Assessment of Sustainable Mobility Initiatives Developed in Montevideo, Uruguay †
Abstract
:1. Introduction
2. Sustainable Mobility
3. Related Work
4. Description of the Studied Modes and the Applied Methodology
4.1. Overall Considerations
4.2. Electric Scooters
4.3. Urban Cycling
4.4. Electric Public Transportation
4.5. Electric Private Transportation
4.6. Methodology
5. Sustainable Mobility in Montevideo: Results and Analysis
5.1. Shared Electric Scooters in Montevideo
5.2. Urban Cycling
5.2.1. Infrastructure for Cycling
- Bicycle lanes (ciclovía): these are designated sections of the road, typically a lane, exclusively dedicated to the circulation of bicycles.
- Bicycle paths (bicisenda): these are located on sidewalks, central flower beds, or landscaped areas; are separate from the road; and are exclusively designated for bicycle use.
- Streets with 30 km/h limits: This is when a speed limit of 30 km/h is enforced to promote coexistence with bicycles. Signage is installed to establish the priority of bicycles in the circulation.
- In Luis Morquio (city center, Parque Batlle neighborhood), with a length of 0.5 km.
- In Hocquart, from Arenal Grande to Bulevar Artigas (city center, La Comercial and Villa Muñoz neighborhoods), with a length of 1.4 km.
- In Nueva Palmira, from Bulevar Artigas to Arenal Grande (city center, La Comercial and Villa Muñoz neighborhoods), with a length of 1.4 km.
- In Isidoro de María, from Arenal Grande to General Flores (city center, Aguada neighborhood), with a length of 0.4 km.
- In Luis Alberto de Herrera, from 8 de Octubre to Mazzini (city center, Parque Batlle neighborhood), with a length of 1.2 km.
- In Belloni, from Perimetral to Instrucciones (north-east of the city, Villa Española neighborhood), with a length of 1.6 km.
- In Cibils, from Route #1 to Tomkinson (west of the city, Las Torres and Paso de la Arena neighborhoods), with a length of 1.6 km.
- 8.
- In Avenida Italia, from Gallinal to Albo (city center, Malvin, Buceo, and Parque Batlle neighborhoods), with a length of 5.9 km.
- 9.
- In Avenida Larrañaga, from the Hippodrome to Varela (north-east of the city, Ituzaingó and Villa Española neighborhoods), with a length of 2.5 km.
- 10.
- In Avenida Ricaldoni, from Vidiella to Morquio (city center, Parque Batlle neighborhood), with a length of 1.8 km.
- 11.
- In Bulevar Artigas, from Batlle Berres monument to Garibaldi (center to north of the city, Jacinto Vera neighborhood), with a length of 1.5 km.
- 12.
- In Avenida Larrañaga, from Varela to Joanicó (city denter, Larrañaga neighborhood), with a length of 1.9 km.
- 13.
- In Luis Alberto de Herrera, from Anador to Mazzini (city center, Parque Batlle neighborhood), with a length of 0.5 km.
- 14.
- In Cibils, from Ramírez to Route #1 (west of the city, Cerroa neighborhood), with a length of 2.6 km.
- 15.
- In Avenida Italia, from Gallinal to Bolivia (south-east of the city, Malvin and Portones neighborhoods), with a length of 1.5 km.
5.2.2. Safety and Maintenance
5.2.3. Connectivity, Multimodality, and Socioeconomic Characterization
5.2.4. Public Bicycles
5.3. Electric Public Transportation
5.3.1. Development of Electric Bus Lines
5.3.2. Coverage, Accessibility, and Socioeconomic Characterization
5.3.3. Operational and Energy efficiency
5.3.4. Passenger Comfort
5.4. Electric Private Transportation
5.4.1. Electric Vehicle Market and Projections
5.4.2. Environmental Impact
- Reference scenario: assuming the trend of electric vehicles in 2021–2022.
- Energy efficiency scenario: assuming a positive result of existing energy efficiency policies in Uruguay for the promotion of electric vehicles, based on the government incentives described in Section 5.4.6.
- Sustainable development scenario: assuming a strong commitment towards reducing pollutant emissions to meet global climate goals in line with the Paris Agreement [116].
- Reference scenario: 8.479 tons of CO2 in 2024 and 28.000 tons of CO2 in 2030.
- Energy efficiency scenario: 8.479 tons of CO2 in 2024 and 93.639 tons of CO2 in 2030.
- Sustainable development scenario: 9.364 tons of CO2 in 2024 and 219.383 tons of CO2 in 2030.
5.4.3. Range and Battery Life
5.4.4. Charging Infrastructure and Support Services
- Slow: Conceived for emergency charging, using the standard electricity grid, alternate current, and a Schuko connector, with an associated power of 2.2 kW.
- Standard: Conceived for slow charging, using an Electric Vehicle Charging System, and alternate current, with an associated power of up to 7.4 kW. The estimated time for a full charge is between 5 and 8 h.
- Semi-fast: Conceived for moderate slow charging, using an Electric Vehicle Charging System, and alternate current, with an associated power of up to 22 kW. The estimated time for a full charge is between 1 and 3 h.
- Fast: Conceived for fast charging, using an Electric Vehicle Charging System, and alternate current, with an associated power of up to 43 kW. The estimated time for a full charge is one hour.
- Ultra fast: Conceived for moderate slow charging, using an Electric Vehicle Charging System, and direct current, with an associated power of up to 120 kW. The estimated time for a full charge is between 15 and 30 min.
5.4.5. Economic Analysis
5.4.6. Government Incentives and Policies
- Uruguay has practically eliminated all taxes imposed on electric vehicles, with only the Value Added Tax remaining.
- Since 2011, electric vehicles have had a reduced Internal Specific Tax (IMESI) rate of 5.75% until 2021, and from then onward, it has been excempted (reduced to 0%). This substantial tax advantage contrasts with the tax rates imposed on combustion vehicles, which range from 23% to 46% for gasoline-powered vehicles.
- An additional tax benefit is the exclusion of the 23% import tariff (TGA).
- There is a reduction in the vehicle circulation fee. The value used for calculating the fee for electric vehicles excludes the Value Added Tax, and the applied percentage is reduced to half (2.5%) of the rate applied to combustion vehicles (5%).
- The government has introduced assistance programs aimed at promoting the use of electric vehicles in taxi, ride-hailing, and on-demand mobility services. These initiatives offer vehicle-specific discounts of up to USD 11,500.
- Decree 268/23 from the Executive Power has extended provisions that allow vehicles registered under the Investment Promotion Law to benefit from substantial tax reductions, encouraging the adoption of clean energy usage.
- Support measures in the form of Energy Efficiency Certificates have been implemented since 2016. In 2022, the Vehicle Energy Efficiency Labeling Regulations were established, including significant advantages to the labeling system. Once the Ministry of Industry, Energy, and Mining establishes the regulations and the voluntary adoption period for vehicle importers concludes, prospective buyers of new vehicles will have access to an adhesive label displaying information such as fuel consumption per kilometer and CO2 emissions, which are associated with the respective fuel types. For combustion vehicles, fuel consumption information will be indicated in km/L, while for electric and plug-in hybrid vehicles, consumption will be represented as km/kWh [137].
- From 2023 to 2025, private investors incorporating charging services are eligible for a 100% discount on the connection fee.
- The State Insurance Bank (Banco de Seguros del Estado, BSE) provides better insurance conditions and prices for electric vehicles in comparison to combustion vehicles.
- The government advanced on an ecosystem of capabilities for battery management.
- During the period between 2019 and 2022, the Subite Prueba initiative was developed. A one-month free trial of electric vehicles was offered to companies and institutions, who were encouraged to incorporate electric vehicles for urban cargo transportation and last-mile logistics. The vehicles were provided at no cost for a month-long trial period, allowing the beneficiaries to evaluate the benefits in their regular operations [138].
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marshall, S. The challenge of sustainable transport. In Planning for a Sustainable Future; Layard, A., Davoudi, S., Batty, S., Eds.; Spon: London, UK, 2001; pp. 131–147. [Google Scholar]
- Gallo, M.; Marinelli, M. Sustainable Mobility: A Review of Possible Actions and Policies. Sustainability 2020, 12, 7499. [Google Scholar] [CrossRef]
- Cirianni, F.; Leonardi, G.; Iannò, D. Operating and Integration of Services in Local Public Transport. In Smart Innovation, Systems and Technologies; Springer International Publishing: Cham, Switzerland, 2020; pp. 1523–1531. [Google Scholar] [CrossRef]
- Hipogrosso, S.; Nesmachnow, S. Analysis of Sustainable Public Transportation and Mobility Recommendations for Montevideo and Parque Rodó Neighborhood. Smart Cities 2020, 3, 479–510. [Google Scholar] [CrossRef]
- Intendencia de Montevideo. Plan de Movilidad. 2023. Available online: https://montevideo.gub.uy/sites/default/files/plan_de_movilidad.pdf (accessed on 12 March 2024).
- Cirianni, F.; Leonardi, G. Analysis of transport modes in the urban environment: An application for a sustainable mobility system. In The Sustainable City IV: Urban Regeneration and Sustainability; WIT: Billerica, MA, USA, 2006. [Google Scholar] [CrossRef]
- Robertson, M. Sustainability Principles and Practice; Routledge: Abingdon, UK, 2021. [Google Scholar]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Brinkmann, R. Introduction to Sustainability; Wiley-Blackwell: Hoboken, NJ, USA, 2021. [Google Scholar]
- United Nations General Assembly. Report of the World Commission on Environment and Development: Our Common Future. 1987. Available online: http://www.un-documents.net/wced-ocf.htm (accessed on 1 August 2021).
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 1 May 2022).
- Mavlutova, I.; Atstaja, D.; Grasis, J.; Kuzmina, J.; Uvarova, I.; Roga, D. Urban Transportation Concept and Sustainable Urban Mobility in Smart Cities: A Review. Energies 2023, 16, 3585. [Google Scholar] [CrossRef]
- Müller-Eie, D.; Kosmidis, I. Sustainable mobility in smart cities: A document study of mobility initiatives of mid-sized Nordic smart cities. Eur. Transp. Res. Rev. 2023, 15, 36. [Google Scholar] [CrossRef]
- United Nations. Report of the United Nations Conference on Housing and Sustainable Urban Development. 2016. Available online: https://www.un.org/sustainabledevelopment/cities/ (accessed on 1 August 2022).
- Nundy, S.; Ghosh, A.; Mesloub, A.; Albaqawy, G.; Alnaim, M. Impact of COVID-19 pandemic on socio-economic, energy-environment and transport sector globally and sustainable development goal (SDG). J. Clean. Prod. 2021, 312, 127705. [Google Scholar] [CrossRef]
- Johnston, R. Indicators for Sustainable Transportation Planning. Transp. Res. Rec. J. Transp. Res. Board 2008, 2067, 146–154. [Google Scholar] [CrossRef]
- Ravagnan, C.; Rossi, F.; Amiriaref, M. Sustainable Mobility and Resilient Urban Spaces in the United Kingdom: Practices and Proposals. Transp. Res. Procedia 2022, 60, 164–171. [Google Scholar] [CrossRef]
- Bielińska, E.; Hamerska, M.; Żak, A. Sustainable Mobility and the Smart City: A Vision of the City of the Future: The Case Study of Cracow (Poland). Energies 2021, 14, 7936. [Google Scholar] [CrossRef]
- Miller, P.; de Barros, A.G.; Kattan, L.; Wirasinghe, S.C. Public transportation and sustainability: A review. KSCE J. Civ. Eng. 2016, 20, 1076–1083. [Google Scholar] [CrossRef]
- Rodrigues, A.; Costa, M.; Macedo, M. Multiple views of sustainable urban mobility: The case of Brazil. Transp. Policy 2008, 15, 350–360. [Google Scholar]
- Lyons, W. Sustainable transport in the developing world: A case study of Bogota’s mobility strategy. In Proceedings of the International Conference on Sustainable Infrastructure 2017, New York, NY, USA, 26–28 October 2017. [Google Scholar]
- Huertas, J.; Stöffler, S.; Fernández, T.; García, X.; Castañeda, R.; Serrano, O.; Mogro, A.; Alvarado, D. Methodology to Assess Sustainable Mobility in LATAM Cities. Appl. Sci. 2021, 11, 9592. [Google Scholar] [CrossRef]
- Hipogrosso, S.; Nesmachnow, S. Towards a Sustainable Mobility Plan for Engineering Faculty, Universidad de la República, Uruguay. In Smart Cities; Springer International Publishing: Cham, Switzerland, 2021; pp. 199–215. [Google Scholar] [CrossRef]
- Nesmachnow, S.; Hipogrosso, S. Transit oriented development analysis of Parque Rodó neighborhood, Montevideo, Uruguay. World Dev. Sustain. 2022, 1, 100017. [Google Scholar] [CrossRef]
- Dittmar, H.; Poticha, S. Defining transit-oriented development: The new regional building block. In The New Transit Town: Best Practices in Transit-Oriented Development; Dittmar, H., Ohland, G., Eds.; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Transportation Research Board. Transit-Oriented Development in the United States: Experiences, Challenges, and Prospects; National Acedemies Press: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- Massobrio, R.; Nesmachnow, S.; Gómez, E.; Sosa, F.; Hipogrosso, S. Public Transportation and Accessibility to Education Centers in Maldonado, Uruguay. In Smart Cities; Springer International Publishing: Cham, Switzerland, 2021; pp. 123–138. [Google Scholar] [CrossRef]
- Massobrio, R.; Nesmachnow, S. Travel Time Estimation in Public Transportation Using Bus Location Data. In Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2022; pp. 192–206. [Google Scholar] [CrossRef]
- Smith, A. Electric Scooters Remain Prohibited in Toronto until Proper Regulations Developed. 2019. Available online: https://dailyhive.com/toronto/toronto-e-scooter-update-october (accessed on 23 September 2023).
- National Association of City Transportation Officials. Shared Micromobility in the U.S.: 2018; National Association of City Transportation Officials: New York, NY, USA, 2018. [Google Scholar]
- Kopplin, C.S.; Brand, B.M.; Reichenberger, Y. Consumer acceptance of shared e-scooters for urban and short-distance mobility. Transp. Res. Part D Transp. Environ. 2021, 91, 102680. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, X.; Chua, K.; Yu, H.; Zhao, J. E-scooter sharing to serve short-distance transit trips: A Singapore case. Transp. Res. Part A: Policy Pract. 2021, 147, 177–196. [Google Scholar] [CrossRef]
- Abouelela, M.; Al Haddad, C.; Antoniou, C. Are young users willing to shift from carsharing to scooter–sharing? Transp. Res. Part D Transp. Environ. 2021, 95, 102821. [Google Scholar] [CrossRef]
- Reck, D.; Axhausen, K. Who uses shared micro-mobility services? Empirical evidence from Zurich, Switzerland. Transp. Res. Part D Transp. Environ. 2021, 94, 102803. [Google Scholar] [CrossRef]
- San Francisco Municipal Transportation Agency. Powered Scooter Share Mid-Pilot Evaluation. 2019. Available online: https://www.sfmta.com/sites/default/files/reports-and-documents/2019/08/powered_scooter_share_mid-pilot_evaluation_final.pdf (accessed on 15 February 2024).
- Nikiforiadis, A.; Paschalidis, E.; Stamatiadis, N.; Raptopoulou, A.; Kostareli, A.; Basbas, S. Analysis of attitudes and engagement of shared e-scooter users. Transp. Res. Part D Transp. Environ. 2021, 94, 102790. [Google Scholar] [CrossRef]
- Sanders, R.; Branion, M.; Nelson, T. To scoot or not to scoot: Findings from a recent survey about the benefits and barriers of using E-scooters for riders and non-riders. Transp. Res. Part A Policy Pract. 2020, 139, 217–227. [Google Scholar] [CrossRef]
- Wang, K.; Qian, X.; Fitch, D.T.; Lee, Y.; Malik, J.; Circella, G. What travel modes do shared e-scooters displace? A review of recent research findings. Transp. Rev. 2023, 43, 5–31. [Google Scholar] [CrossRef]
- Zuniga, N.; Tec, M.; Scott, J.; Machemehl, R. Evaluation of e-scooters as transit last-mile solution. Transp. Res. Part C Emerg. Technol. 2022, 139, 103660. [Google Scholar] [CrossRef]
- Castiglione, M.; Comi, A.; De Vincentis, R.; Dumitru, A.; Nigro, M. Delivering in Urban Areas: A Probabilistic-Behavioral Approach for Forecasting the Use of Electric Micromobility. Sustainability 2022, 14, 9075. [Google Scholar] [CrossRef]
- Lazo, L. That Scooter Ride is Going to Cost You a Lot More. The Washington Post. 2019. Available online: https://www.washingtonpost.com/transportation/2019/10/18/that-scooter-ride-is-going-cost-you-lot-more/ (accessed on 23 September 2023).
- Nikiforiadis, A.; Paschalidis, E.; Stamatiadis, N.; Paloka, N.; Tsekoura, E.; Basbas, S. E-scooters and other mode trip chaining: Preferences and attitudes of university students. Transp. Res. Part A Policy Pract. 2023, 170, 103636. [Google Scholar] [CrossRef]
- Aman, J.J.C.; Zakhem, M.; Smith-Colin, J. Towards Equity in Micromobility: Spatial Analysis of Access to Bikes and Scooters amongst Disadvantaged Populations. Sustainability 2021, 13, 11856. [Google Scholar] [CrossRef]
- Huo, J.; Yang, H.; Li, C.; Zheng, R.; Yang, L.; Wen, Y. Influence of the built environment on E-scooter sharing ridership: A tale of five cities. J. Transp. Geogr. 2021, 93, 103084. [Google Scholar] [CrossRef]
- Hawa, L.; Cui, B.; Sun, L.; El-Geneidy, A. Scoot over: Determinants of shared electric scooter presence in Washington D.C. Case Stud. Transp. Policy 2021, 9, 418–430. [Google Scholar] [CrossRef]
- Esztergár, D.; Tordai, D.; Lopez Lizarraga, J. Assessment of travel behavior related to e-scooters using a stated preference experiment. Transp. Res. Part A Policy Pract. 2022, 166, 389–405. [Google Scholar] [CrossRef]
- Lo, D.; Mintrom, C.; Robinson, K.; Thomas, R. Shared micromobility: The influence of regulation on travel mode choice. N. Z. Geogr. 2020, 76, 135–146. [Google Scholar] [CrossRef]
- Smith, C.S.; Schwieterman, J. E-Scooter Scenarios: Evaluating the Potential Mobility Benefits of Shared Dockless Scooters in Chicago. Chaddick Institute Policy Series. 2018. Available online: https://trid.trb.org/View/1577726 (accessed on 23 September 2023).
- Aman, J.; Smith, J.; Zhang, W. Listen to E-scooter riders: Mining rider satisfaction factors from app store reviews. Transp. Res. Part D Transp. Environ. 2021, 95, 102856. [Google Scholar] [CrossRef]
- de Bortoli, A.; Christoforou, Z. Consequential LCA for territorial and multimodal transportation policies: Method and application to the free-floating e-scooter disruption in Paris. J. Clean. Prod. 2020, 273, 122898. [Google Scholar] [CrossRef]
- Hollingsworth, J.; Copeland, B.; Johnson, J. Are e-scooters polluters? The environmental impacts of shared dockless electric scooters. Environ. Res. Lett. 2019, 14, 084031. [Google Scholar] [CrossRef]
- Gebhardt, L.; Wolf, C.; Seiffert, R. “I’ll Take the E-Scooter Instead of My Car”—The Potential of E-Scooters as a Substitute for Car Trips in Germany. Sustainability 2021, 13, 7361. [Google Scholar] [CrossRef]
- Gebhardt, L.; Ehrenberger, S.; Wolf, C.; Cyganski, R. Can shared E-scooters reduce CO2 emissions by substituting car trips in Germany? Transp. Res. Part D Transp. Environ. 2022, 109, 103328. [Google Scholar] [CrossRef]
- Baek, K.; Lee, H.; Chung, J.H.; Kim, J. Electric scooter sharing: How do people value it as a last-mile transportation mode? Transp. Res. Part D Transp. Environ. 2021, 90, 102642. [Google Scholar] [CrossRef]
- Oviedo, D.; Sabogal-Cardona, O. Arguments for cycling as a mechanism for sustainable modal shifts in Bogotá. J. Transp. Geogr. 2022, 99, 103291. [Google Scholar] [CrossRef]
- Zhao, C.; Nielsen, T.A.S.; Olafsson, A.S.; Carstensen, T.A.; Fertner, C. Cycling environmental perception in Beijing—A study of residents’ attitudes towards future cycling and car purchasing. Transp. Policy 2018, 66, 96–106. [Google Scholar] [CrossRef]
- Pucher, J.; Buehler, R. Cycling towards a more sustainable transport future. Transp. Rev. 2017, 37, 689–694. [Google Scholar] [CrossRef]
- Karanikola, P.; Panagopoulos, T.; Tampakis, S.; Tsantopoulos, G. Cycling as a Smart and Green Mode of Transport in Small Touristic Cities. Sustainability 2018, 10, 268. [Google Scholar] [CrossRef]
- Castañon, U.N.; Ribeiro, P.J.G. Bikeability and Emerging Phenomena in Cycling: Exploratory Analysis and Review. Sustainability 2021, 13, 2394. [Google Scholar] [CrossRef]
- Candio, P.; Frew, E. How much behaviour change is required for the investment in cycling infrastructure to be sustainable? A break-even analysis. PLoS ONE 2023, 18, e0284634. [Google Scholar] [CrossRef]
- Beck, B.; Perkins, M.; Olivier, J.; Chong, D.; Johnson, M. Subjective experiences of bicyclists being passed by motor vehicles: The relationship to motor vehicle passing distance. Accid. Anal. Prev. 2021, 155, 106102. [Google Scholar] [CrossRef] [PubMed]
- van Lierop, D.; Soemers, J.; Hoeke, L.; Liu, G.; Chen, Z.; Ettema, D.; Kruijf, J. Wayfinding for cycle highways: Assessing e-bike users’ experiences with wayfinding along a cycle highway in the Netherlands. J. Transp. Geogr. 2020, 88, 102827. [Google Scholar] [CrossRef]
- Sanders, R. Perceived traffic risk for cyclists: The impact of near miss and collision experiences. Accid. Anal. Prev. 2015, 75, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Wysling, L.; Purves, R.S. Where to improve cycling infrastructure? Assessing bicycle suitability and bikeability with open data in the city of Paris. Transp. Res. Interdiscip. Perspect. 2022, 15, 100648. [Google Scholar] [CrossRef]
- Liu, C.; Tapani, A.; Kristoffersson, I.; Rydergren, C.; Jonsson, D. Appraisal of cycling infrastructure investments using a transport model with focus on cycling. Case Stud. Transp. Policy 2021, 9, 125–136. [Google Scholar] [CrossRef]
- Fonseca, F.; Ribeiro, P.; Neiva, C. A Planning Practice Method to Assess the Potential for Cycling and to Design a Bicycle Network in a Starter Cycling City in Portugal. Sustainability 2023, 15, 4534. [Google Scholar] [CrossRef]
- Zuo, T.; Wei, H.; Chen, N.; Zhang, C. First-and-last mile solution via bicycling to improving transit accessibility and advancing transportation equity. Cities 2020, 99, 102614. [Google Scholar] [CrossRef]
- Fishman, E.; Allan, V. Bike share. In Advances in Transport Policy and Planning; Elsevier: Amsterdam, The Netherlands, 2019; pp. 121–152. [Google Scholar] [CrossRef]
- Conti, V.; Orchi, S.; Valentini, M.P.; Nigro, M.; Calò, R. Design and evaluation of electric solutions for public transport. Transp. Res. Procedia 2017, 27, 117–124. [Google Scholar] [CrossRef]
- Mutavdžija, M.; Kovačić, M.; Buntak, K. Assessment of Selected Factors Influencing the Purchase of Electric Vehicles—A Case Study of the Republic of Croatia. Energies 2022, 15, 5987. [Google Scholar] [CrossRef]
- Manzolli, J.; Trovão, J.; Antunes, C. A review of electric bus vehicles research topics—Methods and trends. Renew. Sustain. Energy Rev. 2022, 159, 112211. [Google Scholar] [CrossRef]
- Sunitiyoso, Y.; Belgiawan, P.F.; Rizki, M.; Hasyimi, V. Public acceptance and the environmental impact of electric bus services. Transp. Res. Part D Transp. Environ. 2022, 109, 103358. [Google Scholar] [CrossRef]
- Borén, S. Electric buses’ sustainability effects, noise, energy use, and costs. Int. J. Sustain. Transp. 2019, 14, 956–971. [Google Scholar] [CrossRef]
- Sánchez, J.T.; del Río, J.A.; Sánchez, A. Economic feasibility analysis for an electric public transportation system: Two cases of study in medium sized cities in Mexico. PLoS ONE 2022, 17, e0272363. [Google Scholar] [CrossRef] [PubMed]
- Doulgeris, S.; Zafeiriadis, A.; Athanasopoulos, N.; Tzivelou, N.; Michali, M.; Papagianni, S.; Samaras, Z. Evaluation of energy consumption and electric range of battery electric busses for application to public transportation. Transp. Eng. 2024, 15, 100223. [Google Scholar] [CrossRef]
- Cazuza, J.; Dias, T.; Nunes, M. Operational Performance Analysis of the Public Transport System over Time. Infrastructures 2023, 8, 82. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Z.; Stuart, A.; Li, X.; Zhang, Y. A systematic overview of transportation equity in terms of accessibility, traffic emissions, and safety outcomes: From conventional to emerging technologies. Transp. Res. Interdiscip. Perspect. 2020, 4, 100091. [Google Scholar] [CrossRef]
- Wang, N.; Pei, Y.; Wang, Y.J. Antecedents in Determining Users’ Acceptance of Electric Shuttle Bus Services. Mathematics 2022, 10, 2896. [Google Scholar] [CrossRef]
- Mouratidis, K.; Cobeña Serrano, V. Autonomous buses: Intentions to use, passenger experiences, and suggestions for improvement. Transp. Res. Part F Traffic Psychol. Behav. 2021, 76, 321–335. [Google Scholar] [CrossRef]
- Kwon, Y.; Kim, S.; Kim, H.; Byun, J. What Attributes Do Passengers Value in Electrified Buses? Energies 2020, 13, 2646. [Google Scholar] [CrossRef]
- Das, P.; Bhat, M.; Sajith, S. Life cycle assessment of electric vehicles: A systematic review of literature. Environ. Sci. Pollut. Res. 2023, 31, 73–89. [Google Scholar] [CrossRef]
- Vilaça, M.; Santos, G.; Oliveira, M.; Coelho, M.; Correia, G. Life cycle assessment of shared and private use of automated and electric vehicles on interurban mobility. Appl. Energy 2022, 310, 118589. [Google Scholar] [CrossRef]
- Alanazi, F. Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation. Appl. Sci. 2023, 13, 6016. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, F.; Geng, J.; Hao, H.; Liu, Z. Comprehensive assessment for different ranges of battery electric vehicles: Is it necessary to develop an ultra-long range battery electric vehicle? iScience 2023, 26, 106654. [Google Scholar] [CrossRef] [PubMed]
- Patt, A.; Aplyn, D.; Weyrich, P.; van Vliet, O. Availability of private charging infrastructure influences readiness to buy electric cars. Transp. Res. Part A Policy Pract. 2019, 125, 1–7. [Google Scholar] [CrossRef]
- Carlsson, F.; Johansson-Stenman, O. Costs and Benefits of Electric Vehicles: A 2010 Perspective. J. Transp. Econ. Policy 2010, 37, 1–28. [Google Scholar]
- Lavee, D.; Parsha, A. Cost-benefit analyses of policy tools to encourage the use of Plug-in electric vehicles. Transp. Res. Interdiscip. Perspect. 2021, 11, 100404. [Google Scholar] [CrossRef]
- Wappelhorst, S.; Hall, D.; Nicholas, M.; Lutsey, N. Analyzing Policies to Grow the Electric Vehicle Market in European Cities. International Council on Clean Transportation. 2020. Available online: https://theicct.org/sites/default/files/publications/EV_city_policies_white_paper_fv_20200224.pdf (accessed on 12 March 2024).
- Åhman, M. Government policy and the development of electric vehicles in Japan. Energy Policy 2006, 34, 433–443. [Google Scholar] [CrossRef]
- Massobrio, R.; Nesmachnow, S. Urban Mobility Data Analysis for Public Transportation Systems: A Case Study in Montevideo, Uruguay. Appl. Sci. 2020, 10, 5400. [Google Scholar] [CrossRef]
- Nesmachnow, S.; Iturriaga, S. Cluster-UY: Collaborative Scientific High Performance Computing in Uruguay. In Supercomputing; Torres, M., Klapp, J., Eds.; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2019; Volume 1151, pp. 188–202. [Google Scholar] [CrossRef]
- Llambí, C.; Piñeyro, L. Índice de Nivel Socioeconómico, 2012: CINVE. Available online: https://cinve.org.uy/wp-content/uploads/2012/12/Indice-de-nivel-socioecon%C3%B3mico.pdf (accessed on 15 February 2024).
- Perera, M.; Cazulo, P. Índice de Nivel Socioeconómico: Propuesta de Actualización, 2016: CINVE. Available online: https://portal.factum.uy/pdf/INSE_informe_2018.pdf (accessed on 15 February 2024).
- Perera, M. Índice de Nivel Socioeconómico. 2018. Available online: http://www.ceismu.org/site/indice-de-nivel-socioeconomico-inse-2018/ (accessed on 12 August 2023).
- El Observador. Bicicletas en Montevideo: “El Último Orejon Del Tarro” Que Gana Lugar Entre Contradicciones. Available online: https://www.elobservador.com.uy/nota/bicicletas-en-montevideo-el-ultimo-orejon-del-tarro-que-gana-lugar-entre-contradicciones-20227105107 (accessed on 16 March 2024).
- Observatorio de Movilidad, Intendencia de Montevideo. Indicador INEX0103. Longitud de Ciclovías, Bicisendas y Zona 30. 2019. Available online: https://montevideo.gub.uy/sites/default/files/biblioteca/longitudcicloviasbicisendasyzona30_0.pdf (accessed on 24 September 2023).
- Teschke, K.; Harris, M.; Reynolds, C.; Winters, M.; Babul, S.; Chipman, M.; Cusimano, M.; Brubacher, J.; Hunte, G.; Friedman, S.; et al. Route Infrastructure and the Risk of Injuries to Bicyclists: A Case-Crossover Study. Am. J. Public Health 2012, 102, 2336–2343. [Google Scholar] [CrossRef]
- Cicchino, J.; McCarthy, M.; Newgard, C.; Wall, S.; DiMaggio, C.; Kulie, P.; Arnold, B.; Zuby, D. Not all protected bike lanes are the same: Infrastructure and risk of cyclist collisions and falls leading to emergency department visits in three U.S. cities. Accid. Anal. Prev. 2020, 141, 105490. [Google Scholar] [CrossRef]
- El Observador. IMM Busca Retomar el Sistema de Bicicletas Publicas Que Dejo de Funcionar en 2019. 2021. Available online: https://www.elobservador.com.uy/nota/imm-busca-retomar-el-sistema-de-bicicletas-publicas-que-dejo-de-funcionar-en-2019-202192011340 (accessed on 24 September 2023).
- Calone, D. Montevideo, Una Ciudad Poco Amigable Con Los Ciclistas. Available online: https://efe.com/deportes/2023-03-25/montevideo-una-ciudad-poco-amigable-con-los-ciclistas/ (accessed on 3 March 2024).
- Nesmachnow, S.; Tchernykh, A. The Impact of the COVID-19 Pandemic on the Public Transportation System of Montevideo, Uruguay: A Urban Data Analysis Approach. Urban Sci. 2023, 7, 113. [Google Scholar] [CrossRef]
- Krawiec, K.; Markusik, S.; Sierpiński, G. (Eds.) Electric Mobility in Public Transport–Driving Towards Cleaner Air; Springer International: Cham, Germany, 2021. [Google Scholar] [CrossRef]
- Ardanche, M.; Bianco, M.; Cohanoff, C.; Contreras, S.; Goñi, M.; Simón, L.; Sutz, J. The power of wind: An analysis of a Uruguayan dialogue regarding an energy policy. Sci. Public Policy 2017, 45, 351–360. [Google Scholar] [CrossRef]
- Comisión Técnica del Subsidio a la Compra de Ómnibus Eléctricos. Operación de Ómnibus Eléctricos Adquiridos a Través del Subsidio a la Compra Definido en el Art. 349 de la Ley 19.670. 2021. Available online: https://www.gub.uy/ministerio-industria-energia-mineria/sites/ministerio-industria-energia-mineria/files/documentos/noticias/Primer%20Informe%20anual%20buses%20el%C3%A9ctricos_2110.pdf (accessed on 23 September 2023).
- Transporte Carretero. Informe Nueva Movilidad: U.C.O.T. 2021. Available online: https://www.transportecarretero.com.uy/noticias/energias-alternativas/informe/-nueva-movilidad-u-c-o-t-enrique-garabato-gerencia-de-talleres-aun-no-sustituyen/-al-omnibus-convencional-para-eso-se-necesitaria-un-30-mas-de-autonomia.html (accessed on 13 September 2023).
- Portal Movilidad. Espera al Gobierno Nacional: Montevideo Contaría con Fondo Para Buses Eléctricos a Mitad de 2023. 2022. Available online: https://portalmovilidad.com/espera-al-gobierno-nacional-montevideo-contaria-con-fondo-para-buses-electricos/-a-mitad-de-2023/ (accessed on 12 August 2023).
- Ámbito. El Parque de Buses. Available online: https://www.ambito.com/uruguay/el-parque-buses-electricos-aumento-al-35-n5681005 (accessed on 12 August 2023).
- Zochowska, R.; Klos, M.J.; Soczówka, P.; Pilch, M. Assessment of Accessibility of Public Transport by Using Temporal and Spatial Analysis. Sustainability 2022, 14, 16127. [Google Scholar] [CrossRef]
- Würtz, S.; Bogenberger, K.; Göhner, U.; Rupp, A. Towards Efficient Battery Electric Bus Operations: A Novel Energy Forecasting Framework. World Electr. Veh. J. 2024, 15, 27. [Google Scholar] [CrossRef]
- Sustainable Bus. Electric Bus Range, Focus on Electricity Consumption. A Sum-Up. 2022. Available online: https://www.sustainable-bus.com/news/electric-bus-range-electricity-consumption/ (accessed on 12 August 2023).
- Deloitte. Autos Eléctricos en Uruguay. Available online: https://www2.deloitte.com/uy/es/pages/manufacturing/articles/autos-electricos-industria-manufactura.html (accessed on 15 March 2024).
- MIEM. Parque Automotor. Available online: https://www.gub.uy/ministerio-industria-energia-mineria/datos-y-estadisticas/estadisticas/parque-automotor (accessed on 15 March 2024).
- ACAU. Sales Statistics of the Automotive Market. 2023. Available online: https://www.acau.com.uy/ (accessed on 1 March 2024).
- EVs to Surpass Two-Thirds of Global Car Sales by 2030, Putting at Risk Nearly Half of Oil Demand, New Research Finds. Available online: https://rmi.org/press-release/evs-to-surpass-two-thirds-of-global-car-sales-by-2030-putting-at-risk-nearly-half-of-oil-demand-new-research-finds/ (accessed on 1 March 2024).
- El Día. Circularán 100.000-Autos Electricos en 2030. Available online: https://eldia.uy/circularan-100-000-autos-electricos-en-2030/ (accessed on 12 March 2024).
- International Energy Agency. Global EV Outlook 2023. 2023. Available online: https://www.iea.org/reports/global-ev-outlook-2023 (accessed on 8 March 2024).
- Ámbito. Se Dispararon un 80.92% las Ventas de Vehículos Eléctricos en 2023. Available online: https://www.ambito.com/uruguay/se-dispararon-un-8092-las-ventas-vehiculos-electricos-2023-n5932476 (accessed on 15 March 2024).
- Ámbito. Uruguay Lidera Las Ventas de Autos Eléctricos-en America Latina. 2023. Available online: https://www.ambito.com/uruguay/lidera-las-ventas-autos-electricos-america-latina-n5934595 (accessed on 15 March 2024).
- Di Chiara, L.; Ferres, F.; Bastarrica, F. Impact of electromobility deployment scenarios in the power system of Uruguay by 2028. In Proceedings of the 2021 IEEE URUCON, Montevideo, Uruguay, 24–26 November 2021. [Google Scholar] [CrossRef]
- Proyecto MOVES. ¿Cómo Calculamos el CO2 Evitado Gracias al Uso de Vehículos Eléctricos? 2023. Available online: https://moves.gub.uy/faq-items/como-calculamos-el-co2-evitado-gracias-al-uso-de-vehiculos-electricos (accessed on 12 March 2024).
- MIEM. National Energy Balance. CO2 Emission Factor. 2023. Available online: https://ben.miem.gub.uy/indicadores5.php (accessed on 12 March 2024).
- IMM. Movility Observatory of Montevideo. Emissions of Pollutants by Type of Motorized Vehicle. Indicator INEX0401. 2023. Available online: https://montevideo.gub.uy/sites/default/files/biblioteca/emisionesdecontaminantesportipodevehiculomotorizadoo_1.pdf (accessed on 12 March 2024).
- IMM. Movility Observatory of Montevideo. Emissions of Pollutants by Type of Motorized Vehicle. Indicator INEX0402. 2023. Available online: https://montevideo.gub.uy/sites/default/files/biblioteca/consumodeenergiaportipodevehiculoycombustible.pdf (accessed on 12 March 2024).
- Mauttone, A.; Hernández, D. Encuesta de Movilidad Del área Metropolitana de Montevideo. Principales Resultados e Indicadores. 2017. Available online: http://scioteca.caf.com/handle/123456789/1078 (accessed on 20 August 2019).
- Tanco, M.; Cavallieri, M.; Levy, M.; Rossi, S.; Jurburg, D. Impact of electric trucks in GHG inventory—A Uruguayan scenario study. Transp. Res. Part D Transp. Environ. 2023, 117, 103614. [Google Scholar] [CrossRef]
- UTE. Vehículos Eléctricos. Available online: https://movilidad.ute.com.uy/vehiculos.html (accessed on 1 March 2024).
- Bustillo, M.; Calvello, F.; Pérez, J. Estudio de Reutilización de Baterías de Vehículos Eléctricos. Engineering Faculty, Universidad de la República. 2023. Available online: https://hdl.handle.net/20.500.12008/3301 (accessed on 15 March 2024).
- Mobility Portal Latinoamérica. Segunda Vida de Baterías de Vehículos Eléctricos: Ambiente Solicita Mayor Presupuesto Para Avanzar. 2023. Available online: https://mobilityportal.lat/segunda-vida-de-baterias-de-vehiculos-electricos-ambiente-solicita-mayor-presupuesto-para-avanzar (accessed on 12 March 2024).
- Madina, C.; Zamora, I.; Zabala, E. Methodology for assessing electric vehicle charging infrastructure business models. Energy Policy 2016, 89, 284–293. [Google Scholar] [CrossRef]
- United Kingdom Department For Transport. Annual Report and Accounts 2016/2017. 2017. Available online: https://www.gov.uk/government/publications/annual-report-and-accounts-2016-17 (accessed on 15 February 2024).
- Kumar, R.; Chakraborty, A.; Mandal, P. Promoting electric vehicle adoption: Who should invest in charging infrastructure? Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102295. [Google Scholar] [CrossRef]
- Uruguay Presidencia. UTE Invertirá Más de 5 Millones de Dólares en Nuevos Puntos de Carga Para Vehículos Eléctricos. 2023. Available online: https://www.gub.uy/presidencia/comunicacion/noticias/ute-invertira-5-millones-dolares-nuevos-puntos-carga-para-vehiculos (accessed on 15 March 2024).
- Risso, C.; Vignolo, M.; Carriquiry, J.; Arismendi, F. An evaluation of the actual electric vehicles charging infrastructure in Uruguay and possible designing approaches. In Proceedings of the 2020 IEEE PES Transmission & Distribution Conference and Exhibition—Latin America (T&D LA), Montevideo, Uruguay, 28 September–2 October 2020. [Google Scholar] [CrossRef]
- Autoblog. Precios Vigentes de Automóviles, SUVs, Utilitarios Livianos y Minibuses 0 km. 2024. Available online: https://www.autoblog.com.uy/p/precios-0km.html (accessed on 15 March 2024).
- MIEM. Autos Eléctricos Son Más Rentables en Usos Profesionales Como el Taxi. 2023. Available online: https://www.eficienciaenergetica.gub.uy/ (accessed on 12 March 2024).
- El Observador. Cuánto Cuesta Tener un Auto Electrico un Experto lo Responde. 2023. Available online: https://www.elobservador.com.uy/nota/cuanto-cuesta-tener-un-auto-electrico-un-experto-lo-responde-202310235034 (accessed on 15 March 2024).
- Proyecto MOVES. Normativa de Etiquetado Vehicular. 2023. Available online: https://moves.gub.uy/iniciativa/normativa-de-etiquetado-vehicular/ (accessed on 12 March 2024).
- MIEM. Subite Prueba: Beneficio Para Empresas e Instituciones Públicas o Privadas que Alquilen Vehículos Eléctricos. 2023. Available online: https://www.gub.uy/ministerio-industria-energia-mineria/comunicacion/convocatorias/subite-prueba-beneficio-para-empresas-instituciones-publicas-privadas (accessed on 12 March 2024).
Infrastructure Type | Existing (km) | New 2020–2023 (km) | Percentage | Over Total |
---|---|---|---|---|
bicycle lane | 12.5 | 8.7 | 69.6% | 0.32% |
bicycle path | 42.2 | 16.9 | 40.0% | 0.98% |
30 km/h street | 16.6 | 1.5 | 9.0% | 0.44% |
total | 71.3 | 25.8 | 32.6% | 1.79% |
Year | Electric Vehicles | |||
---|---|---|---|---|
Total | Increase | New | Increase | |
2019 | 140 | - | 160 | - |
2020 | 250 | 78.6% | 300 | 87.5% |
2021 | ∼600 | 240.0% | 697 | 132.3% |
2022 | ∼2000 | 333.0% | 1044 | 49.8% |
2023 | +4000 | >100.0% | 1887 | 80.7% |
Factor | Initiative | |||
---|---|---|---|---|
E-Scooter | Bicycle | Electric Bus | Electric Vehicle | |
spatial distribution | ✗ | ✓ | ✗ | ✓ |
safety | ✗ | ✗ | ✗ | ➚ |
cost-effectiveness | ✗ | ✓ | ✓ | ➘ |
environmental impact | ➘ | ✓ | ✓ | ✓ |
infrastructure | ✗ | ✗ | ➘ | ✓ |
comfort | ✗ | ➘ | ✓ | ✓ |
accessibility | ✗ | ✓ | ✗ | ✗ |
integration | ✗ | ✗ | ✗ | ✗ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesmachnow, S.; Hipogrosso, S. Assessment of Sustainable Mobility Initiatives Developed in Montevideo, Uruguay. Urban Sci. 2024, 8, 52. https://doi.org/10.3390/urbansci8020052
Nesmachnow S, Hipogrosso S. Assessment of Sustainable Mobility Initiatives Developed in Montevideo, Uruguay. Urban Science. 2024; 8(2):52. https://doi.org/10.3390/urbansci8020052
Chicago/Turabian StyleNesmachnow, Sergio, and Silvina Hipogrosso. 2024. "Assessment of Sustainable Mobility Initiatives Developed in Montevideo, Uruguay" Urban Science 8, no. 2: 52. https://doi.org/10.3390/urbansci8020052
APA StyleNesmachnow, S., & Hipogrosso, S. (2024). Assessment of Sustainable Mobility Initiatives Developed in Montevideo, Uruguay. Urban Science, 8(2), 52. https://doi.org/10.3390/urbansci8020052