Particulate Matter Accumulation and Elemental Composition of Eight Roadside Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Leaf Sampling
2.2. Analysis of Surface PM Accumulation
2.3. Biochemical Characteristics of Leaves
2.3.1. Leaf Extract pH (pH)
2.3.2. Relative Leaf Water Content (RWC)
2.3.3. Chlorophyll Contents
2.3.4. Specific Leaf Area (SLA)
2.4. EDX Analysis
3. Statistical Analysis
4. Result and Discussion
4.1. PM Accumulation of Plant Species
4.2. Biochemical Characteristics of Leaves
4.3. Elemental Composition of Leaves
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawroński, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef]
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- von Schneidemesser, E.; Steinmar, K.; Weatherhead, E.C.; Bonn, B.; Gerwig, H.; Quedenau, J. Air pollution at human scales in an urban environment: Impact of local environment and vehicles on particle number concentrations. Sci. Total Environ. 2019, 688, 691–700. [Google Scholar] [CrossRef]
- Molnár, V.É.; Simon, E.; Tóthmérész, B.; Ninsawat, S.; Szabó, S. Air pollution induced vegetation stress- The Air Pollution Tolerance Index as a quick tool for city health evaluation. Ecol. Indic. 2020, 113, 106236. [Google Scholar] [CrossRef]
- Popek, R.; Łukowski, A.; Grabowski, M. Influence of particulate matter accumulation on photosynthetic apparatus of Physocarpus opulifolius and Sorbaria sorbifolia. Pol. J. Environ. Stud. 2018, 27, 2391–2396. [Google Scholar] [CrossRef]
- Pandit, J.; Sharma, A.K. A review of effects of air pollution on physical and biochemical characteristics of plants. Int. J. Chem. Stud. 2020, 8, 1684–1688. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Meng, H.; Zhang, T. How does leaf surface micromorphology of different trees impact their ability to capture particulate matter? Forests 2018, 9, 681. [Google Scholar] [CrossRef]
- Bharti, S.K.; Trivedi, A.; Kumar, N. Air pollution tolerance index of plants growing near an industrial site. Urban Clim. 2018, 24, 820–829. [Google Scholar] [CrossRef]
- Bui, H.T.; Odsuren, U.; Jeong, M.; Seo, J.W.; Kim, S.Y.; Park, B.J. Evaluation of the air pollution tolerance index of 12 plant species growing in environments with different air pollution levels. J. People Plants Environ. 2022, 25, 23–31. [Google Scholar] [CrossRef]
- Räsänen, J.V.; Holopainen, T.; Joutsensaari, J.; Ndam, C.; Pasanen, P.; Rinnan, Å.; Kivimäenpää, M. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees. Environ. Pollut. 2013, 183, 64–70. [Google Scholar] [CrossRef]
- Tom ašević, M.; Rajšić, S.; Dordević, D.; Tasić, M.; Krstić, J.; Novaković, V. Heavy metals accumulation in tree leaves from urban areas. Environ. Chem. Lett. 2004, 2, 151–154. [Google Scholar] [CrossRef]
- Kwak, M.J.; Lee, J.K.; Park, S.; Lim, Y.J.; Kim, H.; Kim, K.N.; Je, S.M.; Park, C.R.; Woo, S.Y. Evaluation of the importance of some East Asian tree species for refinement of air quality by estimating air pollution tolerance index, anticipated performance index, and air pollutant uptake. Sustainability 2020, 12, 3067. [Google Scholar] [CrossRef]
- Sahu, C.; Basti, S.; Sahu, S.K. Air pollution tolerance index (APTI) and expected performance index (EPI) of trees in sambalpur town of India. SN Appl. Sci. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Long, A.; Zhang, J.; Yang, L.T.; Ye, X.; Lai, N.W.; Tan, L.L.; Lin, D.; Chen, L.S. Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus. Front. Plant Sci. 2017, 8, 185. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Gupta, S.; Datta, J.K. Anticipated performance index of some tree species considered for green belt development in an urban area. Int. Res. J. Plant Sci. 2011, 2, 99–106. [Google Scholar]
- Dzierzanowski, K.; Popek, R.; Gawrońska, H.; Saebø, A.; Gawroński, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediat. 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Singh, S.; Rao, D.; Agrawal, M.; Pandey, J.; Naryan, D. Air pollution tolerance index of plants. J. Environ. Manag. 1991, 32, 45–55. [Google Scholar] [CrossRef]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Chaturvedi, R.K.; Prasad, S.; Pana, S.; Obaidullah, S.M.; Pandey, V.; Singh, H. Effects of dust load on the leaf attributes of the tree species growing along the roadside. Environ. Monit. Assess. 2013, 185, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Popek, R.; Gawrońska, H.; Wrochna, M.; Gawroński, S.W.; Sæbø, A. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes–A 3-year study. Int. J. Phytoremediat. 2013, 15, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Wang, L.; Sun, F.; Li, G.; Yu, L.; Wang, Y.; Zeng, X.; Yan, H.; Dong, L.; Bao, Z. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Sci. Total Environ. 2019, 652, 939–951. [Google Scholar] [CrossRef]
- Muhammad, S.; Wuyts, K.; Samson, R. Atmospheric net particle accumulation on 96 plant species with contrasting morphological and anatomical leaf characteristics in a common garden experiment. Atmos. Environ. 2019, 202, 328–344. [Google Scholar] [CrossRef]
- Bui, H.T.; Odsuren, U.; Kim, S.Y.; Park, B.J. Seasonal variations in the particulate matter accumulation and leaf traits of 24 plant species in urban green space. Land 2022, 11, 1981. [Google Scholar] [CrossRef]
- Corada, K.; Woodward, H.; Alaraj, H.; Collins, C.M.; de Nazelle, A. A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environ. Pollut. 2021, 269, 116104. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xia, J.; Gao, Y.; Zheng, W. Additonal focus on particulate matter wash-off events from leaves is required: A review of studies of urban plants used to reduce airborne particulate matter pollution. Urban For. Urban Gree. 2020, 48, 126559. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, J.; Zeng, Y.; Sun, N.; Liu, C.; Yin, S. Individual effects of trichomes and leaf morphology on PM2.5 dry deposition velocity: A variable-control approach using species from the same family or genus. Environ. Pollut. 2021, 272, 116385. [Google Scholar] [CrossRef] [PubMed]
- Panda, L.R.L.; Aggarwal, R.K.; Bhardwaj, D.R. A review on air pollution tolerance index (APTI) and anticipated performance index (API). Curr. World Environ. 2018, 13, 55–65. [Google Scholar] [CrossRef]
- Bui, H.T.; Odsuren, U.; Kim, S.Y.; Park, B.J. Particulate matter accumulation and leaf traits of ten woody species growing with different air pollution conditions in Cheongju City, South Korea. Atomosphere 2022, 13, 1351. [Google Scholar] [CrossRef]
- Giri, S.; Shrivastava, D.; Deshmukh, K.; Dubey, P. Effect of air pollution on chlorophyll content of leaves. Curr. Agric. Res. J. 2013, 1, 93–98. [Google Scholar] [CrossRef]
- Yadav, R.; Pandey, P. Assessment of air pollution tolerance index (APTI) and anticipated performance index (API) of roadside plants for the development of greenbelt in urban area of Bathinda City, Punjab, India. Bull. Environ. Contan. Toxicol. 2020, 105, 906–914. [Google Scholar] [CrossRef]
- Wen, D.; Kuang, Y.; Zhou, G. Sensitivity analyses of woody species exposed to air pollution based on ecophysiological measurements. Envrion. Sci. Polluti. Res. 2004, 11, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Wuytack, T.; Verheyen, K.; Wuyts, K.; Kardel, F.; Adriaenssens, S.; Samson, R. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.). Envrion. Monit. Assess. 2010, 171, 197–204. [Google Scholar] [CrossRef]
- Kwon, S.J.; Cha, S.J.; Lee, J.K.; Park, J.H. Evaluation of accumulated particulate matter on roadside tree leaves and its metal content. J. Appl. Biol. Chem. 2020, 63, 161–168. [Google Scholar] [CrossRef]
- Hozhabralsadat, M.S.; Heidari, A.; Karimian, Z.; Farzam, M. Assessment of plant species suitability in green walls based on API, heavy metal accumulation, and particulate matter capture capacity. Environ. Sci. Pollut. Res. 2022, 29, 68564–68581. [Google Scholar] [CrossRef]
- Popek, R.; Fornal-Pieniak, B.; Chyliński, F.; Pawełkowicz, M.; Bobrowicz, J.; Chrzanowska, D.; Piechota, N.; Przybysz, A. Not only trees matter-Traffic-related PM accumulation by vegetation of urban forests. Sustainability 2022, 14, 2973. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Habit | Height | |
---|---|---|---|
Shrub | Euonymus japonicas Thunb. | Evergreen broad-leaved | 1 m |
Buxus sinica (Rehder & E.H.Wilson) M.Cheng var. insularis (Nakai) M.Cheng | Evergreen broad-leaved | 50 cm | |
Pleioblastus fortunei (Van Houtte) Nakai | Evergreen broad-leaved | 50 cm | |
Rhododendron yedoense Maxim. f. poukhanense (H.Lév.) Sugim. ex T.Yamaz. | Deciduous broad-leaved | 1 m | |
Herbaceous plant | Liriope muscari (Decne.) L.H.Bailey | Evergreen perennial | 30 cm |
Pachysandra terminalis Siebold & Zucc. | Evergreen perennial | 30 cm | |
Climber | Campsis grandiflora (Thunb.) K.Schum. | Deciduous broad-leaved | |
Parthenocissus tricuspidata (Siebold & Zucc.) Planch. | Deciduous broad-leaved |
Species | SLA (mg·g−1) | pH | RWC (%) | Chl a (mg·g−1) | Chl b (mg·g−1) | TChl (mg·g−1) | Carotenoid (mg·g−1) |
---|---|---|---|---|---|---|---|
E. japonicus | 87.61 ± 12.29 ed | 5.56 ± 0.09 b | 66.72 ± 10.02 b | 0.16 ± 0.02 b | 0.08 ± 0.01 b | 0.25 ± 0.02 b | 16.45 ± 1.51 b |
B. sinica var. insularis | 63.59 ± 5.51 ed | 5.46 ± 0.03 b | 80.85 ± 7.51 ab | 0.06 ± 0.03 d | 0.04 ± 0.01 c | 0.10 ± 0.04 d | 6.14 ± 2.95 d |
P. fortunei | 180.88 ± 28.73 b | 5.83 ± 0.16 a | 84.76 ± 5.51 a | 0.18 ± 0.03 b | 0.08 ± 0.01 b | 0.26 ± 0.04 b | 17.10 ± 2.79 b |
R. yedoense f. poukhanense | 147.31 ± 14.00 bc | 5.58 ± 0.07 ab | 77.73 ± 6.21 ab | 0.15 ± 0.04 b | 0.07 ± 0.01 b | 0.23 ± 0.05 b | 13.69 ± 3.21 b |
L. muscari | 128.64 ± 22.18 cd | 5.69 ± 0.13 ab | 81.82 ± 3.30 ab | 0.16 ± 0.06 b | 0.08 ± 0.02 b | 0.24 ± 0.08 b | 15.18 ± 5.31 b |
P. terminalis | 118.64 ± 1.69 cd | 5.61 ± 0.07 ab | 80.89 ± 3.70 ab | 0.08 ± 0.02 cd | 0.04 ± 0.01 c | 0.13 ± 0.03 cd | 7.19 ± 2.16 cd |
C. grandiflora | 247.44 ± 54.87 a | 5.48 ± 0.28 b | 78.55 ± 13.72 ab | 0.26 ± 0.05 a | 0.12 ± 0.02 a | 0.37 ± 0.07 a | 24.79 ± 4.84 a |
P. tricuspidata | 145.90 ± 2.72 bc | 5.66 ± 0.06 ab | 79.83 ± 10.51 ab | 0.14 ± 0.00 bc | 0.06 ± 0.00 bc | 0.20 ± 0.00 bc | 12.68 ± 0.52 bc |
Significantly | *** | ns | ns | *** | *** | *** | *** |
E. japonicus | B. sinica var. insularis | P. fortunei | R. yedoense f. poukhanense | L. muscari | P. terminalis | C. grandiflora | P. tricuspidata | |
---|---|---|---|---|---|---|---|---|
Ca | 9.56 | 13.68 | 8.41 | 52.25 | 19.76 | 9.71 | 49.60 | 36.22 |
K | 29.07 | 9.55 | 18.11 | 30.66 | 45.87 | 17.80 | 25.78 | 7.79 |
Mg | ND | 0.99 | 2.78 | 10.05 | 3.41 | 3.19 | 6.47 | 6.35 |
S | ND | 7.97 | 0.38 | ND | 2.66 | 0.42 | 3.66 | 0.31 |
P | ND | 1.13 | ND | ND | 2.14 | ND | 1.50 | ND |
Al | ND | 7.58 | ND | ND | 2.82 | 25.61 | 2.07 | 11.51 |
Si | 15.59 | 14.66 | 53.02 | ND | 11.47 | 27.53 | 3.13 | 20.73 |
Na | ND | 9.86 | ND | ND | ND | 3.50 | 6.02 | 1.64 |
Cl | 45.78 | 34.58 | 17.30 | 7.03 | 11.87 | 3.11 | 1.77 | 3.76 |
Fe | ND | ND | ND | ND | ND | 9.14 | ND | 11.70 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, H.-T.; Park, J.; Lee, E.; Jeong, M.; Park, B.-J. Particulate Matter Accumulation and Elemental Composition of Eight Roadside Plant Species. Urban Sci. 2023, 7, 51. https://doi.org/10.3390/urbansci7020051
Bui H-T, Park J, Lee E, Jeong M, Park B-J. Particulate Matter Accumulation and Elemental Composition of Eight Roadside Plant Species. Urban Science. 2023; 7(2):51. https://doi.org/10.3390/urbansci7020051
Chicago/Turabian StyleBui, Huong-Thi, Jihye Park, Eunyoung Lee, Moonsun Jeong, and Bong-Ju Park. 2023. "Particulate Matter Accumulation and Elemental Composition of Eight Roadside Plant Species" Urban Science 7, no. 2: 51. https://doi.org/10.3390/urbansci7020051
APA StyleBui, H. -T., Park, J., Lee, E., Jeong, M., & Park, B. -J. (2023). Particulate Matter Accumulation and Elemental Composition of Eight Roadside Plant Species. Urban Science, 7(2), 51. https://doi.org/10.3390/urbansci7020051