New Year Fireworks Influence on Air Quality in Case of Stagnant Foggy Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Measurement Periods
2.2. Instrumentation, Data Sources, and Models
3. Results and Discussion
3.1. Meteorological Conditions
3.2. Variation of Air Quality and PM Composition
3.3. Changes in PM1 Chemical Composition
3.4. BC Source Apportionment in Indoor/Outdoor Air
3.5. OA Source Apportionment in Indoor/Outdoor Air
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Pant, P.; Pope, F.D. Air Quality during and after Festivals: Aerosol Concentrations, Composition and Health Effects. Atmos. Res. 2019, 227, 220–232. [Google Scholar] [CrossRef]
- Rose Lorenzo, G.; Angela Bañaga, P.; Obiminda Cambaliza, M.; Templonuevo Cruz, M.; Azadiaghdam, M.; Arellano, A.; Betito, G.; Braun, R.; Corral, A.F.; Dadashazar, H.; et al. Measurement Report: Firework Impacts on Air Quality in Metro Manila, Philippines, during the 2019 New Year Revelry. Atmos. Chem. Phys. 2021, 21, 6155–6173. [Google Scholar] [CrossRef]
- Rindelaub, J.D.; Davy, P.K.; Talbot, N.; Pattinson, W.; Miskelly, G.M. The Contribution of Commercial Fireworks to Both Local and Personal Air Quality in Auckland, New Zealand. Environ. Sci. Pollut. Res. Int. 2021, 28, 21650–21660. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016.
- Bach, W.; Daniels, A.; Dickinson, L.E.; Hertlein, F.; Morrows, J.; Margolis, S.V.; Dinh, V.D. Fireworks Pollution and Health. Int. J. Environ. Stud. 1975, 7, 183–192. [Google Scholar] [CrossRef]
- Achilleos, S.; Kioumourtzoglou, M.A.; Wu, C.D.; Schwartz, J.D.; Koutrakis, P.; Papatheodorou, S.I. Acute Effects of Fine Particulate Matter Constituents on Mortality: A Systematic Review and Meta-Regression Analysis. Environ. Int. 2017, 109, 89–100. [Google Scholar] [CrossRef]
- Hoyos, C.D.; Herrera-Mejía, L.; Roldán-Henao, N.; Isaza, A. Effects of Fireworks on Particulate Matter Concentration in a Narrow Valley: The Case of the Medellín Metropolitan Area. Environ. Monit. Assess. 2020, 192, 6. [Google Scholar] [CrossRef]
- Yao, L.; Wang, D.; Fu, Q.; Qiao, L.; Wang, H.; Li, L.; Sun, W.; Li, Q.; Wang, L.; Yang, X.; et al. The Effects of Firework Regulation on Air Quality and Public Health during the Chinese Spring Festival from 2013 to 2017 in a Chinese Megacity. Environ. Int. 2019, 126, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, L.; Liu, W.; Song, H. Fireworks Regulation, Air Pollution, and Public Health: Evidence from China. Reg. Sci. Urban. Econ. 2022, 92, 103722. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Benney, T.M.; Boll, S. Long-Term Analysis of the Relationships between Indoor and Outdoor Fine Particulate Pollution: A Case Study Using Research Grade Sensors. Sci. Total Environ. 2021, 776, 145778. [Google Scholar] [CrossRef]
- Settimo, G.; D’Alessandro, D. European Community Guidelines and Standards in Indoor Air Quality: What Proposals for Italy. Epidemiol. Prev. 2014, 38 (Suppl. 2), 36–41. [Google Scholar]
- World Health Organization. Household Air Pollution and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 27 December 2023).
- Moreno, T.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Pandolfi, M.; Kuenzli, N.; Bouso, L.; Rivera, M.; Gibbons, W. Effect of Fireworks Events on Urban Background Trace Metal Aerosol Concentrations: Is the Cocktail Worth the Show? J. Hazard. Mater. 2010, 183, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of Urban Fine Particulate Matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef] [PubMed]
- Barman, S.C.; Singh, R.; Negi, M.P.S.; Bhargava, S.K. Ambient Air Quality of Lucknow City (India) during Use of Fireworks on Diwali Festival. Environ. Monit. Assess. 2008, 137, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Boies, A.; Swanson, J.; Kittelson, D. Measuring the Effect of Fireworks on Air Quality in Minneapolis, Minnesota. SN Appl. Sci. 2022, 4, 142. [Google Scholar] [CrossRef]
- Lin, C.C. A Review of the Impact of Fireworks on Particulate Matter in Ambient Air. J. Air Waste Manag. Assoc. 2016, 66, 1171–1182. [Google Scholar] [CrossRef]
- Seidel, D.J.; Birnbaum, A.N. Effects of Independence Day Fireworks on Atmospheric Concentrations Offine Particulate Matter in the United States. Atmos. Environ. 2015, 115, 192–198. [Google Scholar] [CrossRef]
- Joshi, M.; Nakhwa, A.; Khandare, P.; Khan, A.; Mariam; Sapra, B.K. Simultaneous Measurements of Mass, Chemical Compositional and Number Characteristics of Aerosol Particles Emitted during Fireworks. Atmos. Environ. 2019, 217, 116925. [Google Scholar] [CrossRef]
- Moreno, T.; Querol, X.; Alastuey, A.; Cruz Minguillón, M.; Pey, J.; Rodriguez, S.; Vicente Miró, J.; Felis, C.; Gibbons, W. Recreational Atmospheric Pollution Episodes: Inhalable Metalliferous Particles from Firework Displays. Atmos. Environ. 2007, 41, 913–922. [Google Scholar] [CrossRef]
- Sarkar, S.; Khillare, P.S.; Jyethi, D.S.; Hasan, A.; Parween, M. Chemical Speciation of Respirable Suspended Particulate Matter during a Major Firework Festival in India. J. Hazard. Mater. 2010, 184, 321–330. [Google Scholar] [CrossRef]
- Pathak, B.; Biswas, J.; Bharali, C.; Bhuyan, P.K. Short Term Introduction of Pollutants into the Atmosphere at a Location in the Brahmaputra Basin: A Case Study. Atmos. Pollut. Res. 2015, 6, 220–229. [Google Scholar] [CrossRef]
- Joly, A.; Smargiassi, A.; Kosatsky, T.; Fournier, M.; Dabek-Zlotorzynska, E.; Celo, V.; Mathieu, D.; Servranckx, R.; D’amours, R.; Malo, A.; et al. Characterisation of Particulate Exposure during Fireworks Displays. Atmos. Environ. 2010, 44, 4325–4329. [Google Scholar] [CrossRef]
- Wehner, B.; Wiedensohler, A.; Heintzenberg, J. Submicrometer Aerosol Size Distributions and Mass Concentration of the Millennium Fireworks 2000 in Leipzig, Germany. J. Aerosol Sci. 2000, 31, 1489–1493. [Google Scholar] [CrossRef]
- Joshi, M.; Khan, A.; Anand, S.; Sapra, B.K. Size Evolution of Ultrafine Particles: Differential Signatures of Normal and Episodic Events. Environ. Pollut. 2016, 208, 354–360. [Google Scholar] [CrossRef]
- Hussein, T.; Dal Maso, M.; Petaejae, T.; Paatero, P.; Aalto, P.P.; Haemeri, K.; Kulmala, M.; Koponen, I.K. Evaluation of an Automatic Algorithm for Fitting the Particle Number Size Distributions. Boreal. Environ. Res. 2005, 10, 337. [Google Scholar]
- Singh, D.P.; Gadi, R.; Mandal, T.K.; Dixit, C.K.; Singh, K.; Saud, T.; Singh, N.; Gupta, P.K. Study of Temporal Variation in Ambient Air Quality during Diwali Festival in India. Environ. Monit. Assess. 2010, 169, 1–13. [Google Scholar] [CrossRef]
- Lai, Y.; Brimblecombe, P. Changes in Air Pollution and Attitude to Fireworks in Beijing. Atmos. Environ. 2020, 231, 117549. [Google Scholar] [CrossRef]
- Pang, N.; Gao, J.; Zhao, P.; Wang, Y.; Xu, Z.; Chai, F. The Impact of Fireworks Control on Air Quality in Four Northern Chinese Cities during the Spring Festival. Atmos. Environ. 2021, 244, 117958. [Google Scholar] [CrossRef]
- Zhang, Y.; Favez, O.; Petit, J.-E.; Canonaco, F.; Truong, F.; Bonnaire, N.; Crenn, V.; Amodeo, T.; Prévôt, A.S.H.; Sciare, J.; et al. Six-Year Source Apportionment of Submicron Organic Aerosols from near-Continuous Highly Time-Resolved Measurements at SIRTA (Paris Area, France). Atmos. Chem. Phys. 2019, 19, 14755–14776. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Beddows, D.C.S.; McGillicuddy, E.J.; Esser-Gietl, J.K.; Harrison, R.M.; Wenger, J.C. On the Simultaneous Deployment of Two Single-Particle Mass Spectrometers at an Urban Background and a Roadside Site during SAPUSS. Atmos. Chem. Phys. 2016, 16, 9693–9710. [Google Scholar] [CrossRef]
- Moffet, R.C.; de Foy, B.; Molina, L.T.; Molina, M.J.; Prather, K.A. Measurement of Ambient Aerosols in Northern Mexico City by Single Particle Mass Spectrometry. Atmos. Chem. Phys. 2007, 8, 4499–4516. [Google Scholar] [CrossRef]
- Xu, J.; Tian, Y.; Cheng, C.; Wang, C.; Lin, Q.; Li, M.; Wang, X.; Shi, G. Characteristics and Source Apportionment of Ambient Single Particles in Tianjin, China: The Close Association between Oxalic Acid and Biomass Burning. Atmos. Res. 2020, 237, 104843. [Google Scholar] [CrossRef]
- Vecchi, R.; Bernardoni, V.; Cricchio, D.; D’Alessandro, A.; Fermo, P.; Lucarelli, F.; Nava, S.; Piazzalunga, A.; Valli, G. The Impact of Fireworks on Airborne Particles. Atmos. Environ. 2008, 42, 1121–1132. [Google Scholar] [CrossRef]
- Tsai, H.-H.; Chien, L.-H.; Yuan, C.; Lin, Y.-C.; Jen, Y.-H.; Ie, I.-R. Influences of Fireworks on Chemical Characteristics of Atmospheric Fine and Coarse Particles during Taiwan’s Lantern Festival. Atmos. Environ. 2012, 62, 256–264. [Google Scholar] [CrossRef]
- Center for Physical Sciences and Technology (FTMC). Available online: https://www.ftmc.lt/en/ (accessed on 1 July 2021).
- DIN EN ISO 16890. Available online: https://airfiltration.mann-hummel.com/en/insights/filtration/filter-classification/din-en-iso-16890.html (accessed on 27 December 2023).
- Sandradewi, J.; Prévôt, A.S.H.; Weingartner, E.; Schmidhauser, R.; Gysel, M.; Baltensperger, U. A Study of Wood Burning and Traffic Aerosols in an Alpine Valley Using a Multi-Wavelength Aethalometer. Atmos. Environ. 2008, 42, 101–112. [Google Scholar] [CrossRef]
- Minderytė, A.; Pauraite, J.; Dudoitis, V.; Plauškaitė, K.; Kilikevičius, A.; Matijošius, J.; Rimkus, A.; Kilikevičienė, K.; Vainorius, D.; Byčenkienė, S. Carbonaceous Aerosol Source Apportionment and Assessment of Transport-Related Pollution. Atmos. Environ. 2022, 279, 119043. [Google Scholar] [CrossRef]
- Xu, J.; Shi, J.; Zhang, Q.; Ge, X.; Canonaco, F.; Prévôt, A.S.H.; Vonwiller, M.; Szidat, S.; Ge, J.; Ma, J.; et al. Wintertime Organic and Inorganic Aerosols in Lanzhou, China: Sources, Processes, and Comparison with the Results during Summer. Atmos. Chem. Phys. 2016, 16, 14937–14957. [Google Scholar] [CrossRef]
- Garbarienė, I.; Pauraitė, J.; Pashneva, D.; Minderytė, A.; Sarka, K.; Dudoitis, V.; Davulienė, L.; Gaspariūnas, M.; Kovalevskij, V.; Lingis, D.; et al. Indoor-Outdoor Relationship of Submicron Particulate Matter in Mechanically Ventilated Building: Chemical Composition, Sources and Infiltration Factor. Build. Environ. 2022, 222, 109429. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-Time Environmental Applications and Display SYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Heffter, J.L.; Secretary, M.B.; Byrne, J.V.; Ludwig Director, G.H. Branching Atmospheric Trajectory (Bat) Model; NOAA Technical Memorandum ERL ARL-121; United States Department of Commerce: Washington, DC, USA, 1983. [Google Scholar]
- Ji, D.; Wang, Y.; Wang, L.; Chen, L.; Hu, B.; Tang, G.; Xin, J.; Song, T.; Wen, T.; Sun, Y.; et al. Analysis of Heavy Pollution Episodes in Selected Cities of Northern China. Atmos. Environ. 2012, 50, 338–348. [Google Scholar] [CrossRef]
- Olofson, K.F.G.; Andersson, P.U.; Hallquist, M.; Ljungström, E.; Tang, L.; Chen, D.; Pettersson, J.B.C. Urban Aerosol Evolution and Particle Formation during Wintertime Temperature Inversions. Atmos. Environ. 2009, 43, 340–346. [Google Scholar] [CrossRef]
- Safai, P.D.; Ghude, S.; Pithani, P.; Varpe, S.; Kulkarni, R.; Todekar, K.; Tiwari, S.; Chate, D.M.; Prabhakaran, T.; Jenamani, R.K.; et al. Two-Way Relationship between Aerosols and Fog: A Case Study at IGI Airport, New Delhi. Aerosol Air Qual. Res. 2019, 19, 71–79. [Google Scholar] [CrossRef]
- Phung Ngoc, B.A.; Delbarre, H.; Deboudt, K.; Dieudonné, E.; Nguyen Tran, D.; Le Thanh, S.; Pelon, J.; Ravetta, F. Key Factors Explaining Severe Air Pollution Episodes in Hanoi during 2019 Winter Season. Atmos. Pollut. Res. 2021, 12, 101068. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics. From Air Pollution to Climate Change, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Quan, J.; Gao, Y.; Zhang, Q.; Tie, X.; Cao, J.; Han, S.; Meng, J.; Chen, P.; Zhao, D. Evolution of Planetary Boundary Layer under Different Weather Conditions, and Its Impact on Aerosol Concentrations. Particuology 2013, 11, 34–40. [Google Scholar] [CrossRef]
- Pirker, L.; Velkavrh, Ž.; Osīte, A.; Drinovec, L.; Močnik, G.; Remškar, M. Fireworks—A Source of Nanoparticles, PM2.5, PM10, and Carbonaceous Aerosols. Air Qual. Atmos. Health 2022, 15, 1275–1286. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- Khedr, M.; Liu, X.; Hadiatullah, H.; Orasche, J.; Zhang, X.; Cyrys, J.; Michalke, B.; Zimmermann, R.; Schnelle-Kreis, J. Influence of New Year’s Fireworks on Air Quality—A Case Study from 2010 to 2021 in Augsburg, Germany. Atmos. Pollut. Res. 2022, 13, 101341. [Google Scholar] [CrossRef]
- Zhang, J.; Lance, S.; Freedman, J.M.; Sun, Y.; Crandall, B.A.; Wei, X.; Schwab, J.J. Detailed Measurements of Submicron Particles from an Independence Day Fireworks Event in Albany, New York Using HR-ToF-AMS. ACS Earth Space Chem. 2019, 3, 1451–1459. [Google Scholar] [CrossRef]
- Retama, A.; Neria-Hernández, A.; Jaimes-Palomera, M.; Rivera-Hernández, O.; Sánchez-Rodríguez, M.; López-Medina, A.; Velasco, E. Fireworks: A Major Source of Inorganic and Organic Aerosols during Christmas and New Year in Mexico City. Atmos. Environ. X 2019, 2, 100013. [Google Scholar] [CrossRef]
- Paglione, M.; Gilardoni, S.; Rinaldi, M.; Decesari, S.; Zanca, N.; Sandrini, S.; Giulianelli, L.; Bacco, D.; Ferrari, S.; Poluzzi, V.; et al. The impact of biomass burning and aqueous-phase processing on air quality: A multi-year source apportionment study in the Po Valley, Italy. Atmos. Chem. Phys. 2020, 20, 1233–1254. [Google Scholar] [CrossRef]
- Paatero, P. A weighted non-negative least squares algorithm for three-way “PARAFAC” factor analysis. Chemom. Intell. Lab. Syst. 1997, 38, 223–242. [Google Scholar] [CrossRef]
- Canonaco, F.; Crippa, M.; Slowik, J.G.; Baltensperger, U.; Prévôt, A.S.H. SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmos. Meas. Tech. 2013, 6, 3649–3661. [Google Scholar] [CrossRef]
- Cubison, M.J.; Ortega, A.M.; Hayes, P.L.; Farmer, D.K.; Day, D.; Lechner, M.J.; Brune, W.H.; Apel, E.; Diskin, G.S.; Fisher, J.A.; et al. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmos. Chem. Phys. 2011, 11, 12049–12064. [Google Scholar] [CrossRef]
- Kostenidou, E.; Lee, B.-H.; Engelhart, G.J.; Pierce, J.R.; Pandis, S.N. Mass Spectra Deconvolution of Low, Medium, and High Volatility Biogenic Secondary Organic Aerosol. Environ. Sci. Technol. 2009, 43, 4884–4889. [Google Scholar] [CrossRef] [PubMed]
Control Period without New Year’s Eve (9 p.m.–6 a.m.) | New Year’s Eve (9 p.m.–6 a.m.) | Factor, NYmax/P75 | ||||||
---|---|---|---|---|---|---|---|---|
FTMC site | Median | P75 | P99 | Max | 11:30 p.m. | 12:30 a.m. | Max | |
Org | 4.1 | 6.3 | 12 | 12 | 71 | 60 | 71 | 11.27 |
SO42− | 3.2 | 4.0 | 7.8 | 8.5 | 9.5 | 20 | 20 | 5.0 |
NO3− | 1.7 | 2.6 | 7.5 | 8.2 | 5.0 | 5.0 | 5.0 | 1.92 |
NH4+ | 0.96 | 1.5 | 3.2 | 3.4 | 1.9 | 1.4 | 1.9 | 1.27 |
Cl− | 0.05 | 0.10 | 0.44 | 0.46 | 1.3 | 3.2 | 3.2 | 32.0 |
BC | 0.52 | 0.80 | 1.44 | 2.74 | 13.8 | 8.9 | 13.8 | 17.25 |
PM1 | 13.0 | 21.5 | 28.7 | 50.4 | 103 | 98.5 | 103 | 4.79 |
EPA sites | ||||||||
PM2.5 (Žirmūnai) | 11.0 | 15.0 | 25.0 | 30.8 | 47.6 | 74 | * 112 | 7.47 |
PM10 (Žirmūnai) | 11.8 | 15.9 | 26.0 | 33.8 | 49.5 | 74 | * 125 | 7.86 |
PM10 (Old Town) | 15.9 | 20.7 | 38.9 | 41.6 | 98.5 | 133 | * 191 | 9.23 |
PM10 (Savanorių ave.) | 12.0 | 17.3 | 30.0 | 30.8 | 77.9 | 71 | * 110 | 6.36 |
PM10 (Lazdynai) | 16.9 | 21.3 | 31.8 | 33.4 | 65.4 | 54 | * 167 | 7.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinauskaitė, A.; Davulienė, L.; Pauraite, J.; Minderytė, A.; Byčenkienė, S. New Year Fireworks Influence on Air Quality in Case of Stagnant Foggy Conditions. Urban Sci. 2024, 8, 54. https://doi.org/10.3390/urbansci8020054
Kalinauskaitė A, Davulienė L, Pauraite J, Minderytė A, Byčenkienė S. New Year Fireworks Influence on Air Quality in Case of Stagnant Foggy Conditions. Urban Science. 2024; 8(2):54. https://doi.org/10.3390/urbansci8020054
Chicago/Turabian StyleKalinauskaitė, Audrė, Lina Davulienė, Julija Pauraite, Agnė Minderytė, and Steigvilė Byčenkienė. 2024. "New Year Fireworks Influence on Air Quality in Case of Stagnant Foggy Conditions" Urban Science 8, no. 2: 54. https://doi.org/10.3390/urbansci8020054
APA StyleKalinauskaitė, A., Davulienė, L., Pauraite, J., Minderytė, A., & Byčenkienė, S. (2024). New Year Fireworks Influence on Air Quality in Case of Stagnant Foggy Conditions. Urban Science, 8(2), 54. https://doi.org/10.3390/urbansci8020054