Comparative Investigation of On-Grid and Off-Grid Hybrid Energy System for a Remote Area in District Jamshoro of Sindh, Pakistan
Abstract
:1. Introduction
Novelty and Motivation of the Study
2. Material and Methods
2.1. Specifications of the Studied Site
2.2. Details on Costs and Characteristics of Hybrid Energy System Components
2.2.1. Photovoltaic Cells
2.2.2. Wind Turbine
2.2.3. Electrolyzer
2.2.4. Hydrogen Tank
2.2.5. Fuel Cell
2.2.6. Battery
2.2.7. Bi-Directional Converter
2.2.8. Economic Analysis
3. Modeling of the Studied System
HOMER Pro 3.11.2 Software
4. Results and Discussion
4.1. Without Grid-Connected Hybrid Energy System
4.2. Grid-Connected Hybrid Energy System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Assad, M.E.H.; Khosravi, A.; Malekan, M.; Rosen, M.A.; Nazari, M.A. Energy storage. In Design and Performance Optimization of Renewable Energy Systems; Assad, M.E.H., Rosen, M.A., Eds.; Academic Press: Cambrdige, MA, USA, 2021; Chapter 14; pp. 205–219. [Google Scholar]
- Alayi, R.; Kasaeian, A.; Atabi, F. Thermal analysis of parabolic trough concentration photovoltaic/thermal system for using in buildings. Environ. Prog. Sustain. Energy 2019, 38, 13220. [Google Scholar] [CrossRef]
- Alayi, R.; Sobhani, E.; Najafi, A. Analysis of environmental impacts on the characteristics of gas released from biomass. Anthropog. Pollut. 2020, 4, 1–14. [Google Scholar]
- Cheng, L.; Zhang, F.; Li, S.; Mao, J.; Xu, H.; Ju, W.; Liu, X.; Wu, J.; Min, K.; Zhang, X.; et al. Solar energy potential of urban buildings in 10 cities of China. Energy 2020, 196, 117038. [Google Scholar] [CrossRef]
- Kasaeian, A.; Shamel, A.; Alayi, R. Simulation and economic optimization of wind turbines and photovoltaic hybrid system with a storage battery and hydrogen tank (case study the city of Yazd). J. Curr. Res. Sci. 2015, 3, 105. [Google Scholar]
- Ehyaei, M.A.; Assad, M.E.H. Energy and exergy analyses of wind turbines. In Design and Performance Optimization of Renewable Energy Systems; Assad, M.E.H., Rosen, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; Chapter 13; pp. 195–203. [Google Scholar]
- Abidoye, L.K.; Bani-Hani, E.; Assad, M.E.H.; AlShabi, M.; Soudan, B.; Oriaje, A.T. Effects of environmental and turbine parameters on energy gains from wind farm system: Artificial neural network simulations. Wind. Eng. 2019, 44, 181–195. [Google Scholar] [CrossRef]
- Alayi, R.; Kumar, R.; Seydnouri, S.R.; Ahmadi, M.H.; Issakhov, A. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. Int. J. Low-Carbon Technol. 2021, 16, 570–576. [Google Scholar] [CrossRef]
- AlShabi, M.; Ghenai, C.; Bettayeb, M.; Ahmad, F.F.; Assad, M.E.H. Multi-group grey wolf optimizer (MG-GWO) for estimating photovoltaic solar cell model. J. Therm. Anal. Calorim. 2021, 144, 1655–1670. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L. Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis. Energy 2020, 207, 118200. [Google Scholar] [CrossRef]
- Alayi, R.; Jahanbin, F. Generation Management Analysis of a Stand-alone Photovoltaic System with Battery. Renew. Energy Res. Appl. 2020, 1, 205–209. [Google Scholar] [CrossRef]
- Wojuola, R.N.; Alant, B.P. Sustainable development and energy education in Nigeria. Renew. Energy 2019, 139, 1366–1374. [Google Scholar] [CrossRef]
- Alayi, R.; Ahmadi, M.H.; Visei, A.R.; Sharma, S.; Najafi, A. Technical and environmental analysis of photovoltaic and solar water heater cogeneration system: A case study of Saveh City. Int. J. Low-Carbon Technol. 2021, 16, 447–453. [Google Scholar] [CrossRef]
- Alayi, R.; Rouhi, H. Techno-Economic Analysis of Electrical Energy Generation from Urban Waste in Hamadan, Iran. Int. J. Des. Nat. Ecodyn. 2020, 15, 337–341. [Google Scholar] [CrossRef]
- Pahlavan, S.; Jahangiri, M.; Alidadi Shamsabadi, A.; Khechekhouche, A. Feasibility study of solar water heaters in Algeria, a review. J. Sol. Energy Res. 2018, 3, 135–146. [Google Scholar]
- Alayi, R.; Kasaeian, A.; Atabi, F. Optical modeling and optimization of parabolic trough concentration photovoltaic/thermal system. Environ. Prog. Sustain. Energy 2020, 39, e13303. [Google Scholar] [CrossRef]
- Alayi, R.; Khan, M.R.B.; Mohmammadi, M.S.G. Feasibility Study of Grid-Connected PV System for Peak Demand Reduction of a Residential Building in Tehran, Iran. Math. Model. Eng. Probl. 2020, 7, 563–567. [Google Scholar] [CrossRef]
- Mustafayev, R.I.; Hasanova, L.H.; Musaev, M.M. Using Regulated Electrical Machines in Small Hydropower Plants Operating in a Power Network. Russ. Electr. Eng. 2018, 89, 322–327. [Google Scholar] [CrossRef]
- Maatallah, T.; Ghodhbane, N.; Nasrallah, S.B. Assessment viability for hybrid energy system (PV/wind/diesel) with storage in the northernmost city in Africa, Bizerte, Tunisia. Renew. Sustain. Energy Rev. 2016, 59, 1639–1652. [Google Scholar] [CrossRef]
- Vasel, A.; Iakovidis, F. The effect of wind direction on the performance of solar PV plants. Energy Convers. Manag. 2017, 153, 455–461. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, C.; Deng, Z.; Bian, H.; Sun, C.; Jia, C. Economic optimization for configuration and sizing of micro integrated energy systems. J. Mod. Power Syst. Clean Energy 2018, 6, 330–341. [Google Scholar] [CrossRef]
- Alayi, R.; Velayti, J.J. Modeling/Optimization and Effect of Environmental Variables on Energy Production Based on PV/Wind Turbine Hybrid System. J. Ilm. Tek. Elektro Komput. Inform. 2021, 7, 101–107. [Google Scholar] [CrossRef]
- Alayi, R.; Jahangeri, M.; Monfared, H. Optimal location of electrical generation from urban solid waste for biomass power plants. Anthropog. Pollut. 2020, 4, 44–51. [Google Scholar]
- Al-Masri, H.M.; Ehsani, M. Feasibility Investigation of a Hybrid On-Grid Wind Photovoltaic Retrofitting System. IEEE Trans. Ind. Appl. 2015, 52, 1979–1988. [Google Scholar] [CrossRef]
- Al-Janahi, S.A.; Ellabban, O.; Al-Ghamdi, S.G. Technoeconomic feasibility study of grid-connected building-integrated photovoltaics system for clean electrification: A case study of Doha metro. Energy Rep. 2020, 6, 407–414. [Google Scholar] [CrossRef]
- Al-Sharafi, A.; Sahin, A.Z.; Ayar, T.; Yilbas, B.S. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 69, 33–49. [Google Scholar] [CrossRef]
- Turkdogan, S. Design and optimization of a solely renewable based hybrid energy system for residential electrical load and fuel cell electric vehicle. Eng. Sci. Technol. Int. J. 2021, 24, 397–404. [Google Scholar] [CrossRef]
- Jahangiri, M.; Mostafaeipour, A.; Habib, H.U.R.; Saghaei, H.; Waqar, A. Effect of Emission Penalty and Annual Interest Rate on Cogeneration of Electricity, Heat, and Hydrogen in Karachi: 3E Assessment and Sensitivity Analysis. J. Eng. 2021, 2021, 6679358. [Google Scholar] [CrossRef]
- Naderipour, A.; Abdul-Malek, Z.; Nowdeh, S.A.; Kamyab, H.; Ramtin, A.R.; Shahrokhi, S.; Klemeš, J.J. Comparative evaluation of hybrid photovoltaic, wind, tidal and fuel cell clean system design for different regions with remote application considering cost. J. Clean. Prod. 2021, 283, 124207. [Google Scholar] [CrossRef]
- Rezk, H.; Alghassab, M.; Ziedan, H.A. An Optimal Sizing of Stand-Alone Hybrid PV-Fuel Cell-Battery to Desalinate Seawater at Saudi NEOM City. Processes 2020, 8, 382. [Google Scholar] [CrossRef] [Green Version]
- Rad, M.A.V.; Ghasempour, R.; Rahdan, P.; Mousavi, S.; Arastounia, M. Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran. Energy 2020, 190, 116421. [Google Scholar] [CrossRef]
- Li, C. Technical and economic potential evaluation of an off-grid hybrid wind-fuel cell-battery energy system in Xining, China. Int. J. Green Energy 2021, 18, 258–270. [Google Scholar] [CrossRef]
- Samy, M.M.; Elkhouly, H.I.; Barakat, S. Multi-objective optimization of hybrid renewable energy system based on biomass and fuel cells. Int. J. Energy Res. 2021, 45, 8214–8230. [Google Scholar] [CrossRef]
- Rezk, H.; Sayed, E.T.; Al-Dhaifallah, M.; Obaid, M.; El-Sayed, A.H.M.; Abdelkareem, M.A.; Olabi, A. Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system. Energy 2019, 175, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Alayi, R.; Kasaeian, A.; Najafi, A.; Jamali, E. Optimization and evaluation of a wind, solar and fuel cell hybrid system in supplying electricity to a remote district in national grid. Int. J. Energy Sect. Manag. 2020, 14, 408–418. [Google Scholar] [CrossRef]
- Jahangiri, M.; Khosravi, A.; Raiesi, H.A.; Mostafaeipour, A. Analysis of Standalone PV-Based Hybrid Systems for Power Generation in Rural Area. In Proceedings of the International Conference on Fundamental Research in Electrical Engineering, Tehran, Iran, 21 July 2017. [Google Scholar]
- Billinton, R.; Gao, Y. Multistate Wind Energy Conversion System Models for Adequacy Assessment of Generating Systems Incorporating Wind Energy. IEEE Trans. Energy Convers. 2008, 23, 163–170. [Google Scholar] [CrossRef]
- Okundamiya, M.S.; Nzeako, A.N.; Okundamiya, M.S.; Nzeako, A.N. Model for optimal sizing of a wind energy conversion system for Green-Mobile applications. Int. J. Green Energy 2013, 10, 205–218. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Rezaei, M.; Jahangiri, M.; Qolipour, M. Feasibility analysis of a new tree-shaped wind turbine for urban application: A case study. Energy Environ. 2020, 31, 1230–1256. [Google Scholar] [CrossRef]
- Abdali, T.; Pahlavan, S.; Jahangiri, M.; Shamsabadi, A.A.; Sayadi, F. Techno-Econo-Environmental study on the use of domestic-scale wind turbines in Iran. Energy Equip. Syst. 2019, 7, 317–338. [Google Scholar] [CrossRef]
- Seedahmed, M.M.; Ramli, M.A.; Bouchekara, H.R.; Shahriar, M.S.; Milyani, A.H.; Rawa, M. A techno-economic analysis of a hybrid energy system for the electrification of a remote cluster in western Saudi Arabia. Alex. Eng. J. 2022, 61, 5183–5202. [Google Scholar] [CrossRef]
- Jahangiri, M.; Haghani, A.; Heidarian, S.; Alidadi Shamsabadi, A.; Pomares, L.M. Electrification of a Tourist Village Using Hybrid Renewable Energy Systems, Sarakhiyeh in Iran. J. Sol. Energy Res. 2018, 3, 201–211. [Google Scholar]
- Pahlavan, S.; Jahangiri, M.; Shamsabadi, A.A.; Ariae, A.R. Assessment of PV-Based CHP System: The Effect of Heat Recovery Factor and Fuel Type. J. Energy Manag. Technol. 2019, 3, 40–47. [Google Scholar] [CrossRef]
- Jahangiri, M.; Nematollahi, O.; Haghani, A.; Raiesi, H.A.; Shamsabadi, A.A. An optimization of energy cost of clean hybrid solar-wind power plants in Iran. Int. J. Green Energy 2019, 16, 1422–1435. [Google Scholar] [CrossRef]
- Jahangiri, M.; Shamsabadi, A.A.; Riahi, R.; Raeiszadeh, F.; Dehkordi, P.F. Levelized Cost of Electricity for Wind-Solar Power Systems in Japan, a Review. J. Power Technol. 2020, 100, 188–210. [Google Scholar]
- Jahangiri, M.; Soulouknga, M.H.; Bardei, F.K.; Shamsabadi, A.A.; Akinlabi, E.T.; Sichilalu, S.M.; Mostafaeipour, A. Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad. Int. J. Hydrog. Energy 2019, 44, 28613–28628. [Google Scholar] [CrossRef]
- Khan, T.; Waseem, M.; Tahir, M.; Liu, S.; Yu, M. Autonomous hydrogen-based solar-powered energy system for rural electrification in Balochistan, Pakistan: An energy-economic feasibility analysis. Energy Convers. Manag. 2022, 271, 116284. [Google Scholar] [CrossRef]
- Odoi-Yorke, F.; Woenagnon, A. Techno-economic assessment of solar PV/fuel cell hybrid power system for telecom base stations in Ghana. Cogent Eng. 2021, 8, 1911285. [Google Scholar] [CrossRef]
Purpose | Renewable Energy Used | Connection Mode | Electricity Demand (kWh/Day) | Location | Sensitivity Analysis | LCOE ($/kWh) | Reference Year |
---|---|---|---|---|---|---|---|
Electricity supply to Gwadar | PV, WT | On-grid and off-grid | 1,680,000 | Pakistan | No | 0.0347 | 2022 [1] |
Electricity supply to the Hunza district of Gilgit-Baltistan | PV, WT | On-grid and off-grid | 372.09 | Pakistan | Yes | 0.0388 | 2022 [2] |
Electric vehicle | PV, wind | Off-grid | 11.27 | Turkey | Yes | 0.685 | 2021 [27] |
Co-generation of electricity, heat, and hydrogen | PV, WT | Off-grid | 15 | Pakistan | Yes | 0.965 | 2021 [28] |
Remote application | PV, WT, tidal | Off-grid | 20–40 | Iran | No | 0.45–11 | 2021 [29] |
Desalinate seawater | PV | Off-grid | 522 | Saudi Arabia | No | 0.124 | 2020 [30] |
Rural electrification | PV, WT, biomass | On-grid and off-grid | 361 | Iran | No | 0.096–0.164 | 2020 [31] |
Residential house | WT | Off-grid | 10 | China | Yes | 1.278 | 2020 [32] |
Small tourist village | Biomass | Off-grid | 92.2 | Egypt | Yes | 0.335 | 2020 [33] |
Reverse osmosis desalination | PV | Off-grid | 110 | Egypt | Yes | 0.062 | 2019 [34] |
S.NO | Components | Capital Cost ($) | Replacement Cost ($) | O & M Cost ($) | Lifetime | Other Information |
---|---|---|---|---|---|---|
1 | PV [47] | 400 | 400 | 10 | 25 years | Derating factor 80% |
2 | Wind turbine [41] | 3200 | 3000 | 120 | 25 years | Bergey Excel 10-R, Hub height, 80 m |
3 | Electrolyzer [47] | 1100 | 850 | 10 | 15 years | Efficiency 85% |
4 | HTank [47] | 600 | 600 | 10 | 25 years | Initial tank level, 10% |
5 | Fuel cell [47] | 2000 | 2000 | 0.030 | 15,000 h | Max. efficiency, 51.3% |
6 | Battery [48] | 320 | 300 | 15 | 10 years | Li-ion battery |
7 | Converter [41] | 800 | 750 | 20 | 15 years | Efficiency, 90% |
PV (kW) | WT (kW) | FC (kW) | EL (kW) | HTank (kg) | Battery | Converter (kW) | COE ($) | NPC (M$) | Disp |
---|---|---|---|---|---|---|---|---|---|
150 | 10 | 60 | 60 | 60 | 240 | 60 | 0.294 | 410,000 | CC |
150 | 10 | 60 | 60 | 60 | 240 | 60 | 0.298 | 410,010 | LF |
Production | kWh/Year | % |
---|---|---|
Generic flat plate PV | 244,792 | 94.5 |
Fuel cell | 2763 | 1.07 |
Wind turbine | 11,599 | 4.48 |
Total | 259,154 | 100 |
Components | Capital ($) | Replacement ($) | O&M ($) | Fuel ($) | Salvage ($) | Total ($) |
---|---|---|---|---|---|---|
Fuel cell | 120,000 | 0.00 | 1710.34 | 0.00 | 69,260.56 | 52,449.78 |
Electrolyzer | 66,000 | 38,554.97 | 11,877.37 | 0.00 | 10,665.12 | 105,767.21 |
PV panel | 60,000 | 0.00 | 29,693.42 | 0.00 | 0.00 | 89,693.42 |
HTank | 36,000 | 0.00 | 11,877.37 | 0.00 | 0.00 | 47,877.37 |
Battery | 76,800 | 54,156.65 | 71,264.21 | 0.00 | 16,390.20 | 185,830.66 |
Converter | 48,000 | 0.00 | 23,754.74 | 0.00 | 0.00 | 71,754.74 |
WT | 3200 | 0.00 | 1583.65 | 0.00 | 0.00 | 4783.65 |
System | 410,000 | 92,711.62 | 151,761.08 | 0.00 | 96,315.88 | 558,156.82 |
PV (kW) | WT (kW) | FC (kW) | EL (kW) | HTank (kg) | Battery(s) | Grid (kW) | Converter (kW) | COE ($) | NPC (M$) | Disp |
---|---|---|---|---|---|---|---|---|---|---|
600 | 60 | 300 | 300 | 300 | 600 | 999,999 | 155 | 0.108 | 1.24 | CC |
600 | 60 | 300 | 300 | 300 | 600 | 999,999 | 155 | 0.109 | 1.25 | LF |
Production | kWh/Year | % |
---|---|---|
Generic flat plate PV | 979,167 | 93.4 |
Fuel cell | 0 | 0 |
Wind turbine | 69,594 | 6.64 |
Total | 1,048,760 | 100 |
Components | Capital ($) | Replacement ($) | O&M ($) | Fuel ($) | Salvage ($) | Total ($) |
---|---|---|---|---|---|---|
Fuel cell | 600,000.00 | 0.00 | 0.00 | 0.00 | 370,293.31 | 229,706.69 |
Electrolyzer | 330,000.00 | 193,809.11 | 59,642.51 | 0.00 | 53,803.30 | 529,648.32 |
PV panel | 240,000.00 | 0.00 | 119,285.02 | 0.00 | 0.00 | 359,285.02 |
Grid | 0.00 | 0.00 | 771,216.12 | 0.00 | 0.00 | 771,216.12 |
HTank | 180,000.00 | 0.00 | 59,642.51 | 0.00 | 0.00 | 239,642.51 |
Battery | 192,000.00 | 0.00 | 178,927.53 | 0.00 | 0.00 | 370,927.53 |
Converter | 124,800.00 | 88,924.18 | 62,028.21 | 0.00 | 24,686.22 | 251,066.17 |
WT | 19,200.00 | 0.00 | 14,314.20 | 0.00 | 0.00 | 33,514.20 |
System | 1,686,000.00 | 282,733.29 | 277,376.13 | 0.00 | 44,8782.84 | 1,242,574.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manoo, M.U.; Shaikh, F.; Kumar, L.; Mustapa, S.I. Comparative Investigation of On-Grid and Off-Grid Hybrid Energy System for a Remote Area in District Jamshoro of Sindh, Pakistan. Urban Sci. 2023, 7, 63. https://doi.org/10.3390/urbansci7020063
Manoo MU, Shaikh F, Kumar L, Mustapa SI. Comparative Investigation of On-Grid and Off-Grid Hybrid Energy System for a Remote Area in District Jamshoro of Sindh, Pakistan. Urban Science. 2023; 7(2):63. https://doi.org/10.3390/urbansci7020063
Chicago/Turabian StyleManoo, Mansoor Urf, Faheemullah Shaikh, Laveet Kumar, and Siti Indati Mustapa. 2023. "Comparative Investigation of On-Grid and Off-Grid Hybrid Energy System for a Remote Area in District Jamshoro of Sindh, Pakistan" Urban Science 7, no. 2: 63. https://doi.org/10.3390/urbansci7020063
APA StyleManoo, M. U., Shaikh, F., Kumar, L., & Mustapa, S. I. (2023). Comparative Investigation of On-Grid and Off-Grid Hybrid Energy System for a Remote Area in District Jamshoro of Sindh, Pakistan. Urban Science, 7(2), 63. https://doi.org/10.3390/urbansci7020063