1.0 | 0.0 |
Palm Bay, FL | 0.0 | 0.9 | 0.0 |
Colorado Springs, CO | 0.0 | 0.8 | 0.0 |
Winston-Salem, NC | 0.0 | 0.7 | 0.0 |
Baton Rouge, LA | 0.0 | 0.7 | 0.0 |
Jackson, MS | 0.0 | 0.7 | 0.0 |
Charlotte, NC | 0.0 | 0.6 | 0.0 |
Augusta, GA | 0.0 | 0.0 | -- |
Cape Coral-Fort Myers, FL | 0.0 | 0.0 | -- |
Appendix B
Metropolitan Area | % SV in High-Transit Tracts | % Total in High-Transit Tracts | Ratio |
---|---|---|---|
New York, NY | 86.8 | 54.4 | 1.5 |
Philadelphia, PA | 82.1 | 34.7 | 2.4 |
Milwaukee, WI | 68.6 | 31.1 | 2.2 |
San Jose, CA | 61.4 | 18.4 | 3.3 |
San Diego, CA | 60.9 | 16.5 | 3.7 |
Boston, MA | 58.6 | 34.5 | 1.7 |
Urban Honolulu, HI | 50.0 | 24.2 | 2.1 |
Baltimore, MD | 47.3 | 30.4 | 1.6 |
Washington, DC | 40.9 | 25.6 | 1.6 |
Buffalo, NY | 40.3 | 17.8 | 2.3 |
Chicago, IL | 39.6 | 25.6 | 1.5 |
Portland, OR | 39.4 | 11.5 | 3.4 |
Miami, FL | 34.7 | 10.1 | 3.5 |
Salt Lake City, UT | 34.2 | 18.6 | 1.8 |
Louisville, KY | 24.8 | 5.3 | 4.7 |
Albany, NY | 24.3 | 15.6 | 1.6 |
Worcester, MA | 24.0 | 8.1 | 3.0 |
Los Angeles, CA | 22.4 | 19.4 | 1.2 |
Minneapolis-St. Paul, MN | 19.5 | 18.1 | 1.1 |
Seattle, WA | 18.0 | 10.4 | 1.7 |
Denver, CO | 17.9 | 13.1 | 1.4 |
Durham-Chapel Hill, NC | 15.3 | 3.1 | 5.0 |
Pittsburgh, PA | 14.4 | 7.8 | 1.8 |
Virginia Beach-Norfolk, VA | 14.1 | 3.4 | 4.1 |
Bridgeport, CT | 13.7 | 9.8 | 1.4 |
Spokane, WA | 12.4 | 2.5 | 4.9 |
Springfield, MA | 11.8 | 5.5 | 2.1 |
Charlotte, NC | 10.8 | 2.4 | 4.4 |
St. Louis, MO | 10.0 | 5.0 | 2.0 |
New Orleans, LA | 9.6 | 2.2 | 4.3 |
Raleigh, NC | 9.4 | 4.3 | 2.2 |
Cincinnati, OH | 8.6 | 5.0 | 1.7 |
Oxnard, CA | 8.2 | 2.8 | 2.9 |
Phoenix, AZ | 7.9 | 5.4 | 1.5 |
Houston, TX | 7.0 | 3.6 | 2.0 |
Rochester, NY | 6.5 | 6.0 | 1.1 |
Providence, RI | 6.3 | 5.2 | 1.2 |
Atlanta, GA | 6.2 | 2.2 | 2.9 |
Austin, TX | 5.9 | 3.1 | 1.9 |
El Paso, TX | 5.8 | 2.1 | 2.8 |
San Antonio, TX | 5.6 | 5.6 | 1.0 |
Sacramento, CA | 5.5 | 8.9 | 0.6 |
Las Vegas, NV | 5.2 | 2.4 | 2.1 |
Dallas-Fort Worth, TX | 4.8 | 4.5 | 1.1 |
Albuquerque, NM | 4.7 | 3.1 | 1.5 |
Tampa-St. Petersburg, FL | 4.7 | 2.0 | 2.3 |
Tucson, AZ | 4.4 | 2.7 | 1.6 |
Ogden, UT | 4.4 | 9.7 | 0.5 |
New Haven, CT | 4.3 | 4.0 | 1.1 |
Memphis, TN | 2.8 | 1.7 | 1.6 |
Kansas City, MO | 2.6 | 1.9 | 1.4 |
Modesto, CA | 2.5 | 1.5 | 1.7 |
Columbus, OH | 2.2 | 1.6 | 1.4 |
Provo-Orem, UT | 1.9 | 0.8 | 2.4 |
Riverside-San Bernardino, CA | 1.8 | 3.4 | 0.5 |
Lexington, KY | 1.8 | 0.7 | 2.4 |
Madison, WI | 1.8 | 0.8 | 2.2 |
Fresno, CA | 1.7 | 0.9 | 1.9 |
Bakersfield, CA | 1.7 | 0.8 | 2.1 |
Nashville, TN | 1.5 | 1.2 | 1.2 |
Jacksonville, FL | 1.0 | 1.6 | 0.6 |
North Port-Sarasota, FL | 0.6 | 0.4 | 1.6 |
Little Rock, AR | 0.4 | 0.2 | 1.8 |
Cleveland, OH | 0.0 | 12.0 | 0.0 |
Birmingham, AL | 0.0 | 1.7 | 0.0 |
Stockton, CA | 0.0 | 1.6 | 0.0 |
Detroit, MI | 0.0 | 1.3 | 0.0 |
Orlando, FL | 0.0 | 1.0 | 0.0 |
Portland, ME | 0.0 | 0.7 | 0.0 |
Indianapolis, IN | 0.0 | 0.6 | 0.0 |
Oklahoma City, OK | 0.0 | 0.6 | 0.0 |
Allentown, PA | 0.0 | 0.4 | 0.0 |
Hartford, CT | 0.0 | 0.2 | 0.0 |
Akron, OH | 0.0 | 0.0 | -- |
Augusta, GA | 0.0 | 0.0 | -- |
Baton Rouge, LA | 0.0 | 0.0 | -- |
Boise City, ID | 0.0 | 0.0 | -- |
Cape Coral-Fort Myers, FL | 0.0 | 0.0 | -- |
Charleston, SC | 0.0 | 0.0 | -- |
Chattanooga, TN-GA | 0.0 | 0.0 | -- |
Colorado Springs, CO | 0.0 | 0.0 | -- |
Columbia, SC | 0.0 | 0.0 | -- |
Dayton, OH | 0.0 | 0.0 | -- |
Deltona-Daytona Beach, FL | 0.0 | 0.0 | -- |
Des Moines, IA | 0.0 | 0.0 | -- |
Fayetteville, AR | 0.0 | 0.0 | -- |
Grand Rapids, MI | 0.0 | 0.0 | -- |
Greensboro, NC | 0.0 | 0.0 | -- |
Greenville, SC | 0.0 | 0.0 | -- |
Harrisburg, PA | 0.0 | 0.0 | -- |
Jackson, MS | 0.0 | 0.0 | -- |
Knoxville, TN | 0.0 | 0.0 | -- |
Lakeland-Winter Haven, FL | 0.0 | 0.0 | -- |
Lancaster, PA | 0.0 | 0.0 | -- |
McAllen, TX | 0.0 | 0.0 | -- |
Omaha, NE | 0.0 | 0.0 | -- |
Palm Bay, FL | 0.0 | 0.0 | -- |
Richmond, VA | 0.0 | 0.0 | -- |
Santa Rosa, CA | 0.0 | 0.0 | -- |
Scranton, PA | 0.0 | 0.0 | -- |
Syracuse, NY | 0.0 | 0.0 | -- |
Toledo, OH | 0.0 | 0.0 | -- |
Tulsa, OK | 0.0 | 0.0 | -- |
Wichita, KS | 0.0 | 0.0 | -- |
Winston-Salem, NC | 0.0 | 0.0 | -- |
Youngstown, OH | 0.0 | 0.0 | -- |
References
- Boer, J.T.; Pastor, M., Jr.; Sadd, J.L.; Snyder, L.D. Is there environmental racism? The demographics of hazardous waste in Los Angeles. Soc. Sci. Q. 1997, 78, 793–810. [Google Scholar]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. National patterns in environmental injustice and inequality in outdoor NO2 air pollution in the United States. PLoS ONE 2014, 9, e94431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, J. Unequal proximity to environmental pollution: An intersectional analysis of people with disabilities in Harris County, Texas. Prof. Geogr. 2020, 72, 521–534. [Google Scholar] [CrossRef]
- Sobotta, R.R.; Campbell, H.E.; Owens, B.J. Aviation noise and environmental justice: The barrio barrier. J. Reg. Sci. 2007, 47, 125–154. [Google Scholar] [CrossRef]
- Carrier, M.; Apparicio, P.; Seguin, A.-M. Road traffic noise in Montreal and environmental equity: What is the situation for the most vulnerable population groups? J. Transp. Geogr. 2016, 51, 1–8. [Google Scholar] [CrossRef]
- Debbage, N. Multiscalar spatial analysis of urban flood risk and environmental justice in the Charlanta megaregion, USA. Anthropocene 2019, 28, 100226. [Google Scholar] [CrossRef]
- Wolch, J.; Wilson, J.P.; Fehrenbach, J. Parks and park funding in Los Angeles: An equity-mapping analysis. Urban Geogr. 2005, 26, 4–35. [Google Scholar] [CrossRef] [Green Version]
- Rigolon, A.; Browning, M.; Jennings, V. Inequities in the quality of urban park systems: An environmental justice investigation of cities in the United States. Landsc. Urban Plan. 2018, 178, 156–169. [Google Scholar] [CrossRef]
- Nesbitt, L.; Meitner, M.J.; Girling, C.; Sheppard, S.R.J.; Lu, Y. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc. Urban Plan. 2019, 181, 51–79. [Google Scholar] [CrossRef]
- Mukamel, D.B.; Murphy, A.S.; Weimer, D.L. Racial differences in access to high-quality cardiac surgeons. Am. J. Public Health 2000, 90, 1774–1777. [Google Scholar]
- Onega, T.; Duell, E.J.; Shi, X.; Wang, D.; Demidenko, E.; Goodman, M.D. Geographic access to cancer care in the US. Cancer 2008, 112, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Beaulac, J.; Kristjansson, E.; Cummins, S. A systematic review of food deserts 1966–2007. Prev. Chronic Dis. 2009, 6, A105. [Google Scholar]
- McKenzie, B.S. Access to supermarkets among poorer neighborhoods: A comparison of time and distance measure. Urban Geogr. 2014, 35, 133–151. [Google Scholar] [CrossRef]
- Rothwell, J. Housing Costs, Zoning, and Access to High-Scoring Schools; Metropolitan Policy Program; Brookings Institution: Washington, DC, USA, 2012; Available online: https://www.brookings.edu/wp-content/uploads/2016/06/0419_school_inequality_rothwell.pdf (accessed on 1 December 2021).
- Nelson, J.R.; Grubesic, T.H. Environmental justice: A panoptic overview using scientometrics. Sustainability 2018, 10, 1022. [Google Scholar] [CrossRef] [Green Version]
- Bullard, R. (Ed.) Growing Smarter: Achieving Livable Communities, Environmental Justice, and Reginal Equity; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Bereitschaft, B. Equity in microscale urban design and walkability: A photographic survey of six Pittsburgh streetscapes. Sustainability 2017, 9, 1233. [Google Scholar] [CrossRef] [Green Version]
- Bereitschaft, B. Equity in neighborhood walkability? A comparative analysis of three large U.S. cities. Local Environ. 2017, 22, 859–879. [Google Scholar] [CrossRef]
- Wang, J.; Lindsey, G. Equity of bikeway distribution in Minneapolis, Minnesota. Transp. Res. Rec. 2017, 2605, 18–31. [Google Scholar] [CrossRef]
- Matas, A.; Raymond, J.-L.; Roig, J.-L. Job accessibility and female employment probability: The cases of Barcelona and Madrid. Urban Stud. 2010, 47, 769–787. [Google Scholar] [CrossRef]
- Mueller, N.; Rojas-Rueda, D.; Cole-Hunter, T.; de Nazelle, A.; Dons, E.; Gerike, R.; Gotschi, T.; Int Panis, L.; Kahlmeier, S.; Nieuwenhuijsen, M. Health impact assessment of active transportation: A systematic review. Prev. Med. 2015, 76, 103–114. [Google Scholar] [CrossRef]
- Preis, D. Transportation access in U.S. suburban schools: A tool for equity or a revelation of race, class and privilege disparity? Race Ethn. Educ. 2022, 1–21. [Google Scholar] [CrossRef]
- Jabareen, Y.R. Sustainable urban forms: Their typologies, models, and concepts. J. Plan. Educ. Res. 2006, 26, 38–52. [Google Scholar] [CrossRef]
- Pereira, R.H.M.; Schwanen, T.; Banister, D. Distributive justice and equity in transportation. Transp. Rev. 2017, 37, 170–191. [Google Scholar] [CrossRef] [Green Version]
- Gehl, J. Life between Buildings: Using Public Space; Van Nostrand Reinhold: New York, NY, USA, 1987. [Google Scholar]
- Speck, J. Walkable City: How Downtown Can Save America, One Step at a Time; Farrar, Straus and Giroux: New York, NY, USA, 2012. [Google Scholar]
- Forsyth, A. What is a walkable place? The walkability debate in urban design. Urban Des. Int. 2015, 20, 274–292. [Google Scholar] [CrossRef]
- Frank, L.D.; Engelke, P. Impacts of the built environment on health: Walkable places and the exposure to air pollution. Int. Reg. Sci. Rev. 2005, 28, 193–216. [Google Scholar] [CrossRef]
- Lovasi, G.S.; Neckerman, K.M.; Quinn, J.W.; Weiss, C.C.; Rundle, A. Effect of individual or neighborhood disadvantage on the association between neighborhood walkability and body mass index. Am. J. Public Health 2009, 99, 279–284. [Google Scholar] [CrossRef]
- Sallis, J.F.; Saelens, B.; Frank, L.; Conway, T.L.; Slymen, D.J.; Cain, K.L.; Chapman, J.E.; Kerr, J. Neighborhood built environment and income: Examining multiple health outcomes. Soc. Sci. Med. 2009, 68, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Giles-Corti, B.; Foster, S.; Shilton, T.; Falconer, R. The co-benefits for health of investing in active transportation. NSW Public Health Bull. 2010, 21, 122–127. Available online: https://www.phrp.com.au/wp-content/uploads/2014/10/NB10027.pdf (accessed on 15 December 2021). [CrossRef] [Green Version]
- Rissel, C.; Curac, N.; Greenawar, M.; Bauman, A. Physical activity associated with public transport use—A review and modelling of potential benefits. Int. J. Environ. Res. Public Health 2012, 9, 2454–2478. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, J.; Farzin, Y.H.; Lawell, C.Y.C.L. Public transit investment and sustainable transportation: A review of studies of transit’s impact on traffic congestion and air quality. Res. Transp. Econ. 2015, 52, 15–22. [Google Scholar] [CrossRef]
- Zapata-Diomedi, B.; Herrera, A.M.M.; Veerman, J.L. The effects of built environment attributes on physical activity-related heal and health care costs outcomes in Australia. Health Place 2016, 42, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Litman, T. Evaluating Public Transportation Heath Benefits; Victoria Transport Policy Institute: Victoria, BC, Canada, 2020; Available online: https://www.vtpi.org/tran_health.pdf (accessed on 15 December 2021).
- Leyden, K.M. Social capital and the built environment: The importance of walkable neighborhoods. Am. J. Public Health 2003, 93, 1546–1551. [Google Scholar] [CrossRef] [PubMed]
- French, S.; Wood, L.; Foster, S.A.; Giles-Corti, B.; Frank, L.; Learnihan, V. Sense of community and its association with the neighborhood built environment. Environ. Behav. 2013, 46, 677–697. [Google Scholar] [CrossRef]
- Smart, M.J.; Klein, N.J. A Longitudinal Analysis of Cars, Transit, and Employment Outcomes; Mineta Transportation Institute Publications, San José University: San José, CA, USA, 2015; Available online: https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1198&context=mti_publications (accessed on 10 January 2022).
- Koschinsky, J.; Talen, E. Affordable housing and walkable neighborhoods: A national urban analysis. Cityscape 2015, 17, 13–56. [Google Scholar] [CrossRef]
- Riggs, W. Inclusively walkable: Exploring the equity of walkable housing in the San Francisco Bay Area. Local Environ. 2016, 21, 527–554. [Google Scholar] [CrossRef]
- Neckerman, K.M.; Lovasi, G.S.; Davies, S.; Purciel, M.; Quinn, J.; Feder, E.; Raghunath, N.; Wasserman, B.; Rundle, A. Disparities in urban neighborhood conditions: Evidence from GIS measures and field observation in New York City. Built Soc. Environ. 2009, 30, S264–S285. [Google Scholar] [CrossRef]
- Ermagun, A.; Tilahun, N. Equity of transit accessibility across Chicago. Transp. Res. Part D Transp. Environ. 2020, 86, 102461. [Google Scholar] [CrossRef]
- Shen, Q. Spatial and social dimensions of commuting. J. Am. Plan. Assoc. 2000, 66, 68–82. [Google Scholar] [CrossRef]
- Cui, B.; Boisjoly, G.; El-Geneidy, A.; Levinson, D. Accessibility and the journey to work through the lens of equity. J. Transp. Geogr. 2019, 74, 269–277. [Google Scholar] [CrossRef]
- Cutts, B.B.; Darby, K.J.; Boone, C.G.; Brewis, A. City structure, obesity, and environmental justice: An integrated analysis of physical and social barriers to walkable streets and park access. Soc. Sci. Med. 2009, 69, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; White, K.; Castro, M.C.; Williams, D.R. Space, race, and poverty: Spatial inequities in walkable neighborhood amenities? Demogr. Res. 2012, 26, 409–448. [Google Scholar] [CrossRef] [Green Version]
- King, K.E.; Clarke, P.J. A disadvantaged advantage in walkability: Findings from socioeconomic and geographical analysis of national built environment data in the United States. Am. J. Epidemiol. 2015, 181, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squires, G.D. Urban Sprawl: Causes, Consequences & Policy Responses; The Urban Institute Press: Washington, DC, USA, 2002. [Google Scholar]
- Nechyba, T.J.; Walsh, R.P. Urban Sprawl. J. Econ. Perspect. 2004, 18, 177–200. [Google Scholar] [CrossRef] [Green Version]
- Harvey, D. From managerialism to entrepreneurialism: The transformation in urban governance in late capitalism. Geogr. Ann. Ser. B Hum. Geogr. 1989, 71, 3–17. [Google Scholar] [CrossRef]
- Van Criekingen, M. Towards a geography of displacement. Moving out of Brussels’ gentrifying neighbourhoods. J. Hous. Built Environ. 2008, 23, 199–213. [Google Scholar] [CrossRef]
- MacLeod, G. Urban politics reconsidered: From growth machine to post-democratic city? Urban Stud. 2014, 48, 2629–2660. [Google Scholar] [CrossRef]
- Moos, M. ‘Generationed’ space: Societal restructuring and young adults’ changing residential location patterns. Can. Geogr. 2014, 58, 11–33. [Google Scholar] [CrossRef]
- Schwartz, S. Street Smart: The Rise of Cities and the Fall of Cars; Public Affairs: New York, NY, USA, 2015. [Google Scholar]
- Lauermann, J. Municipal statecraft: Revisiting the geographies of the entrepreneurial city. Prog. Hum. Geogr. 2018, 42, 205–224. [Google Scholar] [CrossRef]
- Washington, E. Role of walkability in driving home values. Leadersh. Manag. Eng. 2013, 13, 123–130. [Google Scholar] [CrossRef]
- Li, W.; Joh, K.; Lee, C.; Kim, J.-H.; Park, H.; Woo, A. From car-dependent neighborhoods to walkers’ paradise: Estimating walkability premiums in the condominium housing market. Transp. Res. Rec. 2014, 2453, 162–170. [Google Scholar] [CrossRef]
- Immergluck, D.; Balan, T. Sustainable for whom? Green urban development, environmental gentrification, and the Atlanta Beltline. Urban Geogr. 2018, 39, 546–562. [Google Scholar] [CrossRef]
- Greenlee, A.J.; Wilson, B.K. Where does location affordability drive residential mobility? An analysis of origin and destination communities. Hous. Policy Debate 2016, 26, 583–606. [Google Scholar] [CrossRef]
- Hartell, A.M. Evaluating the concept of location affordability: Recent data on the relationship between transportation, housing, and urban form. Hous. Policy Debate 2017, 27, 356–371. [Google Scholar] [CrossRef]
- Glazier, R.H.; Creatore, M.I.; Weyman, J.T.; Fazli, G.; Matheson, F.I.; Gozdyra, P.; Moineddin, R.; Kaufman Shriqui, V.; Booth, G.L. Density, destinations or both? A comparison of measures of walkability in relation to transportation behaviors, obesity, and diabetes in Toronto, Canada. PLoS ONE 2014, 9, e91485. [Google Scholar] [CrossRef] [PubMed]
- Howell, N.A.; Tu, J.V.; Moineddin, R.; Chu, A.; Booth, G.L. Association between neighborhood walkability and predicated 10-year cardiovascular disease risk: The CANHEART (Cardiovascular Health in Ambulatory Care Research Team) cohort. J. Am. Heart Assoc. 2019, 8, e013146. [Google Scholar] [CrossRef] [PubMed]
- Keats, M.R.; Cui, Y.; DeClercq, V.; Grandy, S.A.; Sweeney, E.; Dummer, T.J.B. Associations between neighborhood walkability, physical activity, and chronic disease in Nova Scotian adults: An Atlantic PATH cohort study. Int. J. Environ. Res. Public Health 2020, 17, 8643. [Google Scholar] [CrossRef]
- Berke, E.M.; Gottlieb, L.M.; Vernez Moudon, A.; Larson, E.B. Protective association between neighborhood walkability and depression in older men. J. Am. Geriatr. Soc. 2007, 55, 526–533. [Google Scholar] [CrossRef]
- Sarkar, C.; Gallacher, J.; Webster, C. Urban built environment configuration and psychological distress in older men: Results from the Caerphilly study. BMC Public Health 2013, 13, 695. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Cheung, O.; Lau, K.; Woo, J. Associations between perceived neighborhood walkability and walking time, wellbeing, and loneliness in community-dwelling older Chinese people in Hong Kong. Int. J. Environ. Res. Public Health 2017, 14, 1199. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House, Inc.: New York, NY, USA, 1961. [Google Scholar]
- Hebbert, M. New urbanism—The movement in context. Built Environ. 2003, 29, 193–209. [Google Scholar] [CrossRef]
- Alexiou, A.S. Jane Jacobs: Urban Visionary; Rutgers University Press: New Brunswick, NJ, USA, 2006. [Google Scholar]
- McClay, W.M.; McAllister, T.V. (Eds.) Why Place Matters: Identity and Civic Life in Modern America; New Atlantis Books: New York, NY, USA, 2014. [Google Scholar]
- U.S. Department of Housing and Urban Development (HUD). Ensuring Equitable Neighborhood Change: Gentrification Pressures on Housing Affordability; Insights into Housing and Community Development Policy; U.S. HUD, Office of Policy Development and Research: Washington, DC, USA, 2016. Available online: https://www.huduser.gov/portal/sites/default/files/pdf/Insights-Ensuring-Equitable-Growth.pdf (accessed on 12 January 2022).
- Zukin, S.; Trujillo, V.; Frase, P.; Jackson, D.; Recuber, T.; Walker, A. New retail capital and neighborhood change: Boutiques and gentrification in New York City. City Community 2009, 8, 47–64. [Google Scholar] [CrossRef]
- Van Criekingen, M.; Decroly, J.-M. Revisiting the diversity of gentrification: Neighbourhood renewal processes in Brussels and Montreal. Urban Stud. 2003, 40, 2451–2468. [Google Scholar] [CrossRef]
- Weller, S.; van Hulten, A. Gentrification and displacement: The effects of a housing crisis on Melbourne’s low-income residents. Urban Policy Res. 2012, 30, 25–42. [Google Scholar] [CrossRef]
- Kneebone, E.; Garr, E. The Suburbanization of Poverty: Trends in Metropolitan America, 2000–2008; The Brooking Institution: Washington, DC, USA, 2010. [Google Scholar]
- Howell, A.; Timberlake, J.M. Racial and ethnic trends in the suburbanization of poverty in U.S. metropolitan areas, 1980–2010. J. Urban Aff. 2013, 36, 79–98. [Google Scholar] [CrossRef]
- Terbeck, F.J. The suburbanization of poverty and minority populations in the 2000s: Two parallel or interrelated processes? J. Urban Aff. 2021, 1–18. [Google Scholar] [CrossRef]
- Terbeck, F.J. The impact of regional and local population trends on suburban poverty and ethnoracial composition change: A shift-share analysis of the Chicago metropolitan area in the 2000s. Popul. Space Place 2022, 28, e2549. [Google Scholar] [CrossRef]
- McLafferty, S.; Preston, V. Who has long commutes to low-wage jobs? Gender, race, and access to work in the New York region. Urban Geogr. 2019, 40, 1270–1290. [Google Scholar] [CrossRef]
- Antipova, A. Analysis of commuting distances of low-income workers in Memphis Metropolitan Area, TN. Sustainability 2020, 12, 1209. [Google Scholar] [CrossRef] [Green Version]
- Blumenberg, E.; Wander, M. Housing affordability and commute distance. Urban Geogr. 2022, 1–20. [Google Scholar] [CrossRef]
- King, D.A.; Smart, M.J.; Manville, M. The poverty of the carless: Toward universal auto access. J. Plan. Educ. Res. 2022, 42, 464–481. [Google Scholar] [CrossRef]
- Paez, A.; Mercado, R.G.; Farber, S.; Morency, C.; Roorda, M. Mobility and Exclusion in Canadian Communities: An Empirical Investigation of Opportunity Access and Deprivation from the Perspective of Vulnerable Groups; Policy Research Directorate: Hamilton, ON, Canada, 2009; Available online: https://www.researchgate.net/publication/233997689_Mobility_and_Social_Exclusion_in_Canadian_Communities_An_Empiric (accessed on 4 February 2022).
- Morris, E.A.; Bloomberg, E.; Guerra, E. Does lacking a car put the brakes on activity participation? Private vehicle access and access to opportunities among low-income adults. Transp. Res. Part A Policy Pract. 2020, 136, 375–397. [Google Scholar] [CrossRef]
- Froud, J.; Sukhdev, J.; Leaver, A.; Williams, K. Not enough money: The resources and choices of the motoring poor. Compet. Change 2002, 6, 95–111. [Google Scholar] [CrossRef]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S.J.; Gortmaker, S.L. Validation of Walk Score® for estimating neighborhood walkability: An analysis of four US metropolitan areas. Int. J. Environ. Res. Public Health 2011, 8, 4160–4179. [Google Scholar] [CrossRef] [PubMed]
- Sperling, J. The tyranny of census geography: Small-area data and neighborhood statistics. Cityscape 2012, 14, 219–223. [Google Scholar]
- Walk Score®. Walk Score® Methodology. 2022. Available online: https://www.walkscore.com/methodology.shtml (accessed on 15 February 2022).
- Coulton, C.J.; Jennings, M.Z.; Chan, T. How big is my neighborhood? Individual and contextual effects on perceptions of neighborhood scale. Am. J. Community Psychol. 2013, 51, 140–150. [Google Scholar] [CrossRef]
- Tita, G.E.; Petras, T.L.; Greenbaum, R.T. Crime and residential choice: A neighborhood level analysis of the impact of crime on housing price. J. Quant. Criminol. 2006, 22, 299–317. [Google Scholar] [CrossRef]
- Garcy, A.M.; Berliner, D.C. A critical review of the literature on the relationship between school quality and health inequities. Rev. Educ. 2018, 6, 40–66. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC). CDC/ATSDR Social Vulnerability Index. 2021. Available online: https://www.atsdr.cdc.gov/placeandhealth/svi/index.html (accessed on 20 February 2022).
- Duncan, D.T.; Meline, J.; Kestens, Y.; Day, K.; Ebel, B.; Trasande, L.; Basile, C. Walk score, transportation mode choice, and walking among French adults: A GPS, accelerometer, and mobility survey study. Int. J. Environ. Res. Public Health 2016, 13, 611. [Google Scholar] [CrossRef] [Green Version]
- Towne, S.D., Jr.; Won, J.; Lee, S.; Ory, M.G.; Forjuoh, S.N.; Wang, S.; Lee, C. Using Walk ScoreTM and neighborhood perceptions to assess walking among middle-aged and older adults. J. Community Health 2016, 41, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Bereitschaft, B. Neighborhood walkability and housing affordability among U.S. urban areas. Urban Sci. 2019, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.M.; Ram, Y. Measuring the relationship between tourism and walkability? Walk Score and English tourist attractions. J. Sustain. Tour. 2019, 27, 223–240. [Google Scholar] [CrossRef]
- Clifton, K.; Livi, A. Gender differences in walking behavior, attitudes about walk-ing, and perceptions of the environment in three Maryland communities. In Research on Women’s Issues in Transportation; Report of a Conference; Technical Papers; Transportation Research Board: Washington, DC, USA, 2005; Volume 2, pp. 79–88. [Google Scholar]
- Saelens, B.E.; Handy, S.L. Built environment correlates of walking: A review. Med. Sci. Sport. Med. 2008, 40, 550–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, R.; Hajrasouliha, A.; Neckerman, K.M.; Purciel-Hill, M.; Greene, W. Streetscape features related to pedestrian activity. J. Plan. Educ. Res. 2016, 36, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Harvey, C.; Aultman-Hall, L. Measuring urban streetscapes for livability: A review of approaches. Prof. Geogr. 2016, 68, 149–158. [Google Scholar] [CrossRef]
- Yang, Y.; He, D.; Gou, Z.; Wang, R.; Liu, Y.; Lu, Y. Association between street greenery and walking behavior in older adults in Hong Kong. Sustain. Cities Soc. 2019, 51, 101747. [Google Scholar] [CrossRef]
- Mason, P.; Kearns, A.; Livingston, M. ‘Safe going’: The influence of crime rates and perceived crime and safety on walking in deprived neighbourhoods. Soc. Sci. Med. 2013, 91, 15–24. [Google Scholar] [CrossRef]
- McMillan, T.E. The relative influence of urban form on a child’s travel mode to school. Transp. Res. Part A 2007, 41, 69–79. [Google Scholar] [CrossRef]
- Berrigan, D.; Troiano, R.P. The association between urban form and physical activity in U.S. adults. Am. J. Prev. Med. 2002, 23, 74–79. [Google Scholar] [CrossRef]
- Kerr, J.; Frank, L.; Sallis, J.F.; Chapman, J. Urban form correlates of pedestrian travel in youth: Differences by gender, race-ethnicity and household attributes. Transp. Res. Part D Transp. Environ. 2007, 12, 177–182. [Google Scholar] [CrossRef]
- Freeman, L.; Neckerman, K.; Schwartz-Soicher, O.; Quinn, J.; Richards, C.; Bader, M.D.; Lovasi, G.; Jack, D.; Weiss, C.; Konty, K.; et al. Neighborhood walkability and active travel (walking and cycling) in New York City. J. Urban Health 2013, 90, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Riggs, W.; Sethi, S.A. Multimodal travel behavior, walkability indices, and social mobility: How neighborhood walkability, income, and household characteristics guide walking, biking & transit decisions. Local Environ. 2020, 25, 57–68. [Google Scholar]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Walk ScoreTM as a global estimate of neighborhood walkability. Am. J. Prev. Med. 2010, 39, 460–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, M. The impact of transit-oriented development on housing prices in San Diego, CA. Urban Stud. 2011, 48, 101–127. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S.J. Validation of walk scores and transit scores for estimating neighborhood walkability and transit availability: A small area analysis. GeoJournal 2013, 78, 407–416. [Google Scholar] [CrossRef]
- Hirsch, J.A.; Moore, K.A.; Evenson, K.R.; Rodriguez, D.A.; Diez Roux, A.V. Walk Score® and Transit Score® and walking in the multi-ethnic study of atherosclerosis. Am. J. Prev. Med. 2013, 45, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bereitschaft, B. Walk Score(R) versus residents’ perceptions of walkability in Omaha, NE. J. Urban. 2018, 11, 412–435. [Google Scholar] [CrossRef]
- Krambeck, H.; Shah, J.J. The Global Walkability Index; Massachusetts Institute of Technology (MIT): Cambridge, MA, USA, 2006. [Google Scholar]
- Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Con-way, T.L.; Hess, P.M. The Development of a walkability index: Application to the neighborhood quality of life study. Br. J. Sport. Med. 2010, 44, 924–933. [Google Scholar] [CrossRef]
- Park, S.; Deakin, E.; Lee, J.S. Perception-based walkability index to test impact of microlevel walkability on sustainable mode choice decisions. Transp. Res. Rec. 2014, 2464, 126–134. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Z. Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Appl. Geogr. 2016, 76, 147–153. [Google Scholar] [CrossRef]
- Nagata, S.; Nakaya, T.; Hanibuchi, T.; Amagasa, S.; Kikuchi, H.; Inoue, S. Objective scoring of streetscape walkability related to leisure walking: Statistical modeling approach with semantic segmentation of Google Street View image. Health Place 2020, 66, 102428. [Google Scholar] [CrossRef]
- Walk Score®. Transit Score® Methodology. 2022. Available online: https://www.walkscore.com/transit-score-methodology.shtml (accessed on 1 March 2022).
- Agrawal, A.W.; Schlossberg, M.; Irvin, K.K. How far, by which route and why? A spatial analysis of pedestrian preference. J. Urban Des. 2008, 13, 81–98. [Google Scholar] [CrossRef]
- Hong, J.; Chen, C. The role of the built environment on perceived safety from crime and walking: Examining direct and indirect impacts. Transportation 2014, 41, 1171–1185. [Google Scholar] [CrossRef]
- Rees-Punia, E.; Hathaway, E.D.; Gay, J.L. Crime, perceived safety, and physical activity: A meta-analysis. Prev. Med. 2018, 111, 307–313. [Google Scholar] [CrossRef]
- Bereitschaft, B. The changing ethno-racial profile of ‘very walkable’ urban neighborhoods in the US (2010–2020): Are minorities under-represented? Urban Stud. 2022, 1–17. [Google Scholar] [CrossRef]
- Nau, C.; Sidell, M.; Clift, K.; Koebnick, C.; Desai, J.; Rohm-Young, D. A commercially available crime index may be a reliable alternative to actual census-tract crime in an urban area. Prev. Med. 2020, 17, 100996. [Google Scholar] [CrossRef] [PubMed]
- Ellen, I.G.; Horn, K.M.; Kuai, Y. Gateway to opportunity? Disparities in neighborhood conditions among low-income housing tax credit residents. Hous. Policy Debate 2018, 28, 572–591. [Google Scholar] [CrossRef]
- U.S. Department of Housing and Urban Development (HUD). School Proficiency Index; U.S. HUD, Office of Policy Development and Research: Washington, DC, USA, 2020; Available online: https://hudgis-hud.opendata.arcgis.com/datasets/HUD::school-proficiency-index/about (accessed on 6 March 2022).
- Hamidi, S.; Ewing, R. A longitudinal study of changes in urban sprawl between 2000 and 2010 in the United States. Landsc. Urban Plan. 2014, 128, 72–82. [Google Scholar] [CrossRef]
- Atkins, M.T.; Tonts, M. Exploring cities through a population ageing matrix: A spatial and temporal analysis of older adult population trends in Perth, Australia. Aust. Geogr. 2016, 47, 65–87. [Google Scholar] [CrossRef]
- Walker, K.E. Baby boomer migration and demographic change in US metropolitan areas. Migr. Stud. 2016, 4, 347–372. [Google Scholar] [CrossRef]
- Bereitschaft, B. Older adult population and neighborhood walkability by metropolitan area size and degree of urban sprawl. Pap. Appl. Geogr. 2022, 8, 249–267. [Google Scholar] [CrossRef]
- King, A.C.; Sallis, J.F.; Frank, L.D.; Saelens, B.E.; Cain, K.; Conway, T.L.; Chapman, J.E.; Ahn, D.K.; Kerr, J. Aging in neighborhoods differing in walkability and income: Associations with physical activity and obesity in older adults. Soc. Sci. Med. 2011, 73, 1525–1533. [Google Scholar] [CrossRef] [Green Version]
- Cauwenberg, J.V.; Van Holle, V.; Boudeaudhuij, I.D.; Van Dyck, D.; Deforche, B. Neighborhood walkability and health outcomes among older adults: The mediating role of physical activity. Health Place 2016, 37, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I. Rural and suburban sprawl in the U.S. Midwest from 1940 to 2000 and its relation to forest fragmentation. Conserv. Biol. 2005, 19, 793–805. [Google Scholar] [CrossRef]
- Lopez, R. Urban sprawl in the United States: 1970–2010. Cities Environ. (CATE) 2014, 7, 7. [Google Scholar]
- Wachs, M. Turning cities inside out: Transportation and the resurgence of downtowns in North America. Transportation 2013, 40, 1159–1172. [Google Scholar] [CrossRef]
- Delmelle, E.C.; Zhou, Y.; Thill, J.-C. Densification without growth management? Evidence from local land development and housing trends in Charlotte, North Carolina, USA. Sustainability 2014, 6, 3975–3990. [Google Scholar] [CrossRef] [Green Version]
- Yan, X. Evaluating household residential preferences for walkability and accessibility across three U.S. regions. Transp. Res. Part D Transp. Environ. 2020, 80, 102255. [Google Scholar] [CrossRef]
- Kramer, A. The unaffordable city: Housing and transit in North American cities. Cities 2018, 83, 1–10. [Google Scholar] [CrossRef]
- Brown, J.; Thompson, G.; Battacharya, T.; Jaroszynski, M. Understanding transit ridership demand for the multidestination, multimodal transit network in Atlanta, GA: Lesson for increasing rail transit choice ridership while maintaining transit dependent bus ridership. Urban Stud. 2014, 51, 938–958. [Google Scholar] [CrossRef]
- Talen, E. Zoning for and against sprawl: The case for form-based codes. J. Urban Des. 2013, 18, 175–200. [Google Scholar] [CrossRef]
- Talen, E. Affordability in new urbanist development: Principle, practice and strategy. J. Urban Aff. 2010, 32, 489–510. [Google Scholar] [CrossRef]
- Davidson, M.; Lees, L. New-build gentrification: Its histories, trajectories, and critical geographies. Popul. Space Place 2010, 16, 395–411. [Google Scholar] [CrossRef] [Green Version]
- Benson, E.M.; Bereitschaft, B. Are LEED-ND developments catalysts of neighborhood gentrification? Int. J. Urban Sustain. Dev. 2019, 12, 73–88. [Google Scholar] [CrossRef]
- Padeiro, M.; Louro, A.; Marques da Costa, N. Transit-oriented development and gentrification: A systematic review. Transp. Rev. 2019, 39, 733–754. [Google Scholar] [CrossRef] [Green Version]
- Anthony, J. Economic prosperity and housing affordability in the United States: Lessons from the booming 1990s. Hous. Policy Debate 2018, 28, 325–341. [Google Scholar] [CrossRef]
- Tehrani, S.O.; Wu, S.J.; Roberts, J.D. The color of health: Residential segregation, light rail transit development, and gentrification in the United States. Int. J. Environ. Res. Public Health 2019, 16, 3683. [Google Scholar] [CrossRef] [Green Version]
- Addison, C.; Zhang, S.; Coomes, B. Smart growth and housing affordability: A review of regulatory mechanisms and planning practices. J. Plan. Lit. 2012, 28, 215–257. [Google Scholar] [CrossRef]
- Tremoulet, A.; Dann, R.J.; Adkins, A. Moving to location affordability? Housing choice vouchers and residential relocation in the Portland, Oregon, region. Hous. Policy Debate 2016, 26, 692–713. [Google Scholar] [CrossRef]
- Lerman, B.R. Mandatory inclusionary zoning—The answer to affordable housing problem. Boston Coll. Environ. Aff. Law Rev. 2006, 33, 383–416. [Google Scholar]
- Mukhija, V.; Regus, L.; Slovin, S.; Das, A. Can inclusionary zoning be an effective and efficient housing policy? Evidence from Los Angeles and Orange Counties. J. Urban Aff. 2010, 32, 229–252. [Google Scholar] [CrossRef]
- Hobor, G. Surviving the era of deindustrialization: The new economic geography of the urban rust belt. J. Urban Aff. 2012, 35, 417–434. [Google Scholar] [CrossRef]
- Hollingsworth, T.; Goebel, A. Revitalizing America’s Smaller Legacy Cities: Strategies for Postindustrial Success from Gary to Lowell; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2017. [Google Scholar]
- Vanek Smith, S. The Lancaster, Pa., Puzzle. The Indicator from Planet Money (Podcast). National Public Radio (NPR). 2019. Available online: https://www.npr.org/transcripts/777804090 (accessed on 1 June 2022).
- Yigitcanlar, T.; Baum, S.; Horton, S. Attracting and retaining knowledge workers in knowledge cities. J. Knowl. Manag. 2007, 11, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Cortright, J. City Report: The Young and Restless and the Nation’s Cities; City Observatory: Portland, OR, USA, 2014; Available online: https://www.pschousing.org/files/PSC_IForum_2-25-15_PostIndustrialCities_cityobservatory_article_YNR-Report-Final_fulltext.pdf (accessed on 1 June 2022).
- Liu, Q.; Liu, Y.; Zhang, Z.; Zhao, P. Elderly mobility during the COVID-19 pandemic: A qualitative exploration in Kumming, China. J. Transp. Geogr. 2021, 96, 103176. [Google Scholar] [CrossRef]
- Patulny, R.; Bower, M. Beware the “loneliness gap”? Examining emerging inequalities and long-term risks of loneliness and isolation emerging from COVID-19. Aust. J. Soc. Issues 2022, 57, 562–583. [Google Scholar] [CrossRef]
- Gkiotsalitis, K.; Cats, O. Public transport planning adaption under the COVID-19 pandemic crisis: Literature review of research needs and directions. Transp. Rev. 2021, 41, 374–392. [Google Scholar] [CrossRef]
- Caballini, C.; Agostino, M.; Dalla Chiara, B. Physical mobility and virtual communication in Italy: Trends, analytical relationships and policies for the post COVID-19. Transp. Policy 2021, 110, 314–334. [Google Scholar] [CrossRef]
- Dubois, E.; Yuan, X.; Bennett Gayle, D.; Khurana, P.; Knight, T.; Laforce, S.; Turetsky, D.; Wild, D. Socially vulnerable populations adoption of technology to address lifestyle changes amid COVID-19 in the US. Data Inf. Manag. 2022, 6, 100001. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; An, Z.; Ying, W.; Zhao, P. Smartphone-based services, perceived accessibility, and transport inequity during the COVID-19 pandemic: A cross-lagged panel study. Transp. Res. Part D Transp. Environ. 2021, 97, 102941. [Google Scholar] [CrossRef]
- Hall, C.M.; Ram, Y. Walk score® and its potential contribution to the study of active transport and walkability: A critical and systematic review. Transp. Res. Part D Transp. Environ. 2018, 61, 310–324. [Google Scholar] [CrossRef]
- Li, Y.; Yabuki, N.; Fukuda, T. Integrating GIS, deep learning, and environmental sensors for multicriteria evaluation of urban street walkability. Landsc. Urban Plan. 2023, 230, 104603. [Google Scholar] [CrossRef]
- Telega, A.; Telega, I.; Bieda, A. Measuring walkability with GIS—Methods overview and new approach proposal. Urban Sci. 2021, 13, 1883. [Google Scholar] [CrossRef]
- Koschinsky, J.; Talen, E.; Alfonzo, M.; Lee, S. How walkable is Walker’s paradise? Environ. Plan. B Urban Anal. City Sci. 2017, 44, 343–363. [Google Scholar] [CrossRef]
- Knapskog, M.; Hagen, O.E.; Tennoy, A.; Rynning, M.K. Exploring ways of measuring walkability. Transp. Res. Procedia 2019, 41, 264–282. [Google Scholar] [CrossRef]
MSA Pop. | B Coeff. | Std. B Coeff. | Std. Error | p-Value |
---|---|---|---|---|
Intercept | 55.59 | 0.488 | <0.001 | |
Dist. City Hall | 0.061 | 0.029 | 0.010 | <0.001 |
Crime Index | 0.086 | 0.345 | 0.001 | <0.001 |
School Proficiency | −0.432 | −0.405 | 0.005 | <0.001 |
Walk Score | 0.148 | 0.139 | 0.005 | <0.001 |
High-Transit | −3.221 | −0.048 | 0.329 | <0.001 |
MSA Pop. | 0.583 | 0.112 | 0.027 | <0.001 |
Northeast Region | −9.145 | −0.129 | 0.343 | <0.001 |
Midwest Region | −10.13 | −0.131 | 0.345 | <0.001 |
South Region | −3.486 | −0.053 | 0.311 | <0.001 |
Model Adj. r2 | 0.483 |
SV Theme | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Intercept | 54.75 ** | 51.73 ** | 69.14 ** | 42.87 ** |
Dist. City Hall | 0.060 (0.029) ** | 0.168 (0.086) ** | −0.083 (−0.047) ** | 0.018 (0.009) |
Crime Index | 0.093 (0.371) ** | 0.075 (0.322) ** | 0.030 (0.143) ** | 0.048 (0.195) ** |
School Proficiency | −0.469 (−0.438) ** | −0.283 (−0.284) ** | −0.269 (0.297) ** | −0.180 (−0.173) ** |
Walk Score | 0.124 (0.115) ** | −0.122 (−0.121) ** | 0.087 (0.096) ** | 0.315 (0.300) ** |
High-Transit | −5.321 (−0.079) ** | −5.161 (−0.082) ** | 0.764 (0.013) * | 2.041 (0.031) ** |
MSA Pop. | 0.430 (0.082) ** | −0.590 (−0.121) ** | 1.738 (0.392) ** | 0.160 (0.031) ** |
Northeast Region | −6.113 (−0.086) ** | 6.476 (0.098) ** | −20.88 (−0.347) ** | −7.497 (−0.108) ** |
Midwest Region | −4.716 (−0.061) ** | 4.721 (0.065) ** | −20.37 (−0.309) ** | −11.99 (−0.157) ** |
South Region | −1.171 (−0.018) ** | 0.107 (0.002) | −4.203 (−0.075) ** | −5.035 (−0.078) ** |
Model Adj. r2 | 0.521 | 0.272 | 0.390 | 0.281 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bereitschaft, B. Do Socially Vulnerable Urban Populations Have Access to Walkable, Transit-Accessible Neighborhoods? A Nationwide Analysis of Large U.S. Metropolitan Areas. Urban Sci. 2023, 7, 6. https://doi.org/10.3390/urbansci7010006
Bereitschaft B. Do Socially Vulnerable Urban Populations Have Access to Walkable, Transit-Accessible Neighborhoods? A Nationwide Analysis of Large U.S. Metropolitan Areas. Urban Science. 2023; 7(1):6. https://doi.org/10.3390/urbansci7010006
Chicago/Turabian StyleBereitschaft, Bradley. 2023. "Do Socially Vulnerable Urban Populations Have Access to Walkable, Transit-Accessible Neighborhoods? A Nationwide Analysis of Large U.S. Metropolitan Areas" Urban Science 7, no. 1: 6. https://doi.org/10.3390/urbansci7010006
APA StyleBereitschaft, B. (2023). Do Socially Vulnerable Urban Populations Have Access to Walkable, Transit-Accessible Neighborhoods? A Nationwide Analysis of Large U.S. Metropolitan Areas. Urban Science, 7(1), 6. https://doi.org/10.3390/urbansci7010006