Monitoring of Metal(loid)s Using Brachiaria decumbens Stapf Leaves along a Highway Located Close to an Urban Region: Health Risks for Tollbooth Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Schematic Drawing of the Study
2.2. Sample Collection and Preparation
2.3. Soil Digestion
2.4. Plant Digestion
2.5. Elemental Measurement by Using ICP-OES
2.6. Transfer Factor
2.7. Risk Assessment Model
2.8. Hazard Quotient (HQ) and Hazard Index (HI)
- -
- -
- Innalatory reference dose (RfDinh): Al 5.0 × 10−3 mg/kg∙day, As 1.5 × 10−5 mg/kg∙day, Cd 1.0 × 10−5 mg/kg∙day, Co 6.0 × 10−6 mg/kg∙day [29], Cr 2.86 × 10−5 mg/kg∙day [31], Cu 4.0 × 10−2 mg/kg∙day [32], Fe not yet established, Ni 2.0 × 10−5 mg/kg∙day [29], Zn 3.0 × 10−1 mg/kg∙day [32], and Pb 2.0 × 10−4 mg/kg∙day [33].
- -
2.9. Carcinogenic Analysis
2.10. Statistical Analysis
3. Results
3.1. Concentration of Meta(loids) in Soil
3.2. Concentration of Meta(loids) in Unwashed (UWL) and Washed (WL) Leaves of B. decumbens
3.3. Transfer Factor
3.4. Risk Assessment Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef]
- Bradl, H.B. Sources and origins of heavy metals. In Heavy Metals in the Environment: Origin, Interaction and Remediation; Bradl, H.B., Ed.; Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2005; Volume 6, pp. 1–27. [Google Scholar]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos. Environ. 2011, 45, 2310–2330. [Google Scholar] [CrossRef]
- Dziubak, T.; Dziubak, S.D. A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation. Energies 2022, 15, 1182. [Google Scholar] [CrossRef]
- Jeong, H.; Ra, K. Investigations of metal pollution in road dust of steel industrial area and application of magnetic separation. Sustainability 2022, 14, 919. [Google Scholar] [CrossRef]
- Eteh, D.; Francis, E.; Ajoko, I. GIS and remote sensing technology in evaluation of geostatistical heavy metals soil for environmental quality in yenagoa metropolis, bayelsa state Nigeria. J. Appl. Sci. Environ. Stud. 2021, 4, 2286–2307. [Google Scholar] [CrossRef]
- Kumar, D.; Khan, E.A. Remediation and detection techniques for heavy metals in the environment. In Heavy Metals in the Environment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 205–222. [Google Scholar] [CrossRef]
- Weber, C.J.; Santowski, A.; Chifflard, P. Spatial variability in heavy metal concentration in urban pavement joints—A case study. Soil 2021, 7, 15–31. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, northeast of China. Sci. Total. Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Clougherty, J.E.; Humphrey, J.L.; Kinnee, E.J.; Robinson, L.F.; McClure, L.A.; Kubzansky, L.D.; Reid, C.E. Social susceptibility to multiple air pollutants in cardiovascular disease. Res. Rep. Health. Eff. Inst. 2021, 206, 1–71. [Google Scholar]
- Strauss, P.; Orris, P.; Buckley, L. A health survey of toll booth workers. Am. J. Ind. Med. 1992, 22, 379–384. [Google Scholar] [CrossRef]
- Hursidić-Radulović, A.; Cvitković, J. Izlozenost olovu u radnika na naplatnim stanicama autoceste [Lead exposure in highway toll-booth workers]. Arh. Hig. Rada Toksikol. 2003, 54, 133–140. [Google Scholar]
- Aksoy, A.; Hale, W.H.G.; Dixon, J.M. Capsella bursa-pastoris (L.) Medic. as a biomonitor of heavy metals. Sci. Total Environ. 1999, 226, 177–186. [Google Scholar] [CrossRef]
- Cetin, M.; Sevik, H.; Cobanoglu, O. Ca, Cu, and Li in washed and unwashed specimens of needles, bark, and branches of the blue spruce (Picea pungens) in the city of Ankara. Environ. Sci. Pollut. Res. Int. 2020, 27, 21816–21825. [Google Scholar] [CrossRef] [PubMed]
- Wyttenbach, A.; Bajo, S.; Tobler, L.; Keller, T. Major and trace element concentrations in needles of Picea abies: Levels, distribution functions, correlations and environmental influences. Plant Soil 1985, 85, 313–325. [Google Scholar] [CrossRef]
- Çetin, M.; Çobanoğlu, O. The Possibilities of Using Blue Spruce (Picea pungens Engelm) as a Biomonitor by Measuring the Recent Accumulation of Mn in Its Leaves. KUJES 2019, 5, 43–50. Available online: https://dergipark.org.tr/en/pub/kastamonujes/issue/46397/563395 (accessed on 20 August 2024).
- Ferreira, D.A.P.; Gaião, L.M.; Kozovits, A.R.; Messias, M.C. Evaluation of metal accumulation in the forage grass Brachiaria decumbens Stapf grown in contaminated soils with iron tailings. Integr. Environ. Assess. Manag. 2022, 18, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Miclean, M.; Cadar, O.; Levei, E.A.; Roman, R.; Ozunu, A.; Levei, L. Metal (Pb, Cu, Cd, and Zn) transfer along food chain and health risk assessment through raw milk consumption from free-range cows. Int. J. Environ. Res. Public Health 2019, 16, 4064. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludge and Oils. Revision 1. 1998. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/3051a.pdf (accessed on 1 July 2024).
- Hrotkó, K.; Gyeviki, M.; Sütöriné, D.M.; Magyar, L.; Mészáros, R.; Honfi, P.; Kardos, L. Foliar dust and heavy metal deposit on leaves of urban trees in Budapest (Hungary). Environ. Geochem. Health 2021, 43, 1927–1940. [Google Scholar] [CrossRef]
- Rosa, A.C.G.; Nascimento, V.A.N. Avaliação do Risco de Consumo de Folhas E Seiva de Plantas Medicinais do Cerrado Sul-mato-Grossense em Relação à sua Composição Elementar. Ph.D. Thesis, Federal University of Mato Grosso do Sul, Campo Grande, Brazil, 2021. [Google Scholar]
- Rosa, A.C.G.; Melo, E.S.P.; Junior, A.S.A.; Gondim, J.M.S.; de Sousa, A.G.; Cardoso, C.A.L.; Viana, L.F.; Carvalho, A.M.A.; Machate, D.J.; do Nascimento, V.A. Transfer of metal(loid)s from soil to leaves and trunk xylem sap of medicinal plants and possible health risk assessment. Int. J. Environ. Res. Public Health 2022, 19, 660. [Google Scholar] [CrossRef]
- Blaylock, M.J.; Salt, D.E.; Dushenkov, S.; Zakharova, O.; Gussman, C.; Kapulnik, Y.; Ensley, B.D.; Raskin, I. Enhanced accumulation of Pb in Indian Mustard by soil applied chelating agents. Environ. Sci. Technol. 1997, 31, 860–865. [Google Scholar] [CrossRef]
- Brooks, R.R.; Lee, J.; Reeves, R.D.; Jaffre, T. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 1977, 7, 49–57. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- Gerba, C.P. Risk Assessment. In Environmental and Pollution Science, 3rd ed.; Brusseau, M.L., Pepper, I.L., Gerba, C.P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 541–563. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final; Office of Superfund Remediation and Technology Innovation, U.S., Environmental Protection Agency: Washington, DC, USA, 2004.
- Environmental Affairs: Department, Environmental Affairs Republic of South Africa, Framework for the Management of Contaminated Land. Available online: http://sawic.environment.gov.za/documents/562.pdf (accessed on 1 July 2024).
- USEPA (United States Environmental Protection Agency). Integrated Risk Information System (IRIS) Chemical Search. Oral Slope Factor. Available online: https://cfpub.epa.gov/ncea/iris/search/ (accessed on 2 July 2024).
- de Miguel, E.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.G.; Lin, Q.; Gao, Y.P. Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou. J. Clean. Prod. 2017, 115, 122–129. [Google Scholar] [CrossRef]
- Gope, M.; Masto, R.E.; George, J.; Hoque, R.R.; Balachandran, S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 2017, 138, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Khan, B.; Asad, N.; Mian, I.A.; Jamil, M. Traffic-related lead pollution in roadside soils and plants in Khyber Pakhtunkhwa, Pakistan: Implications for human health. Int. J. Environ. Sci. Technol. 2019, 16, 8015–8022. [Google Scholar] [CrossRef]
- Shomar, B.; Rashkeev, S.N. A comprehensive risk assessment of toxic elements in international brands of face foundation powders. Environ. Res. 2021, 192, 110274. [Google Scholar] [CrossRef]
- Behrooz, R.D.; Kaskaoutis, D.G.; Grivas, G.; Mihalopoulos, N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere 2021, 262, 127835. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Disease Registry). Calculating Hazard Quotients and Cancer Risk Estimates. 2022. Available online: https://www.atsdr.cdc.gov/pha-guidance/conducting_scientific_evaluations/epcs_and_exposure_calculations/hazardquotients_cancerrisk.html (accessed on 2 July 2024).
- USEPA (United States Environmental Protection Agency). Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors; USEPA: Washington, DC, USA, 2014. Available online: https://www.epa.gov/sites/default/files/2015-11/documents/oswer_directive_9200.1-120_exposurefactors_corrected2.pdf (accessed on 3 June 2024).
- Rapant, S.; Fajčíková, K.; Khun, M.; Cvečková, V. Application of health risk assessment method for geological environment at national and regional scales. Environ. Earth Sci. 2010, 64, 513–521. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente. Resolução No 420, de 28 de Dezembro de 2009, Brasil. Available online: http://hab.eng.br/wp-content/uploads/2017/09/resolucao-conama-420-2009-gerenciamento-de-acs.pdf (accessed on 3 June 2024).
- Mamat, A.; Zhang, Z.; Mamat, Z.; Zhang, F.; Yinguang, C. Pollution assessment and health risk evaluation of eight (metalloid) heavy metals in farmland soil of 146 cities in China. Environ. Geochem. Health 2020, 42, 3949–3963. [Google Scholar] [CrossRef]
- Gonçalves, D.A.M.; Pereira, W.V.d.S.; Johannesson, K.H.; Pérez, D.V.; Guilherme, L.R.G.; Fernandes, A.R. Geochemical background for potentially toxic elements in forested soils of the state of Pará, Brazilian Amazon. Minerals 2022, 12, 674. [Google Scholar] [CrossRef]
- Duong, T.T.; Lee, B.K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manag. 2011, 92, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Almeida Júnior, A.B.; Nascimento, C.W.A.; Biondi, C.M.; Souza, A.P.; Barros, F.M.R. Background and reference values of metals in soil from Paraíba State, Brazil. Rev. Bras. Cienc. Solo. 2016, 40, 0150122. [Google Scholar] [CrossRef]
- Ogundele, D.T.; Adio, A.A.; Oludele, O.E. Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. J. Environ. Anal. Toxicol. 2015, 5, 1000334. [Google Scholar] [CrossRef]
- Proshad, R.; Dey, H.C.; Ritu, S.A.; Baroi, A.; Khan, M.S.U.; Islam, M.; Idris, A.M. A review on toxic metal pollution and source-oriented risk apportionment in road dust of a highly polluted megacity in Bangladesh. Environ. Geochem. Health 2022, 45, 2729–2762. [Google Scholar] [CrossRef]
- Adachia, K.; Tainoshob, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Hjortenkrans, D.S.T.; Bergbäck, B.G.; Häggerud, A.V. Metal emissions from brake linings and tires: Case studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 2007, 41, 5224–5230. [Google Scholar] [CrossRef]
- Ozaki, H.; Watanabe, I.; Kuno, K. Investigation of the heavy metal sources in relation to automobiles. Water Air Soil Pollut. 2004, 157, 209–222. [Google Scholar] [CrossRef]
- Falahi-Ardakani, A. Contamination of environment with heavy metals emitted from automotives. Ecotoxicol. Environ. Saf. 1984, 8, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Hulskotte, J.H.J.; Roskam, G.D.; Denier van der Gon, H.A.C. Elemental composition of current automotive braking materials and derived air emission factors. Atmos. Environ. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Oliva, S.R.; Valdés, B. Influence of Washing on Metal Concentrations in Leaf Tissue. Commun. Soil Sci. Plant. Anal. 2004, 35, 1543–1552. [Google Scholar] [CrossRef]
- Udosen, E.D.; Uwah, E.I.; Jonathan, I.I. Levels of trace metals in washed and unwashed leaves of roadsides Vernonia amygdalina obtained in Abak, AkwaIbom State, Nigeria. Int. J. Adv. Pharm. Biol. Chem. 2017, 6, 131–138. [Google Scholar]
- Brima, E.I. Toxic elements in different medicinal plants and the impact on human health. Int. J. Environ. Res. Public Health 2017, 14, 1209. [Google Scholar] [CrossRef] [PubMed]
- Caselles, J. Levels of lead and other metals in Citrus alongside a motor road. Water Air Soil Pollut. 1997, 105, 593–602. [Google Scholar] [CrossRef]
- Bora, F.D.; Bunea, A.; Pop, S.R.; Banitã, S.I.; Dusa, D.S.; Chira, A.; Bunea, C.I. Quantification and reduction in heavy metal residues in some fruits and vegetables: A case study Galati Counyty, Romania. Horticulture 2022, 8, 1034. [Google Scholar] [CrossRef]
- Aksoy, A.; Demirezen, D. Fraxinus excelsior as a biomonitor of heavy metal pollution. Pol. J. Environ. Stud. 2006, 15, 27–33. [Google Scholar]
- Rahman, M.S.; Khan, M.D.H.; Jolly, Y.N.; Kabir, J.; Akter, S.; Salam, A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef]
- Dolan, L.M.J.; Bohemen, H.; Whelan, P.; Akbar, K.F.; O’Malley, V.; O’Leary, G.; Keizer, P.J. Towards the sustainable development of modern road ecosystems. In The Ecology of Transportation: Managing Mobility for the Environment; Environmental Pollution; Davenport., J., Davenport, J.L., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 10, pp. 275–331. [Google Scholar]
- ATSDR (Agency for Toxic Substances and Disease Registry). Minimal Risk Levels (MRLs). Available online: https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx (accessed on 1 January 2023).
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Experientia Supplementum; Luch, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 101, pp. 133–164. [Google Scholar]
- Tschinkel, P.F.S.; Melo, E.S.P.; Pereira, H.S.; Silva, K.R.N.; Arakaki, D.G.; Lima, N.V.; Fernandes, M.R.; Leite, L.C.S.; Melo, E.S.P.; Melnikov, P.; et al. The hazardous level of heavy metals in different medicinal plants and their decoctions in water: A public health problem in Brazil. BioMed Res. Int. 2020, 2020, 1465051. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Disease Registry). ToxFAQsTM for Aluminum. Available online: http://www.atsdr.cdc.gov/toxfaqs/index.asp (accessed on 2 January 2023).
- Yuan, S.; Carter, P.; Vithayathil, M.; Kar, S.; Giovannucci, E.; Mason, A.M.; Burgess, S.; Larsson, S.C. Iron status and cancer risk in UK Biobank: A two-sample mendelian randomization study. Nutrients 2020, 12, 526. [Google Scholar] [CrossRef]
- Banu, Z.; Chowdhury, M.S.A.; Hossain, M.D.; Nakagami, K. Contamination and ecological risk assessment of heavy metal in the sediment of Turag river, Bangladesh: An index analysis approach. J. Water Resour. Prot. 2013, 5, 239–248. [Google Scholar] [CrossRef]
- Khan, M.D.H.; Talukder, A.; Rahman, M.S. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Dhaka city, Bangladesh. J. Appl. Chem. 2018, 11, 90–99. [Google Scholar] [CrossRef]
- Liu, L.; Lium, Q.; Ma, J.; Wu, H.; Qu, Y.; Gong, Y.; Yang, S.; An, Y.; Zhou, Y. Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment. Environ. Pollut. 2020, 260, 114083. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Dermal Exposure Assessment: A Summary of EPA Approaches; EPA/600/R-07/040F; National Center for Environmental Assessment: Washington, DC, USA, 2007. Available online: http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=183584 (accessed on 3 June 2024).
- Burt, R.; Hernandez, L.; Shaw, R.; Tunstead, R.; Ferguson, R.; Peaslee, S. Trace element concentration and speciation in selected urban soils in New York City. Environ. Monit. Assess. 2013, 186, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, N.; Ozcan, H.K.; Demir, G.; Nemlioglu, S.; Bayat, C. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environ. Int. 2004, 29, 979–985. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, Á.; Kalbitz, K.; Jansen, B.; Martínez-Martínez, S. Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment. J. Environ. Monit. 2011, 13, 3087–3096. [Google Scholar] [CrossRef] [PubMed]
Step | Temperature (°C) | Pressure (Bar) | Time (min) | Power (W) |
---|---|---|---|---|
1 | 150 | 30 | 5 | 710 |
2 | 190 | 35 | 15 | 1136 |
3 | 50 | 25 | 10 | 0 |
4 | 0 | 0 | 0 | 0 |
Element | Concentrations of Elements in Soil: (Sampling Sites to Highway) (mg/kg·dw) | |||||||
---|---|---|---|---|---|---|---|---|
P1 (0 km) | P2 (8.5 km) | P3 (16.5 km) | P4 (25.5 km) | P5 (34.46 km) | Conama/Brazil (mg/kg) | China (mg/kg) | State of Pará Brazil (mg/kg) | |
Al | 75.04 ± 1.59 | 62.48 ± 1.41 | 65.19 ± 1.13 | 65.42 ± 2.18 | 88.37 ± 2.47 | * | ** | 8.2 × 103 |
As | 16.51± 1.28 | 15.67±1.47 | 13.10 ± 1.95 | 13.98 ± 1.82 | 19.86 ± 1.28 | 15 | 12.207 | 0.8 |
Cd | 34.25 ± 2.47 | 28.19 ± 1.62 | 25.88 ± 1.05 | 29.15 ± 1.49 | 32.88 ± 1.65 | 1.3 | 1.497 | 0.1 |
Co | 13.19 ± 1.18 | 9.43 ± 1.86 | 8.25 ± 1.62 | 10.45 ± 1.05 | 14.46 ± 0.79 | 35 | ** | 1.6 |
Cr | 36.21 ± 2.24 | 31.68 ± 1.78 | 33.11 ± 1.68 | 39.25 ± 1.52 | 40.45 ± 0.98 | * | 70.09 | 14.3 |
Cu | 52.16 ± 2.51 | 49.16 ± 2.32 | 50.65 ± 2.14 | 52.42 ± 3.26 | 53.68 ± 2.42 | 200 | 44.60 | 6.0 |
Fe | 165.48 ± 2.2 | 110.76 ± 3.84 | 118.43 ± 1.58 | 100.56 ±1.92 | 152.15 ± 2.56 | * | ** | 9.3 × 103 |
Ni | 38.5 ± 1.53 | 28.42 ± 2.76 | 30.43 ± 2.53 | 32.75 ± 3.12 | 37.53 ± 2.45 | 30 | 41.968 | 1.4 |
Zn | 119.72 ± 1.2 | 119.3 ± 1.22 | 99.42 ± 0.07 | 110.49 ± 2.53 | 121.23 ± 1.59 | 300 | 154.203 | 7.0 |
Pb | 35.44 ± 0.51 | 28.08 ± 1.33 | 28.64 ± 0.45 | 22.01 ± 1.28 | 33.19 ± 2.46 | 72 | 55.14 | 10.4 |
Element | P1 (0 km) | P2 (8.5 km) | P3 (16.5 km) | P4 (25.5 km) | P5 (34.46 km) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Washed | Unwashed | Washed | Unwashed | Washed | Unwashed | Washed | Unwashed | Washed | Unwashed | |
Al | 91.15 ± 2.75 | 122.45 ± 3.92 | 92.82 ± 2.98 | 116.72 ± 3.59 | 95.17 ± 1.72 | 115.86 ± 2.86 | 96.45 ± 2.01 | 120.42 ± 2.98 | 89.72 ± 2.38 | 132.38 ± 2.97 |
As | 0.61 ± 0.12 | 1.98 ± 0.79 | 0.56 ± 0.16 | 1.75 ± 0.65 | 0.53 ± 0.19 | 1.88 ± 0.64 | 0.62 ± 0.26 | 1.72 ± 0.53 | 0.72 ± 0.21 | 1.91 ± 0.65 |
Cd | 0.78 ± 0.25 | 1.86 ± 0.48 | 0.82 ± 0.33 | 1.62 ± 0.72 | 0.86 ± 0.18 | 1.71 ± 0.49 | 0.91 ± 0.24 | 1.76 ± 0.42 | 0.98 ±0.36 | 2.01 ± 0.96 |
Co | 0.59 ± 0.11 | 0.79 ± 0.27 | 0.56 ± 0.16 | 0.86 ± 0.32 | 0.48 ± 0.12 | 0.91 ± 0.28 | 0.49 ± 0.19 | 1.02 ± 0.31 | 0.56 ± 0.15 | 1.50 ± 0.56 |
Cr | 2.76 ± 0.49 | 8.39 ± 0.98 | 2.89 ± 0.76 | 6.48 ± 1.28 | 3.58 ± 0.45 | 7.41 ± 0.35 | 4.54 ± 0.49 | 9.48 ± 1.97 | 6.12 ± 0.47 | 11.78 ± 1.84 |
Cu | 4.48 ± 0. 20 | 10.88 ± 0.79 | 3.65 ± 0.34 | 9.78 ± 0.57 | 4.01 ± 0.54 | 10.29 ± 0.48 | 5.02 ± 0.57 | 10.54 ± 0.59 | 6.07 ± 0.75 | 12.84 ± 0.87 |
Fe | 65.23 ± 1.89 | 125.48 ± 1.42 | 31.53 ± 0.75 | 68.52 ± 1.70 | 34.72 ± 0.86 | 73.27 ± 1.07 | 31.72 ± 0.78 | 65.19 ± 1.19 | 62.48 ± 0.81 | 112.15 ± 1.58 |
Ni | 1.32 ± 0.52 | 4.87 ± 0.43 | 1.22 ± 0.72 | 3.69 ± 0.34 | 1.45 ± 0.53 | 4.40 ± 0.22 | 1.68 ± 0.75 | 4.50 ± 0.48 | 1.74 ± 0.68 | 5.78 ± 0.58 |
Zn | 40.58 ± 1.52 | 52.87 ± 1.02 | 35.15 ± 1.35 | 49.49 ± 1.47 | 41.82 ± 0.98 | 50.49 ± 0.67 | 54.75 ± 0.84 | 60.65 ± 0.85 | 50.23 ± 0.65 | 62.86 ± 0.94 |
Pb | 9.56 ± 0.45 | 20.80 ± 0.37 | 6.78 ± 0.86 | 13.48 ± 0.65 | 6.95 ± 0.91 | 13.64 ± 0.45 | 4.80 ± 0.26 | 7.80 ± 0.62 | 5.24 ± 0.78 | 8.45 ± 0.56 |
Element | P1 (0 km) | P2 (8.5 km) | P3 (16.5 km) | P4 (25.5 km) | P5 (34.46 km) |
---|---|---|---|---|---|
C = UWL − WL | C = UWL − WL | C = UWL − WL | C = UWL − WL | C = UWL − WL | |
Al | 31.30 | 23.90 | 20.69 | 23.97 | 42.66 |
As | 1.37 | 1.19 | 1.35 | 1.10 | 1.19 |
Cd | 1.08 | 0.90 | 0.93 | 0.95 | 1.10 |
Co | 0.20 | 0.30 | 0.43 | 0.41 | 0.94 |
Cr | 5.63 | 3.59 | 3.83 | 4.94 | 5.66 |
Cu | 6.40 | 6.13 | 6.28 | 5.52 | 6.77 |
Fe | 60.25 | 36.99 | 38.55 | 33.47 | 49.67 |
Ni | 3.55 | 2.47 | 2.95 | 2.82 | 4.04 |
Zn | 12.29 | 14.34 | 8.67 | 5.60 | 12.63 |
Pb | 11.24 | 6.70 | 6.69 | 3.0 | 3.21 |
Transfer Factor (TF) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Element | P1 (0 km) | P2 (8.5 km) | P3 (16.5 km) | P4 (25.5 km) | P5 (34.46 km) | |||||
Washed | Unwashed | Washed | Unwashed | Washed | Unwashed | Washed | Unwashed | Washed | Unwashed | |
Al | 1.2140 | 1.631 | 1.4855 | 1.8681 | 1.459 | 1.777 | 1.474 | 1.840 | 1.0151 | 1.4970 |
As | 0.0369 | 0.1199 | 0.0357 | 0.1116 | 0.0404 | 0.1435 | 0.0443 | 0.1230 | 0.0362 | 0.0961 |
Cd | 0.0227 | 0.0543 | 0.0290 | 0.0574 | 0.0332 | 0.0660 | 0.031 | 0.0603 | 0.0298 | 0.0611 |
Co | 0.0447 | 0.0598 | 0.0593 | 0.0911 | 0.0581 | 0.1103 | 0.0468 | 0.0976 | 0.0387 | 0.1037 |
Cr | 0.0762 | 0.2317 | 0.0912 | 0.2045 | 0.1088 | 0.2237 | 0.1156 | 0.2415 | 0.1512 | 0.2912 |
Cu | 0.0858 | 0.2085 | 0.0742 | 0.1989 | 0.0791 | 0.2029 | 0.0957 | 0.2010 | 0.1130 | 0.2391 |
Fe | 0.3941 | 0.758 | 0.2846 | 0.6186 | 0.2931 | 0.6186 | 0.0315 | 0.6482 | 0.4106 | 0.7371 |
Ni | 0.0342 | 0.1264 | 0.0429 | 0.1298 | 0.0476 | 0.1445 | 0.0512 | 0.1374 | 0.0463 | 0.1540 |
Zn | 0.3380 | 0.4416 | 0.2946 | 0.4148 | 0.4206 | 0.5078 | 0.4955 | 0.5489 | 0.4143 | 0.5185 |
Pb | 0.2690 | 0.586 | 0.2414 | 0.4800 | 0.2426 | 0.4762 | 0.2180 | 0.3543 | 0.157 | 0.2545 |
Element/CDI | P1 (0 km) | P2 (8.5 km) | P3 (16.5 km) | P4 (25.5 km) | P5 (34.46 km) |
---|---|---|---|---|---|
Al | |||||
CDIoral | 4.287 × 10−5 | 3.273 × 10−5 | 2.834 × 10−5 | 3.283 × 10−5 | 5.843 × 10−5 |
CDIinh | 6.305 × 10−9 | 4.814 × 10−9 | 4.168 × 10−9 | 4.828 × 10−9 | 8.593 × 10−9 |
CDIdermal | 1.710 × 10−7 | 1.306 × 10−7 | 1.130 × 10−7 | 1.310 × 10−7 | 2.331 × 10−7 |
As | |||||
CDIoral | 1.876 × 10−6 | 1.630 × 10−6 | 1.849 × 10−6 | 1.506 × 10−6 | 1.630 × 10−6 |
CDIinh | 2.759 × 10−10 | 2.397 × 10−10 | 2.719 × 10−10 | 2.215 × 10−10 | 2.397 × 10−10 |
CDIdermal | 2.246 × 10−7 | 1.951 × 10−7 | 2.214 × 10−7 | 1.804 × 10−7 | 1.902 × 10−7 |
Cd | |||||
CDIoral | 1.479 × 10−6 | 1.232 × 10−6 | 1.273 × 10−6 | 1.301 × 10−6 | 1.50 × 10−6 |
CDIinh | 2.175 × 10−10 | 1.813 × 10−10 | 1.873 × 10−10 | 1.913 × 10−10 | 2.215 × 10−10 |
CDIdermal | 5.903 × 10−9 | 4.919 × 10−9 | 5.083 × 10−9 | 5.192 × 10−9 | 6.012 × 10−9 |
Co | |||||
CDIoral | 2.739 × 10−7 | 4.109 × 10−7 | 5.890 × 10−7 | 5.616 × 10−7 | 1.287 × 10−6 |
CDIinh | 4.029 × 10−11 | 6.043 × 10−11 | 8.662 × 10−11 | 8.259 × 10−11 | 1.893 × 10−10 |
CDIdermal | 1.093 × 10−9 | 1.639 × 10−9 | 2.350 × 10−9 | 2.240 × 10−9 | 5.137 × 10−9 |
Cr | |||||
CDIoral | 7.712 × 10−6 | 4.917 × 10−6 | 5.246 × 10−6 | 6.767 × 10−6 | 7.753 × 10−6 |
CDIinh | 1.134 × 10−9 | 7.232 × 10−10 | 7.715 × 10−10 | 9.951 × 10−10 | 1.140 × 10−9 |
CDIdermal | 3.077 × 10−8 | 1.962 × 10−8 | 2.093 × 10−8 | 2.700 × 10−8 | 3093 × 10−8 |
Cu | |||||
CDIoral | 8.767 × 10−6 | 8.397 × 10−6 | 8.602 × 10−6 | 7.561 × 10−6 | 9.273 × 10−6 |
CDIinh | 1.289 × 10−9 | 1.234 × 10−9 | 1.265 × 10−9 | 1.112 × 10−9 | 1.363 × 10−9 |
CDIdermal | 3.498 × 10−8 | 3.350 × 10−8 | 3.432 × 10−8 | 3.017 × 10−8 | 3.700 × 10−8 |
Fe | |||||
CDIoral | 8.253 × 10−5 | 5.067 × 10−5 | 5.280 × 10−5 | 4.584 × 10−5 | 6.804 × 10−5 |
CDIinh | 1.213 × 10−8 | 7.451 × 10−9 | 7.765 × 10−9 | 6.742 × 10−9 | 1.00 × 10−8 |
CDIdermal | 3.293 × 10−7 | 2.021 × 10−7 | 2.107 × 10−7 | 1.829 × 10−7 | 2.714 × 10−7 |
Ni | |||||
CDIoral | 4.863 × 10−6 | 3.383 × 10−6 | 4.041 × 10−6 | 3.863 × 10−6 | 5.534 × 10−6 |
CDIinh | 7.151 × 10−10 | 4.975 × 10−10 | 5.942 × 10−10 | 5.680 × 10−10 | 8.138 × 10−10 |
CDIdermal | 1.940 × 10−8 | 1.350 × 10−8 | 1.612 × 10−8 | 1.541 × 10−8 | 2.208 × 10−8 |
Zn | |||||
CDIoral | 1.683 × 10−5 | 1.964 × 10−5 | 1.187 × 10−5 | 7.671 × 10−6 | 1.730 × 10−5 |
CDIinh | 2.475 × 10−9 | 2.888 × 10−9 | 1.746 × 10−9 | 1.128 × 10−9 | 2.544 × 10−9 |
CDIdermal | 6.717 × 10−8 | 7.837 × 10−8 | 4.738 × 10−8 | 3.06 × 10−8 | 6.903 × 10−8 |
Pb | |||||
CDIoral | 1.539 × 10−5 | 9.178 × 10−6 | 9.164 × 10−6 | 4.109 × 10−6 | 4.397 × 10−6 |
CDIinh | 2.264 × 10−9 | 1.349 × 10−9 | 1.347 × 10−9 | 6.043 × 10−10 | 6.466 × 10−10 |
CDIdermal | 6.143 × 10−8 | 3.662 × 10−8 | 3.656 × 10−8 | 1.639 × 10−8 | 1.754 × 10−8 |
Element/ HQ | P1 (0 km) | P2 (8.5 km) | P3 (16.5 km) | P4 (25.5 km) | P5 (34.46 km) |
---|---|---|---|---|---|
Al | |||||
HQoral | 4.287 × 10−5 | 3.273 × 10−5 | 2.834 × 10−5 | 3.283 × 10−5 | 5.843 × 10−5 |
HQinh | 1.261 × 10−3 | 9.628 × 10−7 | 8.336 × 10−7 | 9.656 × 10−7 | 1.718 × 10−6 |
HQdermal | 1.710 × 10−7 | 1.306 × 10−7 | 1.130 × 10−7 | 1.310 × 10−7 | 2.331 × 10−7 |
As | |||||
HQoral | 6.253 × 10−3 | 5.433 × 10−3 | 6.163 × 10−3 | 5.020 × 10−3 | 5.433 × 10−3 |
HQinh | 1.839 × 10−5 | 1.598 × 10−5 | 1.812 × 10−5 | 1.476 × 10−5 | 1.598 × 10−5 |
HQdermal | 7.486 × 10−4 | 6.503 × 10−4 | 7.380 × 10−4 | 6.013 × 10−4 | 6.340 × 10−4 |
Cd | |||||
HQoral | 0.01479 | 0.01232 | 0.01273 | 0.01301 | 0.0150 |
HQinh | 2.175 × 10−5 | 1.813 × 10−5 | 1.873 × 10−5 | 1.913 × 10−5 | 2.215 × 10−5 |
HQdermal | 4.722 × 10−4 | 3.935 × 10−5 | 4.066 × 10−4 | 4.153 × 10−4 | 4.809 × 10−4 |
Co | |||||
HQoral | 9.130 × 10−4 | 1.369 × 10−3 | 1.963 × 10−3 | 1.872 × 10−3 | 4.29 × 10−3 |
HQinh | 6.715 × 10−6 | 1.007 × 10−5 | 1.443 × 10−5 | 1.376 × 10−5 | 3.155 × 10−5 |
HQdermal | 3.643 × 10−6 | 5.463 × 10−6 | 7.833 × 10−6 | 4.466 × 10−6 | 1.712 × 10−5 |
Cr | |||||
HQoral | 5.141 × 10−6 | 3.278 × 10−6 | 3.497 × 10−6 | 4.511 × 10−6 | 5.168 × 10−6 |
HQinh | 3.965 × 10−5 | 2.528 × 10−5 | 2.697 × 10−5 | 3.479 × 10−5 | 3.986 × 10−5 |
HQdermal | 1.577 × 10−6 | 1.00 × 10−6 | 1.073 × 10−6 | 1.384 × 10−6 | 1.586 × 10−6 |
Cu | |||||
HQoral | 2.191 × 10−4 | 2.099 × 10−4 | 2.150 × 10−4 | 1.890 × 10−4 | 2.318 × 10−4 |
HQinh | 3.22 × 10−8 | 3.085 × 10−8 | 3.162 × 10−8 | 2.780 × 10−8 | 3.407 × 10−8 |
HQdermal | 8.745 × 10−7 | 8.375 × 10−7 | 8.58 × 10−7 | 7.542 × 10−7 | 9.250 × 10−7 |
Fe | |||||
HQoral | 1.179 × 10−4 | 7.238 × 10−5 | 7.542 × 10−5 | 6.548 × 10−6 | 9.720 × 10−5 |
HQinh | ND | ND | ND | ND | ND |
HQdermal | 4.704 × 10−7 | 2.887 × 10−7 | 3.01 × 10−7 | 2.612 × 10−7 | 3.877 × 10−7 |
Ni | |||||
HQoral | 2.431 × 10−4 | 1.691 × 10−4 | 2.020 × 10−4 | 1.931 × 10−4 | 2.767 × 10−4 |
HQinh | 3.575 × 10−5 | 2.487 × 10−5 | 2.971 × 10−5 | 2.84 × 10−5 | 4.069 × 10−5 |
HQdermal | 3.592 × 10−6 | 2.50 × 10−6 | 2.985 × 10−6 | 2.853 × 10−6 | 4.088 × 10−6 |
Zn | |||||
HQoral | 5.61 × 10−5 | 6.546 × 10−5 | 3.956 × 10−5 | 2.557 × 10−5 | 5.766 × 10−5 |
HQinh | 8.25 × 10−9 | 9.60 × 10−9 | 5.820 × 10−9 | 3.760 × 10−9 | 8.480 × 10−9 |
HQdermal | 2.239 × 10−7 | 2.612 × 10−7 | 1.579 × 10−7 | 1.02 × 10−7 | 2.301 × 10−7 |
Pb | |||||
HQoral | 4.275 × 10−3 | 2.549 × 10−3 | 2.545 × 10−3 | 1.141 × 10−3 | 1.221 × 10−3 |
HQinh | 1.132 × 10−5 | 6.745 × 10−6 | 6.735 × 10−6 | 3.021 × 10−6 | 3.233 × 10−6 |
HQdermal | 1.535 × 10−6 | 9.155 × 10−7 | 9.140 × 10−7 | 4.097 × 10−7 | 4.385 × 10−7 |
P1 (0 km) | P2 (8.5 km) | P3 (16.5 km) | P4 (25.5 km) | P5 (34.46 km) | |
---|---|---|---|---|---|
HI = Σ HQoral | 0.0269 | 0.0222 | 0.0239 | 0.0214 | 0.0266 |
HI = Σ HQinh | 1.394 × 10−3 | 1.020 × 10−4 | 1.150 × 10−4 | 1.148 × 10−4 | 1.552 × 10−4 |
HI = Σ HQdermal | 1.231 × 10−3 | 7.010 × 10−4 | 1.158 × 10−3 | 1.026 × 10−3 | 1.139 × 10−3 |
Element | P1 (0 km) | P2 (8.5 km) | P3 (16.5 km) | P4 (25.5 km) | P5 (34.46 km) |
---|---|---|---|---|---|
Al | 1.304 × 10−3 | 3.382 × 10−5 | 3.392 × 10−5 | 3.392 × 10−5 | 6.038 × 10−5 |
As | 7.019 × 10−3 | 6.099 × 10−3 | 6.919 × 10−3 | 5.636 × 10−3 | 6.082 × 10−3 |
Cd | 0.01528 | 0.01237 | 0.0131 | 0.0134 | 0.0155 |
Co | 9.233 × 10−4 | 1.384 × 10−3 | 1.985 × 10−3 | 1.890 × 10−3 | 4.338 × 10−3 |
Cr | 4.636 × 10−5 | 2.955 × 10−5 | 3.154 × 10−5 | 4.068 × 10−5 | 4.661 × 10−5 |
Cu | 2.200 × 10−4 | 2.107 × 10−4 | 2.158 × 10−4 | 1.897 × 10−4 | 2.327 × 10−4 |
Fe | 1.183 × 10−4 | 7.266 × 10−5 | 7.572 × 10−5 | 6.809 × 10−6 | 1.01 × 10−5 |
Ni | 2.824 × 10−4 | 1.964 × 10−4 | 2.346 × 10−4 | 2.243 × 10−4 | 3.214 × 10−4 |
Zn | 5.633 × 10−5 | 6.573 × 10−5 | 3.972 × 10−5 | 2.567 × 10−5 | 5.789 × 10−5 |
Pb | 4.287 × 10−3 | 2.556 × 10−3 | 2.552 × 10−3 | 1.144 × 10−3 | 1.224 × 10−3 |
Element/ ILCR | P1 (0 km) | P2 (8.5 km) | P3 (16.5 km) | P4 (25.5 km) | P5 (34.46 km) |
---|---|---|---|---|---|
As | |||||
ILCRoral | 2.814 × 10−6 | 2.445 × 10−6 | 2.773 × 10−6 | 2.259 × 10−6 | 2.445 × 10−6 |
ILCRinh | 4.138 × 10−10 | 3.595 × 10−10 | 4.078 × 10−10 | 3.322 × 10−10 | 3.595 × 10−10 |
ILCRdermal | 3.369 × 10−7 | 2.926 × 10−7 | 3.315 × 10−7 | 1.804 × 10−7 | 2.853 × 10−7 |
ILCRtotal | 3.151 × 10−6 | 2.737 × 10−6 | 3.134 × 10−6 | 2.439 × 10−6 | 2.703 × 10−6 |
Cd | |||||
ILCRoral | 9.317 × 10−6 | 7.761 × 10−6 | 8.019 × 10−6 | 8.196 × 10−6 | 9.450 × 10−6 |
ILCRinh | 1.370 × 10−10 | 1.142 × 10−9 | 1.179 × 10−9 | 1.205 × 10−9 | 1.395 × 10−10 |
ILCRdermal | - | - | - | - | - |
ILCRtotal | 9.317 × 10−6 | 7.762 × 10−6 | 8.020 × 10−6 | 8.197 × 10−6 | 9.450 × 10−6 |
Co | |||||
ILCRoral | - | - | - | - | - |
ILCRinh | 3.948 × 10−11 | 5.922 × 10−11 | 4.488 × 10−10 | 8.093 × 10−10 | 1.855 × 10−9 |
ILCRdermal | - | - | - | - | - |
ILCRtotal | 3.948 × 10−11 | 5.922 × 10−11 | 4.488 × 10−10 | 8.093 × 10−10 | 1.855 × 10−9 |
Cr | |||||
ILCRoral | 3.856 × 10−6 | 9.834 × 10−6 | 1.049 × 10−6 | 1.353 × 10−6 | 1.550 × 10−6 |
ILCRinh | 4.649 × 10−9 | 2.962 × 10−9 | 3.163 × 10−9 | 4.079 × 10−9 | 4.671 × 10−9 |
ILCRdermal | - | - | - | - | - |
ILCRtotal | 3.860 × 10−6 | 9.836 × 10−6 | 4.212 × 10−6 | 1.357 × 10−6 | 1.554 × 10−6 |
Pb | |||||
ILCRoral | 1.308 × 10−7 | 7.801 × 10−8 | 7.789 × 10−8 | 3.492 × 10−8 | 3.737 × 10−8 |
ILCRinh | 9.056 × 10−9 | 5.396 × 10−9 | 5.388 × 10−11 | 2.417 × 10−10 | 2.586 × 10−11 |
ILCRdermal | - | - | - | - | - |
ILCRtotal | 1.398 × 10−7 | 8.340 × 10−8 | 7.794 × 10−8 | 3.516 × 10−8 | 3.739 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, A.d.S.A.; Ancel, M.A.P.; Garcia, D.A.Z.; Melo, E.S.d.P.; Guimarães, R.d.C.A.; Freitas, K.d.C.; Bogo, D.; Hiane, P.A.; Vilela, M.L.B.; Nascimento, V.A.d. Monitoring of Metal(loid)s Using Brachiaria decumbens Stapf Leaves along a Highway Located Close to an Urban Region: Health Risks for Tollbooth Workers. Urban Sci. 2024, 8, 128. https://doi.org/10.3390/urbansci8030128
Junior AdSA, Ancel MAP, Garcia DAZ, Melo ESdP, Guimarães RdCA, Freitas KdC, Bogo D, Hiane PA, Vilela MLB, Nascimento VAd. Monitoring of Metal(loid)s Using Brachiaria decumbens Stapf Leaves along a Highway Located Close to an Urban Region: Health Risks for Tollbooth Workers. Urban Science. 2024; 8(3):128. https://doi.org/10.3390/urbansci8030128
Chicago/Turabian StyleJunior, Ademir da Silva Alves, Marta Aratuza Pereira Ancel, Diego Azevedo Zoccal Garcia, Elaine Silva de Pádua Melo, Rita de Cássia Avellaneda Guimarães, Karine de Cássia Freitas, Danielle Bogo, Priscila Aiko Hiane, Marcelo Luiz Brandão Vilela, and Valter Aragão do Nascimento. 2024. "Monitoring of Metal(loid)s Using Brachiaria decumbens Stapf Leaves along a Highway Located Close to an Urban Region: Health Risks for Tollbooth Workers" Urban Science 8, no. 3: 128. https://doi.org/10.3390/urbansci8030128
APA StyleJunior, A. d. S. A., Ancel, M. A. P., Garcia, D. A. Z., Melo, E. S. d. P., Guimarães, R. d. C. A., Freitas, K. d. C., Bogo, D., Hiane, P. A., Vilela, M. L. B., & Nascimento, V. A. d. (2024). Monitoring of Metal(loid)s Using Brachiaria decumbens Stapf Leaves along a Highway Located Close to an Urban Region: Health Risks for Tollbooth Workers. Urban Science, 8(3), 128. https://doi.org/10.3390/urbansci8030128