Enumerating and Modelling the Seasonal alterations of Surface Urban Heat and Cool Island: A Case Study over Indian Cities
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Dataset Used
3.2. Methodology
3.2.1. Defining the Boundaries of the Urban and Rural Area
3.2.2. Estimation of Surface Urban Heat Island (SUHI)
- ∆T: Surface Urban Heat Island Intensity (SUHII).
- Tu: Mean Land Surface Temperature of the Urban Area.
- Tr: Mean Land Surface Temperature of the Rural Buffer Area.
3.2.3. Evaluation of Urban-Rural Vegetation Gradient
- ∆NDVI: vegetation gradient.
- Tu: Mean NDVI of the Urban Area.
- Tr: Mean NDVI of the Rural Buffer Area.
4. Results and Discussion
4.1. Seasonal Variation of SUHI
4.2. Statistical-Based Modelling of Premonsoon and Winter SUHI
4.3. The Relationship between ∆Seasonal SUHI and ∆Seasonal Change in Vegetation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urbanisation, Demographic Transition, and the Growth of Cities in India. Available online: https://www.theigc.org/sites/default/files/2016/11/Tumbe-2016-Working-paper.pdf (accessed on 15 February 2022).
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate: Designing the Spaces between Buildings, 1st ed.; Routledge: Milton Park, UK; Philadelphia, PA, USA, 2011. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plann. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. Pergamon Press 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Heaviside, C.; Vardoulakis, S.; Cai, X.M. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environ. Health 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.T.; Holland, T.J.; Kayhanian, M. Erratum: The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management. Environ. Res. Lett. 2013, 8, 015023. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M. Mortalité attribuable au froid et à la chaleur: Analyse multi-pays. Environ. Risques Et Sante 2015, 14, 464–465. [Google Scholar]
- Lin, C.Y.; Chen, W.C.; Chang, P.L.; Sheng, Y.F. Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J. Appl. Meteorol. Climatol. 2011, 50, 339–353. [Google Scholar] [CrossRef]
- Spatio-Temporal Analysis of Urban Heat Island Effect For Different Land Use Land Cover Pattern Over Pune Metropolitan Region, India. In Proceedings of the AGU Fall Meeting Abstracts. Available online: https://ui.adsabs.harvard.edu/abs/2019AGUFMGC21I1384B/abstract (accessed on 9 August 2021).
- Rakoto, P.Y.; Deilami, K.; Hurley, J.; Amati, M.; Sun, Q.C. Revisiting the cooling effects of urban greening: Planning implications of vegetation types and spatial configuration. Urban. For. Urban. Green. 2021, 64, 127266. [Google Scholar] [CrossRef]
- Mariani, L.; Parisi, S.G.; Cola, G.; Lafortezza, R.; Colangelo, G.; Sanesi, G. Climatological analysis of the mitigating effect of vegetation on the urban heat island of Milan, Italy. Sci. Total Environ. 2016, 569, 762–773. [Google Scholar] [CrossRef]
- Vinayak, B.; Lee, H.S.; Gedam, S.; Latha, R. Impacts of future urbanization on urban microclimate and thermal comfort over the Mumbai metropolitan region, India. Sustain. Cities Soc. 2022, 79. [Google Scholar] [CrossRef]
- Bottayan, Z.; Kirsci, A.; Szegedi, S.; Unger, J. The relationship between built-up areas and the spatial development of the mean maximum urban heat island in Debrecen, Hungary. Int. J. Climatol. 2005, 25, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Kanda, M. Progress in the scale modeling of urban climate: Review. Theor. Appl. Climatol. 2006, 84, 23–33. [Google Scholar] [CrossRef]
- Shastri, H.; Ghosh, S.; Paul, S.; Shafizadeh-Moghadam, H.; Helbich, M.; Karmakar, S. Future urban rainfall projections considering the impacts of climate change and urbanization with statistical–dynamical integrated approach. Clim. Dyn. 2019, 52, 6033–6051. [Google Scholar] [CrossRef]
- Shastri, H.; Barik, B.; Ghosh, S.; Venkataraman, C.; Sadavarte, P. Flip flop of Day-night and Summer-Winter Surface Urban Heat Island Intensity in India. Sci. Rep. 2017, 7, 40178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Mishra, V.; Buzan, J.; Kumar, R.; Shindell, D.; Huber, M. Dominant control of agriculture and irrigation on urban heat island in India. Sci. Rep. 2017, 7, 14054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barat, A.; Kumar, S.; Kumar, P.; Parth Sarthi, P. Characteristics of Surface Urban Heat Island (SUHI) over the Gangetic Plain of Bihar, India. Asia-Pac. J. Atmos. Sci. 2018, 54, 205–214. [Google Scholar] [CrossRef]
- Pramanik, S.; Punia, M. Land use/land cover change and Surface Urban Heat Island intensity: Source–sink landscape-based study in Delhi, India. Environ. Dev. Sustain. 2020, 22, 7331–7356. [Google Scholar] [CrossRef]
- Kumari, P.; Yadav, N.K.; Santra, A.; Upadhayay, U. Identification of urban Heat Islands from multi-temporal Modis land surface temperature data: A case study of the southern part of West Bengal, India. Int. J. Eng. Sci. Res. Technol. 2019, 135–144. [Google Scholar]
- Pandya, M.R.; Shah, D.B.; Trivedi, H.J.; Darji, N.P.; Ramakrishnan, R.; Panigrahy, S.; Parihar, J.S.; Kirankumar, A.S. Retrieval of land surface temperature from the Kalpana-1 VHRR data using a single-channel algorithm and its validation over western India. ISPRS J. Photogramm. Remote Sens. 2014, 94, 160–168. [Google Scholar] [CrossRef]
- Census of India Census of India, 2011. Econ. Polit. Wkly. 2011, 46, 5.
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- A Technical Note on the Analysis of Modern Meteorological Gridded a Technical Note on the Analysis of Modern Meteorological Gridded Datasets Using Python. Available online: https://www.imdpune.gov.in/Reports/CRSResearchReports/TECHNICAL_REPORT_review.pdf (accessed on 22 November 2022).
- Trishchenko, A.P.; Cihlar, J.; Li, Z. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ. 2002, 81, 1–18. [Google Scholar] [CrossRef]
- Singh, R.; Singh, C.; Ojha, S.P.; Kumar, A.S.; Kishtawal, C.M.; Kumar, A.S.K. Land surface temperature from INSAT-3D imager data: Retrieval and assimilation in NWP model. J. Geophys. Res. Atmos. 2016, 121, 6909–6926. [Google Scholar] [CrossRef]
- Salama, M.S.; Velde, R.v.d.; Zhong, L.; Ma, Y.; Ofwono, M.; Su, B. Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008. Clim. Change 2012, 114, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S.K. Seasonal variations of the surface urban heat Island in a semi-arid city. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Hanan, N.; Kabat, P.; Lesch, L. A remote sensing study of the NDVI-T(s) relationship and the transpiration from sparse vegetation in the sahel based on high-resolution satellite data. Remote Sens. Environ. 1999, 69, 224–240. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of Surface Urban Heat Islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Zeug, G.; Eckert, S. Population growth and its expression in spatial built-up patterns: The sana’a, yemen case study. Remote Sens. 2010, 2, 1014–1034. [Google Scholar] [CrossRef] [Green Version]
Cities | Geographical Location | Population | Elevation (m) | Area (km2) | Mean Premonsoon Surface Temperature (°C) (2006–2016) | Mean Winter Surface Temperature (°C) (2006–2016) |
---|---|---|---|---|---|---|
Aurangabad | 19.87° N 75.34° E | 1,508,000 | 568 | 139 | 45.68 | 31.18 |
Hubbali | 15.36° N 75.12° E | 944,000 | 671 | 404 | 42.96 | 33.32 |
Hyderabad | 17.38° N 78.48° E | 6,810,000 | 505 | 650 | 39.44 | 30.2 |
Kolhapur | 16.7° N 74.24° E | 549,236 | 546 | 120 | 41.53 | 32.05 |
Nashik | 19.99° N 73.70° E | 1,486,053 | 700 | 268 | 42.48 | 31.41 |
Pune | 18.52° N 73.85° E | 3,120,000 | 560 | 424 | 42.26 | 32.12 |
Ahmedabad | 23.02° N 72.57° E | 5,307,000 | 53 | 464 | 41.99 | 30.21 |
Parbhani | 19.26° N 76.77° E | 410,445 | 347 | 37.8 | 43.15 | 32.42 |
Bellary | 15.13° N 76.92° E | 3,070,000 | 485 | 89.9 | 43.46 | 33.42 |
Parameter | Data | Temporal Resolution | Spatial Resolution | Period | References |
---|---|---|---|---|---|
Land Surface Temperature (Daytime) | MOD11A2 | 8 Day | 1 km | 2006–2016 | https://lpdaac.usgs.gov/ (accessed on 11 September 2021). |
NDVI | MOD13A3 | Monthly | 1 km | 2006–2016 | https://lpdaac.usgs.gov.modis (accessed on 11 September 2021). |
Population | Census, 2011 | 2011 | http://www.censusindia.gov.in (accessed on 12 August 2021). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhanage, V.; Kulkarni, S.; Sharma, R.; Lee, H.S.; Gedam, S. Enumerating and Modelling the Seasonal alterations of Surface Urban Heat and Cool Island: A Case Study over Indian Cities. Urban Sci. 2023, 7, 38. https://doi.org/10.3390/urbansci7020038
Bhanage V, Kulkarni S, Sharma R, Lee HS, Gedam S. Enumerating and Modelling the Seasonal alterations of Surface Urban Heat and Cool Island: A Case Study over Indian Cities. Urban Science. 2023; 7(2):38. https://doi.org/10.3390/urbansci7020038
Chicago/Turabian StyleBhanage, Vinayak, Sneha Kulkarni, Rajat Sharma, Han Soo Lee, and Shirishkumar Gedam. 2023. "Enumerating and Modelling the Seasonal alterations of Surface Urban Heat and Cool Island: A Case Study over Indian Cities" Urban Science 7, no. 2: 38. https://doi.org/10.3390/urbansci7020038
APA StyleBhanage, V., Kulkarni, S., Sharma, R., Lee, H. S., & Gedam, S. (2023). Enumerating and Modelling the Seasonal alterations of Surface Urban Heat and Cool Island: A Case Study over Indian Cities. Urban Science, 7(2), 38. https://doi.org/10.3390/urbansci7020038