Beyond Efficiency: The Social and Ecological Costs of Plant Factories in Urban Farming—A Review
Abstract
:1. Introduction
1.1. Definitions and General Comparison
1.2. Background
1.2.1. Present and Future Prospects of Traditional Urban Gardens
1.2.2. Present and Future Prospects of Plant Factories
1.3. Aims of the Study and Hypothesis
2. Materials and Methods
2.1. Methodological Criteria
2.2. Limitations
3. Results
3.1. Comparison of TUA and CEA Based on Their Contribution to Agrobiodiversity
3.1.1. Food and Crop Biodiversity
3.1.2. Associated Biodiversity
3.1.3. Sociocultural and Economic Diversity
3.1.4. Institutional Diversity
3.2. Link to the Living Soil
3.2.1. General Introduction, Comparison of TUA vs. CEA Based on Growing Medium Use
3.2.2. Contaminants of Urban Living Soil
3.2.3. Contact with Microbiota, Microbiological Diversity
3.3. Impact of Stress Factors
3.3.1. Abiotic Stress Factors Influencing Plant Life
3.3.2. Biotic Stress Factors—Plant Protection
3.4. Human-Related Aspects of Urban Agriculture
3.4.1. Agricultural Knowledge
3.4.2. Therapeutic Effects and Social Functions
3.4.3. Societal Benefits
4. Discussion
4.1. Evaluation of the Differences Between Open-Field and Indoor Urban Plant Production
4.2. Investigation of the Possibility of Integrating the Advantages of TUA into CEA
4.3. Future Trends
- -
- The emphasis will be laid on induced mild stress in controlled-environment plant production facilities to model natural multifactorial environments. Stress-condition treatments can be tailored to the specific aim of production, such as yield, appearance, or phytonutrient content.
- -
- Great innovation potential within CEA systems makes digital technological improvements widely usable, similar to disruptive technologies in space science or army applications in the past. Open-field plant production will benefit from these processes as well through the simplified adaptation of advancements.
- -
- Energy demands can become a limitation for the spreading of CEA facilities, which requires solutions from a technological side, such as the diversification of production activities or the application of renewable energy sources to optimize production as standalone units with island operation capabilities.
- -
- Climate change suggests the prospect of more frequent and more serious future weather extremities, which will influence urban farming possibilities as well. Open-field UA might benefit from the climate modulation potential of the built environment in terms of mediating heat extremities and frosts.
- -
- Consequently, the group of cultivable crop species will change within urban open spaces; therefore, a re-evaluation of traditional knowledge will become necessary, and certain species might be produced only within CEA frameworks. The adaptation of urban agricultural practice to climate reality should be continuous.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Population Prospects—Population Division—United Nations. Available online: https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900 (accessed on 7 July 2023).
- United Nations World Urbanization Prospects—Population Division—United Nations. Available online: https://population.un.org/wup/ (accessed on 26 June 2023).
- Miller, J.R. Biodiversity Conservation and the Extinction of Experience. Trends Ecol. Evol. 2005, 20, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Bendell, J. Deep Adaptation: A Map for Navigating Climate Tragedy; University of Cumbria: Ambleside, UK, 2018; Volume 2, pp. 1–31. [Google Scholar]
- Zezza, A.; Tasciotti, L. Urban Agriculture, Poverty, and Food Security: Empirical Evidence from a Sample of Developing Countries. Food Policy 2010, 35, 265–273. [Google Scholar] [CrossRef]
- Clucas, B.; Parker, I.D.; Feldpausch-Parker, A.M. A Systematic Review of the Relationship between Urban Agriculture and Biodiversity. Urban Ecosyst. 2018, 21, 635–643. [Google Scholar] [CrossRef]
- Mollier, L.; Seyler, F.; Chotte, J.-L.; Ringler, C. End Hunger, Achieve Food Security and Improved Nutrition and Promote Sustainable Agriculture. In A Guide to sdg Interactions: From Science to Implementation. Part Two: End Hunger, Achieve Food Security and Improved Nutrition and Promote Sustainable Agriculture; Griggs, D.J., Nilsson, M., Stevance, A., McCollum, D., Eds.; International Council for Science (ICSU): Paris, France, 2017. [Google Scholar]
- Sanyé Mengual, E.; Oliver-Solà, J. Sustainability Assessment of Urban Rooftop Farming Using an Interdisciplinary Approach; Universitat Autònoma de Barcelona: Barcelona, Spain, 2015; ISBN 978-84-490-5552-2. [Google Scholar]
- Janker, J.; Mann, S.; Rist, S. Social Sustainability in Agriculture—A System-Based Framework. J. Rural Stud. 2019, 65, 32–42. [Google Scholar] [CrossRef]
- Hashim, N.H.; Mohd Hussain, N.H.; Ismail, A. Green Roof Concept Analysis: A Comparative Study of Urban Farming Practice in Cities. Malays. J. Sustain. Environ. MySE 2020, 7, 115–132. [Google Scholar]
- Jennings, V.; Browning, M.H.E.M.; Rigolon, A. Urban Green Spaces: Public Health and Sustainability in the United States; SpringerBriefs in Geography; Springer International Publishing: Cham, Swizerland, 2019; ISBN 978-3-030-10468-9. [Google Scholar]
- Angotti, T. Urban Agriculture: Long-Term Strategy or Impossible Dream?: Lessons from Prospect Farm in Brooklyn, New York. Public Health 2015, 129, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Smit, J.; Nasr, J.; Ratta, A. Urban Agriculture Food, Jobs and Sustainable Cities; United Nations Development Programme: New York, NY, USA, 2001. [Google Scholar]
- de Bell, S.; White, M.; Griffiths, A.; Darlow, A.; Taylor, T.; Wheeler, B.; Lovell, R. Spending Time in the Garden Is Positively Associated with Health and Wellbeing: Results from a National Survey in England. Landsc. Urban Plan. 2020, 200, 103836. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Shaheen, S.M.; Park, J.N.; Lee, S.S.; Ok, Y.S. Potentially Toxic Element Contamination and Its Impact on Soil Biological Quality in Urban Agriculture: A Critical Review. In Heavy Metal Contamination of Soils: Monitoring and Remediation; Sherameti, I., Varma, A., Eds.; Springer International Publishing: Cham, Swizerland, 2015; pp. 81–101. ISBN 978-3-319-14526-6. [Google Scholar]
- Feldmann, F.; Vogler, U. Towards Sustainable Performance of Urban Horticulture: Ten Challenging Fields of Action for Modern Integrated Pest Management in Cities. J. Plant Dis. Prot. 2021, 128, 55–66. [Google Scholar] [CrossRef]
- Wakefield, S.; Yeudall, F.; Taron, C.; Reynolds, J.; Skinner, A. Growing Urban Health: Community Gardening in South-East Toronto. Health Promot. Int. 2007, 22, 92–101. [Google Scholar] [CrossRef]
- Rogers, M.A. Urban Agriculture as a Tool for Horticultural Education and Youth Development. In Urban Horticulture: Sustainability for the Future; Nandwani, D., Ed.; Springer International Publishing: Cham, Swizerland, 2018; pp. 211–232. ISBN 978-3-319-67017-1. [Google Scholar]
- Parenti, E.; Deggau, A.B.; da Silva Neiva, S.; de Oliveira Veras, M.; de Paulo Gewehr, L.L.; de Andrade Guerra, J.B.S.O. The Contributions of Urban Agriculture to the Promotion of Food Security in the Context of Climate Change: A Literature-Based Review. In Water, Energy and Food Nexus in the Context of Strategies for Climate Change Mitigation; Leal Filho, W., de Andrade Guerra, J.B.S., Eds.; Springer International Publishing: Cham, Swizerland, 2020; pp. 103–114. ISBN 978-3-030-57235-8. [Google Scholar]
- Neilson, C.; Rickards, L. The Relational Character of Urban Agriculture: Competing Perspectives on Land, Food, People, Agriculture and the City. Geogr. J. 2017, 183, 295–306. [Google Scholar] [CrossRef]
- Armanda, D.T.; Guinée, J.B.; Tukker, A. The Second Green Revolution: Innovative Urban Agriculture’s Contribution to Food Security and Sustainability—A Review. Glob. Food Secur. 2019, 22, 13–24. [Google Scholar] [CrossRef]
- Mougeot, L.J.A. Urban Agriculture: Definition, Presence, Potentials and Risks, and Policy Challenges. Available online: https://idl-bnc-idrc.dspacedirect.org/server/api/core/bitstreams/a0cf4b0d-b96c-4124-a1de-f006d4a97f00/content (accessed on 13 October 2024).
- Brown, K.H.; Carter, A. Urban Agriculture and Community Food Security in the United States: Farming from the City Center to the Urban Fringe. Available online: https://www.socioeco.org/bdf_fiche-document-2494_en.html (accessed on 26 September 2024).
- Hamilton, A.J.; Burry, K.; Mok, H.-F.; Barker, S.F.; Grove, J.R.; Williamson, V.G. Give Peas a Chance? Urban Agriculture in Developing Countries. A Review. Agron. Sustain. Dev. 2014, 34, 45–73. [Google Scholar] [CrossRef]
- Mok, H.-F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry Fields Forever? Urban Agriculture in Developed Countries: A Review. Agron. Sustain. Dev. 2014, 34, 21–43. [Google Scholar] [CrossRef]
- Hynes, H.P.; Howe, G. Urban Horticulture in the Contemporary United States: Personal and Community Benefits. Acta Hortic. 2004, 643, 171–181. [Google Scholar] [CrossRef]
- Algaze, G. Ancient Mesopotamia at the Dawn of Civilization: The Evolution of an Urban Landscape; University of Chicago Press: Chicago, IL, USA, 2009; ISBN 978-0-226-01378-7. [Google Scholar]
- Wiseman, D.J. Mesopotamian Gardens. Anatol. Stud. 1983, 33, 137–144. [Google Scholar] [CrossRef]
- Fallahi, E.; Fallahi, P.; Mahdavi, S. Ancient Urban Gardens of Persia: Concept, History, and Influence on Other World Gardens. HortTechnology 2020, 30, 6–12. [Google Scholar] [CrossRef]
- Bowman, A.; Wilson, A. Settlement, Urbanization, and Population; Oxford University Press: Oxford, UK, 2011; ISBN 978-0-19-960235-3. [Google Scholar]
- Gharipour, M. Gardens of Renaissance Europe and the Islamic Empires: Encounters and Confluences; Penn State Press: University Park, PA, USA, 2017; ISBN 978-0-271-08069-7. [Google Scholar]
- Magnusson, R.J. Medieval Urban Environmental History. Hist. Compass 2013, 11, 189–200. [Google Scholar] [CrossRef]
- Rusanov, A.V. Dacha Dwellers and Gardeners: Garden Plots and Second Homes in Europe and Russia. Popul. Econ. 2019, 3, 107–124. [Google Scholar] [CrossRef]
- Lawson, L.J. Garden for Victory! The American Victory Garden Campaign of World War II. In Greening in the Red Zone: Disaster, Resilience and Community Greening; Tidball, K.G., Krasny, M.E., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 181–195. ISBN 978-90-481-9947-1. [Google Scholar]
- Brown, K.H.; Jameton, A.L. Public Health Implications of Urban Agriculture. J. Public Health Policy 2000, 21, 20–39. [Google Scholar] [CrossRef]
- Herrmann, M.M. The Modern Day “Victory Garden”. Procedia Eng. 2015, 118, 647–653. [Google Scholar] [CrossRef]
- Bieri, D.; Joshi, N.; Wende, W.; Kleinschroth, F. Increasing Demand for Urban Community Gardening before, during and after the COVID-19 Pandemic. Urban For. Urban Green. 2024, 92, 128206. [Google Scholar] [CrossRef]
- Oja Da Silva, M. Grassroots Initiatives for Urban Sustainability Transition: A Case Study of Urban Farming Projects in Informal Settlements in Nairobi, Kenya. Master’s Thesis, Uppsala University, Uppsala, Sweden, May 2023. [Google Scholar]
- Sashika, M.A.N.; Gammanpila, H.W.; Priyadarshani, S.V.G.N. Exploring the Evolving Landscape: Urban Horticulture Cropping Systems–Trends and Challenges. Sci. Hortic. 2024, 327, 112870. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Dear, K.; Wilkinson, P. Challenges and Opportunities for Urban Environmental Health and Sustainability: The HEALTHY-POLIS Initiative. Environ. Health 2016, 15, S30. [Google Scholar] [CrossRef] [PubMed]
- Nwosisi, S.; Nandwani, D. Urban Horticulture: Overview of Recent Developments. In Urban Horticulture: Sustainability for the Future; Nandwani, D., Ed.; Springer International Publishing: Cham, Swizerland, 2018; pp. 3–29. ISBN 978-3-319-67017-1. [Google Scholar]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Gericke, W.F. Hydroponics—Crop Production in Liquid Culture Media. Science 1937, 85, 177–178. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 8th ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-00-313325-4. [Google Scholar]
- Despommier, D.D. The Vertical Farm: Feeding the World in the 21st Century, 1st ed.; Thomas Dunne Books/St. Martin’s Press: New York, NY, USA, 2010; ISBN 978-0-312-61139-2. [Google Scholar]
- Kozai, T.; Niu, G. Chapter 2—Role of the Plant Factory with Artificial Lighting (PFAL) in Urban Areas. In Plant Factory, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 7–34. ISBN 978-0-12-816691-8. [Google Scholar]
- Shamshiri, R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Janssen, R.J.P.; Krijn, M.P.C.M.; van den Bergh, T.; van Elmpt, R.F.M.; Nicole, C.C.S.; van Slooten, U. Chapter 7.2—Optimizing Plant Factory Performance for Local Requirements. In Plant Factory Using Artificial Light; Anpo, M., Fukuda, H., Wada, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 281–293. ISBN 978-0-12-813973-8. [Google Scholar]
- Butturini, M.; Marcelis, L.F.M. Chapter 4—Vertical Farming in Europe: Present Status and Outlook. In Plant Factory, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 77–91. ISBN 978-0-12-816691-8. [Google Scholar]
- Van Gerrewey, T.; Boon, N.; Geelen, D. Vertical Farming: The Only Way Is Up? Agronomy 2022, 12, 2. [Google Scholar] [CrossRef]
- Wang, X.; Onychko, V.; Zubko, V.; Wu, Z.; Zhao, M. Sustainable Production Systems of Urban Agriculture in the Future: A Case Study on the Investigation and Development Countermeasures of the Plant Factory and Vertical Farm in China. Front. Sustain. Food Syst. 2023, 7, 973341. [Google Scholar] [CrossRef]
- Mandriota, L.; Blanco, I.; Scarascia-Mugnozza, G. Plant Factory with Artificial Lighting: Innovation Technology for Sustainable Agriculture Production. In Proceedings of the AIIA 2022: Biosystems Engineering Towards the Green Deal, Palermo, Italy, 19–22 September 2022; Ferro, V., Giordano, G., Orlando, S., Vallone, M., Cascone, G., Porto, S.M.C., Eds.; Springer International Publishing: Cham, Swizerland, 2023; pp. 1163–1172. [Google Scholar]
- Paucek, I.; Durante, E.; Pennisi, G.; Quaini, S.; Gianquinto, G.; Orsini, F. A Methodological Tool for Sustainability and Feasibility Assessment of Indoor Vertical Farming with Artificial Lighting in Africa. Sci. Rep. 2023, 13, 2109. [Google Scholar] [CrossRef]
- Oh, S.; Lu, C. Vertical Farming—Smart Urban Agriculture for Enhancing Resilience and Sustainability in Food Security. J. Hortic. Sci. Biotechnol. 2023, 98, 133–140. [Google Scholar] [CrossRef]
- Adegun, O.B.; Olusoga, O.O.; Mbuya, E.C. Prospects and Problems of Vertical Greening within Low-Income Urban Settings in Sub-Sahara Africa. J. Urban Ecol. 2022, 8, juac016. [Google Scholar] [CrossRef]
- Castellanos, L.T.; Águila, M.V.G.; Ora, R.C.; Paniagua, F.S. Propuesta de diseño de una plant factory con arquitectura de cámara prismática hexagonal para crecimiento de cultivos de hortalizas (variedad romana parris island) en formato de muro vertical. Rev. Cienc. E Innov. Agroaliment. Univ. Guanaj. 2023, 5, 44–64. [Google Scholar] [CrossRef]
- Chavan, S.G.; Chen, Z.-H.; Ghannoum, O.; Cazzonelli, C.I.; Tissue, D.T. Current Technologies and Target Crops: A Review on Australian Protected Cropping. Crops 2022, 2, 172–185. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A.; Hamm, M.W. Energy Optimisation of Plant Factories and Greenhouses for Different Climatic Conditions. Energy Convers. Manag. 2021, 243, 114336. [Google Scholar] [CrossRef]
- Al-Chalabi, M. Vertical Farming: Skyscraper Sustainability? Sustain. Cities Soc. 2015, 18, 74–77. [Google Scholar] [CrossRef]
- da Luz, C.D.; Diógenes, A.N. Scientific research trends for plant factory with artificial lighting: Scoping review. Rev. Bras. Ciênc. Ambient. 2023, 58, 224–232. [Google Scholar] [CrossRef]
- Wang, F.; Park, J.-H. Examination of the Global Plant Factory’s National Competitiveness via Artificial Intelligence-Driven Research Analysis. Int. J. Appl. Inf. Manag. 2023, 3, 125–133. [Google Scholar] [CrossRef]
- Abarca, V.H.A.; González-Sandoval, D.C.; Martínez-Ávila, G.C.G.; Rojas, R. Innovation in Agriculture: A Review of Plant Factory. In Biocontrol Systems and Plant Physiology in Modern Agriculture; Apple Academic Press: Waretown, NJ, USA, 2022; ISBN 978-1-00-327711-8. [Google Scholar]
- Sipos, L.; Boros, I.F.; Csambalik, L.; Székely, G.; Jung, A.; Balázs, L. Horticultural Lighting System Optimalization: A Review. Sci. Hortic. 2020, 273, 109631. [Google Scholar] [CrossRef]
- Hyunjin, C.; Sainan, H. A Study on the Design and Operation Method of Plant Factory Using Artificial Intelligence. Nanotechnol. Environ. Eng. 2021, 6, 41. [Google Scholar] [CrossRef]
- Kim, H.; Oh, D.; Jang, H.; Koo, C.; Hong, T.; Kim, J. Development of a Multi-Node Monitoring System for Analyzing Plant Growth and Indoor Environment Interactions: An Empirical Study on a Plant Factory. Comput. Electron. Agric. 2023, 214, 108311. [Google Scholar] [CrossRef]
- Belista, F.C.L.; Go, M.P.C.; Luceñara, L.L.; Policarpio, C.J.G.; Tan, X.J.M.; Baldovino, R.G. A Smart Aeroponic Tailored for IoT Vertical Agriculture Using Network Connected Modular Environmental Chambers. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; pp. 1–4. [Google Scholar]
- Vatistas, C.; Avgoustaki, D.D.; Bartzanas, T. A Systematic Literature Review on Controlled-Environment Agriculture: How Vertical Farms and Greenhouses Can Influence the Sustainability and Footprint of Urban Microclimate with Local Food Production. Atmosphere 2022, 13, 1258. [Google Scholar] [CrossRef]
- Fujiyama, K.; Muranaka, T.; Okazawa, A.; Seki, H.; Taguchi, G.; Yasumoto, S. Recent Advances in Plant-Based Bioproduction. J. Biosci. Bioeng. 2024, 138, 1–12. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Ju, J.; Liu, K.; Song, J.; Zhang, S.; Zhang, M.; Hu, Y.; Liu, X.; Li, Y.; Liu, H. Technology of Plant Factory for Vegetable Crop Speed Breeding. Front. Plant Sci. 2024, 15, 1414860. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.-H.; Yoon, Y.-H.; Shin, S.-H.; Ju, S.-Y.; Yeum, K.-J. Recent Trends in Urban Agriculture to Improve Bioactive Content of Plant Foods. Horticulturae 2022, 8, 767. [Google Scholar] [CrossRef]
- Wisdayanti, B.G.; Nugroho, A.P.; Sutiarso, L.; Falah, M.A.F.; Dzaky, M.A.F. Evaluating Urban Mini Plant Factories: Engineering and Software Cost Perspectives for Agriculture Sustainability. IOP Conf. Ser. Earth Environ. Sci. 2024, 1302, 012113. [Google Scholar] [CrossRef]
- Hu, G.; You, F. AI-Enabled Cyber-Physical-Biological Systems for Smart Energy Management and Sustainable Food Production in a Plant Factory. Appl. Energy 2024, 356, 122334. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Thorne, S.; Malterud, K. Time to Challenge the Spurious Hierarchy of Systematic over Narrative Reviews? Eur. J. Clin. Invest. 2018, 48, e12931. [Google Scholar] [CrossRef]
- Brignardello-Petersen, R.; Santesso, N.; Guyatt, G.H. Systematic Reviews of the Literature: An Introduction to Current Methods. Am. J. Epidemiol. 2024, kwae232. [Google Scholar] [CrossRef]
- Corsi, S.; Dell’Ovo, M.; Dezio, C.; Longo, A.; Oppio, A. Beyond Food: Framing Ecosystem Services Value in Peri-Urban Farming in the Post-Covid Era with a Multidimensional Perspective. The Case of Cascina Biblioteca in Milan (Italy). Cities 2023, 137, 104332. [Google Scholar] [CrossRef]
- Pulighe, G.; Lupia, F. Food First: COVID-19 Outbreak and Cities Lockdown a Booster for a Wider Vision on Urban Agriculture. Sustainability 2020, 12, 5012. [Google Scholar] [CrossRef]
- Maćkiewicz, B.; Puente Asuero, R.; Pawlak, K. Sciendo. Quaest. Geogr. 2018, 37, 131–150. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Sultan, M.; Monfet, D.; Rahman, M.S.; Zhang, Y.; Zahid, A.; Bilal, M.; Ahsan, T.M.A.; Achour, Y. A Critical Review on Efficient Thermal Environment Controls in Indoor Vertical Farming. J. Clean. Prod. 2023, 425, 138923. [Google Scholar] [CrossRef]
- Birkby, J. Vertical Farming. ATTRA Sustain. Agric. 2016, 2, 1–12. [Google Scholar]
- Toku, A.; Twumasi Amoah, S.; Nyabanyi N-yanbini, N. Exploring the Potentials of Urban Crop Farming and the Question of Environmental Sustainability. City Environ. Interact. 2024, 24, 100167. [Google Scholar] [CrossRef]
- Tilbury, D. Environmental Education for Sustainability: Defining the New Focus of Environmental Education in the 1990s. Environ. Educ. Res. 1995, 1, 195–212. [Google Scholar] [CrossRef]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban Agriculture in the Developing World: A Review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef]
- Petzke, N.; König, B.; Bokelmann, W. Plant Protection in Private Gardens in Germany: Between Growing Environmental Awareness, Knowledge and Actual Behaviour. Eur. J. Hortic. Sci. 2021, 86, 59–68. [Google Scholar] [CrossRef]
- Scheromm, P.; Javelle, A. Gardening in an Urban Farm: A Way to Reconnect Citizens with the Soil. Urban For. Urban Green. 2022, 72, 127590. [Google Scholar] [CrossRef]
- Donadieu, P.; Rémy, É.; Girard, M.-C. Les sols peuvent-ils devenir des biens communs? Nat. Sci. Sociétés 2016, 24, 261–269. [Google Scholar] [CrossRef]
- Chalmandrier, M.; Canavese, M.; Petit-Berghem, Y.; Rémy, É. «L’agriculture urbaine», entre concept scientifique et modèle d’action. Géographie Cult. 2017, 101, 119–138. [Google Scholar] [CrossRef]
- Clayton, S.; Colléony, A.; Conversy, P.; Maclouf, E.; Martin, L.; Torres, A.-C.; Truong, M.-X.; Prévot, A.-C. Transformation of Experience: Toward a New Relationship with Nature. Conserv. Lett. 2017, 10, 645–651. [Google Scholar] [CrossRef]
- Al-Delaimy, W.K.; Webb, M. Community Gardens as Environmental Health Interventions: Benefits Versus Potential Risks. Curr. Environ. Health Rep. 2017, 4, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.S.N.; Reza, M.N.; Chowdhury, M.; Ali, M.; Samsuzzaman; Ali, M.R.; Lee, K.Y.; Chung, S.-O. Technological Trends and Engineering Issues on Vertical Farms: A Review. Horticulturae 2023, 9, 1229. [Google Scholar] [CrossRef]
- Yuan, G.N.; Marquez, G.P.B.; Deng, H.; Iu, A.; Fabella, M.; Salonga, R.B.; Ashardiono, F.; Cartagena, J.A. A Review on Urban Agriculture: Technology, Socio-Economy, and Policy. Heliyon 2022, 8, e11583. [Google Scholar] [CrossRef]
- Xu, D.; Ahmed, H.A.; Tong, Y.; Yang, Q.; van Willigenburg, L.G. Optimal Control as a Tool to Investigate the Profitability of a Chinese Plant Factory—Lettuce Production System. Biosyst. Eng. 2021, 208, 319–332. [Google Scholar] [CrossRef]
- Dubová, L.; Macháč, J.; Vacková, A. Food Provision, Social Interaction or Relaxation: Which Drivers Are Vital to Being a Member of Community Gardens in Czech Cities? Sustainability 2020, 12, 9588. [Google Scholar] [CrossRef]
- Barui, P.; Ghosh, P.; Debangshi, U. Vertical Farming—an Overview. Plant Arch. 2022, 22, 223–228. [Google Scholar] [CrossRef]
- Khan, M.M.; Akram, M.T.; Janke, R.; Qadri, R.W.K.; Al-Sadi, A.M.; Farooque, A.A. Urban Horticulture for Food Secure Cities through and beyond COVID-19. Sustainability 2020, 12, 9592. [Google Scholar] [CrossRef]
- Diekmann, L.O.; Gray, L.C.; Baker, G.A. Growing ‘Good Food’: Urban Gardens, Culturally Acceptable Produce and Food Security. Renew. Agric. Food Syst. 2020, 35, 169–181. [Google Scholar] [CrossRef]
- Kim, J.E. Fostering Behaviour Change to Encourage Low-Carbon Food Consumption through Community Gardens. Int. J. Urban Sci. 2017, 21, 364–384. [Google Scholar] [CrossRef]
- Lee, J.H.; Matarrita-Cascante, D. Gardeners’ Past Gardening Experience and Its Moderating Effect on Community Garden Participation. Sustainability 2019, 11, 3308. [Google Scholar] [CrossRef]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health Risk from Heavy Metals via Consumption of Food Crops in the Vicinity of Dabaoshan Mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Wesener, A.; Fox-Kämper, R.; Sondermann, M.; Münderlein, D. Placemaking in Action: Factors That Support or Obstruct the Development of Urban Community Gardens. Sustainability 2020, 12, 657. [Google Scholar] [CrossRef]
- Santiteerakul, S.; Sopadang, A.; Yaibuathet Tippayawong, K.; Tamvimol, K. The Role of Smart Technology in Sustainable Agriculture: A Case Study of Wangree Plant Factory. Sustainability 2020, 12, 4640. [Google Scholar] [CrossRef]
- Baumont de Oliveira, F.J.; Ferson, S.; Dyer, R.A.D.; Thomas, J.M.H.; Myers, P.D.; Gray, N.G. How High Is High Enough? Assessing Financial Risk for Vertical Farms Using Imprecise Probability. Sustainability 2022, 14, 5676. [Google Scholar] [CrossRef]
- Kessler, R. Urban Gardening: Managing the Risks of Contaminated Soil. Environ. Health Perspect. 2013, 121, A326–A333. [Google Scholar] [CrossRef]
- Cooper, A.M.; Felix, D.; Alcantara, F.; Zaslavsky, I.; Work, A.; Watson, P.L.; Pezzoli, K.; Yu, Q.; Zhu, D.; Scavo, A.J.; et al. Monitoring and Mitigation of Toxic Heavy Metals and Arsenic Accumulation in Food Crops: A Case Study of an Urban Community Garden. Plant Direct 2020, 4, e00198. [Google Scholar] [CrossRef]
- Jakusné Sári, S. Tőzeghelyettesítő Anyagok a Paprikahajtatásban. Ph.D. Thesis, Corvinus University of Budapest, Budapest, Hungary, 2007; 140p. [Google Scholar]
- Sári, S.J.; Forró, E. Composted and Natural Organic Materials as Potential Peat-Substituting Media in Green Pepper Growing. Int. J. Hortic. Sci. 2006, 12, 31–35. [Google Scholar]
- Despommier, D. Vertical Farming Using Hydroponics and Aeroponics. In Urban Soils; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-15425-1. [Google Scholar]
- Csambalik, L.; Divéky-Ertsey, A.; Gál, I.; Madaras, K.; Sipos, L.; Székely, G.; Pusztai, P. Sustainability Perspectives of Organic Farming and Plant Factory Systems—From Divergences towards Synergies. Horticulturae 2023, 9, 895. [Google Scholar] [CrossRef]
- Despommier, D. Farming up the City: The Rise of Urban Vertical Farms. Trends Biotechnol. 2013, 31, 388–389. [Google Scholar] [CrossRef]
- Egerer, M.; Liere, H.; Lucatero, A.; Philpott, S.M. Plant Damage in Urban Agroecosystems Varies with Local and Landscape Factors. Ecosphere 2020, 11, e03074. [Google Scholar] [CrossRef]
- Hirt, H. Healthy Soils for Healthy Plants for Healthy Humans: How Beneficial Microbes in the Soil, Food and Gut Are Interconnected and How Agriculture Can Contribute to Human Health. EMBO Rep. 2020, 21, e51069. [Google Scholar] [CrossRef] [PubMed]
- Matteson, K.C.; Langellotto, G.A. Determinates of Inner City Butterfly and Bee Species Richness. Urban Ecosyst. 2010, 13, 333–347. [Google Scholar] [CrossRef]
- Antisari, L.V.; Orsini, F.; Marchetti, L.; Vianello, G.; Gianquinto, G. Heavy Metal Accumulation in Vegetables Grown in Urban Gardens. Agron. Sustain. Dev. 2015, 35, 1139–1147. [Google Scholar] [CrossRef]
- van Delden, S.H.; SharathKumar, M.; Butturini, M.; Graamans, L.J.A.; Heuvelink, E.; Kacira, M.; Kaiser, E.; Klamer, R.S.; Klerkx, L.; Kootstra, G.; et al. Current Status and Future Challenges in Implementing and Upscaling Vertical Farming Systems. Nat. Food 2021, 2, 944–956. [Google Scholar] [CrossRef]
- Garnett, T. Plating up Solutions. Science 2016, 353, 1202–1204. [Google Scholar] [CrossRef]
- Nighswander, G.P.; Sinclair, J.S.; Dale, A.G.; Qiu, J.; Iannone, B.V. Importance of Plant Diversity and Structure for Urban Garden Pest Resistance. Landsc. Urban Plan. 2021, 215, 104211. [Google Scholar] [CrossRef]
- Anderson, C.B. Biodiversity Monitoring, Earth Observations and the Ecology of Scale. Ecol. Lett. 2018, 21, 1572–1585. [Google Scholar] [CrossRef] [PubMed]
- Zimmerer, K.S.; de Haan, S.; Jones, A.D.; Creed-Kanashiro, H.; Tello, M.; Carrasco, M.; Meza, K.; Plasencia Amaya, F.; Cruz-Garcia, G.S.; Tubbeh, R.; et al. The Biodiversity of Food and Agriculture (Agrobiodiversity) in the Anthropocene: Research Advances and Conceptual Framework. Anthropocene 2019, 25, 100192. [Google Scholar] [CrossRef]
- Stanley, B.W.; Stark, B.L.; Johnston, K.L.; Smith, M.E. Urban Open Spaces in Historical Perspective: A Transdisciplinary Typology and Analysis. Urban Geogr. 2012, 33, 1089–1117. [Google Scholar] [CrossRef]
- de la Cal, P. Urban Agriculture—Towards a Continuous Productive-Space System in the City. In Urban Visions: From Planning Culture to Landscape Urbanism; Díez Medina, C., Monclús, J., Eds.; Springer International Publishing: Cham, Swizerland, 2018; pp. 329–338. ISBN 978-3-319-59047-9. [Google Scholar]
- Valenzuela Montes, L.M.; Pérez Campaña, R. Agro-Urban Open Space as a Component of Agricultural Multifunctionality. J. Land Use Sci. 2013, 9, 82–104. [Google Scholar]
- Sheehan, M.C. Urban Agrobiodiversity, Health and City Climate Adaptation Plans. Bull. World Health Organ. 2022, 101, 121. [Google Scholar] [CrossRef] [PubMed]
- Biasi, R.; Brunori, E. Agrobiodiversity-Based Landscape Design in Urban Areas. Plants 2023, 12, 4121. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, C.A.; Bonnett, G.D.; McIntyre, C.L.; Hochman, Z.; Wasson, A.P. Strategies to Improve the Productivity, Product Diversity and Profitability of Urban Agriculture. Agric. Syst. 2019, 174, 133–144. [Google Scholar] [CrossRef]
- Giller, K.E.; Franke, A.C.; Abaidoo, R.; Baijukya, F.; Bala, A.; Boahen, S.; Dashiell, K.; Kantengwa, S.; Sanginga, J.-M.; Sanginga, N. N2Africa: Putting Nitrogen Fixation to Work for Smallholder Farmers in Africa. In Agro-Ecological Intensification of Agricultural Systems in the African Highlands; Routledge: Milton Park, UK, 2013; ISBN 978-0-203-11474-2. [Google Scholar]
- Finch, S.; Collier, R.h. Host-Plant Selection by Insects—A Theory Based on ‘Appropriate/Inappropriate Landings’ by Pest Insects of Cruciferous Plants. Entomol. Exp. Appl. 2000, 96, 91–102. [Google Scholar] [CrossRef]
- Farooq, M.; Jabran, K.; Cheema, Z.A.; Wahid, A.; Siddique, K.H. The Role of Allelopathy in Agricultural Pest Management. Pest Manag. Sci. 2011, 67, 493–506. [Google Scholar] [CrossRef]
- Liu, J.; Oita, A.; Hayashi, K.; Matsubae, K. Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability 2022, 14, 1042. [Google Scholar] [CrossRef]
- Lin, B.B.; Philpott, S.M.; Jha, S. The Future of Urban Agriculture and Biodiversity-Ecosystem Services: Challenges and next Steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.; van der Ploeg, S.; Aronson, J.; Blignaut, J.; Gómez-Baggethun, E.; Nowak, D.; Kronenberg, J.; de Groot, R. Benefits of Restoring Ecosystem Services in Urban Areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef]
- Loram, A.; Warren, P.H.; Gaston, K.J. Urban Domestic Gardens (XIV): The Characteristics of Gardens in Five Cities. Environ. Manage. 2008, 42, 361–376. [Google Scholar] [CrossRef]
- McKinney, M.L. Effects of Urbanization on Species Richness: A Review of Plants and Animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Sattler, T.; Duelli, P.; Obrist, M.K.; Arlettaz, R.; Moretti, M. Response of Arthropod Species Richness and Functional Groups to Urban Habitat Structure and Management. Landsc. Ecol. 2010, 25, 941–954. [Google Scholar] [CrossRef]
- Baker, P.J.; Harris, S. Urban Mammals: What Does the Future Hold? An Analysis of the Factors Affecting Patterns of Use of Residential Gardens in Great Britain. Mammal Rev. 2007, 37, 297–315. [Google Scholar] [CrossRef]
- Leong, M.; Dunn, R.R.; Trautwein, M.D. Biodiversity and Socioeconomics in the City: A Review of the Luxury Effect. Biol. Lett. 2018, 14, 20180082. [Google Scholar] [CrossRef]
- Cooper, D.S.; Wood, E.M.; Katz, N.D.; Superfisky, K.; Osborn, F.M.; Novoselov, A.; Tarczynski, J.; Bacasen, L.K. Large Cities Fall Behind in “Neighborhood Biodiversity”. Front. Conserv. Sci. 2021, 2, 734931. [Google Scholar] [CrossRef]
- Zerbe, S.; Maurer, U.; Schmitz, S.; Sukopp, H. Biodiversity in Berlin and Its Potential for Nature Conservation. Landsc. Urban Plan. 2003, 62, 139–148. [Google Scholar] [CrossRef]
- Southwood, T.R.E.; Brown, V.K.; Reader, P.M. The Relationships of Plant and Insect Diversities in Succession. Biol. J. Linn. Soc. 1979, 12, 327–348. [Google Scholar] [CrossRef]
- Byrne, L.B.; Bruns, M.A.; Kim, K.C. Ecosystem Properties of Urban Land Covers at the Aboveground–Belowground Interface. Ecosystems 2008, 11, 1065–1077. [Google Scholar] [CrossRef]
- Daniels, G.D.; Kirkpatrick, J.B. Does Variation in Garden Characteristics Influence the Conservation of Birds in Suburbia? Biol. Conserv. 2006, 133, 326–335. [Google Scholar] [CrossRef]
- Kühn, I.; Brandl, R.; Klotz, S. The Flora of German Cities Is Naturally Species Rich. Evol. Ecol. Res. 2004, 6, 749–764. [Google Scholar]
- Luck, G.W. A Review of the Relationships between Human Population Density and Biodiversity. Biol. Rev. 2007, 82, 607–645. [Google Scholar] [CrossRef] [PubMed]
- Matteson, K.C.; Ascher, J.S.; Langellotto, G.A. Bee Richness and Abundance in New York City Urban Gardens. Ann. Entomol. Soc. Am. 2008, 101, 140–150. [Google Scholar] [CrossRef]
- Colding, J.; Lundberg, J.; Folke, C. Incorporating Green-Area User Groups in Urban Ecosystem Management. AMBIO J. Hum. Environ. 2006, 35, 237–244. [Google Scholar] [CrossRef]
- Bennett, A.B.; Gratton, C. Local and Landscape Scale Variables Impact Parasitoid Assemblages across an Urbanization Gradient. Landsc. Urban Plan. 2012, 104, 26–33. [Google Scholar] [CrossRef]
- Doody, B.J.; Perkins, H.C.; Sullivan, J.J.; Meurk, C.D.; Stewart, G.H. Performing Weeds: Gardening, Plant Agencies and Urban Plant Conservation. Geoforum 2014, 56, 124–136. [Google Scholar] [CrossRef]
- Harlan, J.R.; deWet, J.M.J. Some Thoughts about Weeds. Econ. Bot. 1965, 19, 16–24. [Google Scholar] [CrossRef]
- Thompson, K.; Austin, K.C.; Smith, R.M.; Warren, P.H.; Angold, P.G.; Gaston, K.J. Urban Domestic Gardens (I): Putting Small-Scale Plant Diversity in Context. J. Veg. Sci. 2003, 14, 71–78. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S. Sustainable Approach to Weed Management: The Role of Precision Weed Management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Vuckovic, M.; Kiesel, K.; Mahdavi, A. Current Trends in Urban Heat Island Mitigation Research: Observations Based on a Comprehensive Research Repository. Urban Clim. 2017, 21, 1–26. [Google Scholar] [CrossRef]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local Climate Change and Urban Heat Island Mitigation Techniques—The State of the Art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef]
- Lowenstein, D.M.; Matteson, K.C.; Minor, E.S. Evaluating the Dependence of Urban Pollinators on Ornamental, Non-Native, and ‘Weedy’ Floral Resources. Urban Ecosyst. 2019, 22, 293–302. [Google Scholar] [CrossRef]
- Larson, J.L.; Kesheimer, A.J.; Potter, D.A. Pollinator Assemblages on Dandelions and White Clover in Urban and Suburban Lawns. J. Insect Conserv. 2014, 18, 863–873. [Google Scholar] [CrossRef]
- Thompson, J.L.; Thompson, J.E. The Urban Jungle and Allergy. Immunol. Allergy Clin. 2003, 23, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Pınar, N.M. Urban Landscape and Pollen Allergy. Commun. Fac. Sci. Univ. Ank. Ser. C Biol. 2018, 27, 120–125. [Google Scholar] [CrossRef]
- Shrestha, S.K.; Katelaris, C.; Dharmage, S.C.; Burton, P.; Vicendese, D.; Tham, R.; Abramson, M.J.; Erbas, B. High Ambient Levels of Grass, Weed and Other Pollen Are Associated with Asthma Admissions in Children and Adolescents: A Large 5-Year Case-Crossover Study. Clin. Exp. Allergy 2018, 48, 1421–1428. [Google Scholar] [CrossRef]
- Baker, L.E. Tending Cultural Landscapes and Food Citizenship in Toronto’s Community Gardens. Geogr. Rev. 2004, 94, 305–325. [Google Scholar] [CrossRef]
- Hou, J. Urban Community Gardens as Multimodal Social Spaces. In Greening Cities: Forms and Functions; Tan, P.Y., Jim, C.Y., Eds.; Springer: Singapore, 2017; pp. 113–130. ISBN 978-981-10-4113-6. [Google Scholar]
- Hawkins, J.L.; Thirlaway, K.J.; Backx, K.; Clayton, D.A. Allotment Gardening and Other Leisure Activities for Stress Reduction and Healthy Aging. HortTechnology 2011, 21, 577–585. [Google Scholar] [CrossRef]
- Tan, L.; Neo, H. “Community in Bloom”: Local Participation of Community Gardens in Urban Singapore. Local Environ. 2009, 14, 529–539. [Google Scholar] [CrossRef]
- Maurer, M. Chickens, Weeds, and the Production of Green Middle-Class Identity through Urban Agriculture in Deindustrial Michigan, USA. Agric. Hum. Values 2021, 38, 467–479. [Google Scholar] [CrossRef]
- Jordi-Sánchez, M.; Díaz-Aguilar, A.L. Constructing Organic Food through Urban Agriculture, Community Gardens in Seville. Sustainability 2021, 13, 4091. [Google Scholar] [CrossRef]
- Md Meftaul, I.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the Urban Environment: A Potential Threat That Knocks at the Door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef] [PubMed]
- ‘Yotti’ Kingsley, J.; Townsend, M. ‘Dig In’ to Social Capital: Community Gardens as Mechanisms for Growing Urban Social Connectedness. Urban Policy Res. 2006, 24, 525–537. [Google Scholar] [CrossRef]
- Mosaleeyanon, K. Current Situation, Direction, Policy Support, and Challenges of Plant Factories with Artificial Lighting (PFAL) in Thailand. FFTC J. Agric. Policy 2022, 3, 46–56. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Marcinkowska, K.; Gruszka, D.; Kluczek, K. The Effects of Rabbit-Manure-Derived Biochar Co-Application with Compost on the Availability and Heavy Metal Uptake by Green Leafy Vegetables. Agronomy 2022, 12, 2552. [Google Scholar] [CrossRef]
- Takácsné Hájos, M. Zöldséghajtatás; Debrecen University Press: Debrecen, Hungary, 2014. [Google Scholar]
- European Commission Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists (Text with EEA Relevance). Off. J. Eur. Union 2021, L 253, 13–48.
- Thompson, R.C.; Moore, C.J.; vom Saal, F.S.; Swan, S.H. Plastics, the Environment and Human Health: Current Consensus and Future Trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Song, P.; Zhang, H.; Duan, X.; Wei, Y.; Wang, H.; Wang, S. Microplastic Materials in the Environment: Problem and Strategical Solutions. Prog. Mater. Sci. 2023, 132, 101035. [Google Scholar] [CrossRef]
- Grenet, M.; Rémy, É.; Canavèse, M.; Berthier, N. Des jardiniers à l’épreuve du sol urbain. Proj. Paysage Rev. Sci. Sur Concept. L’aménagement L’espace 2015, 13, 1–15. [Google Scholar] [CrossRef]
- Rémy, E.; Branchu, P.; Canavese, M.; Berthier, N. Les risques sanitaires liés aux jardins collectifs: L’expertise sur le sol urbain en débat. Lien Soc. Polit. 2017, 78, 49–69. [Google Scholar] [CrossRef]
- Troch, V. Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium. In Proceedings of the 18th International Conference on Heavy Metals in the Environment, Ghent, Belgium, 12–15 September 2016. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.-T.; Zhou, X.; Liu, L.; Gu, J.-F.; Wang, W.-L.; Zou, J.-L.; Tian, T.; Peng, P.-Q.; Liao, B.-H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public. Health 2016, 13, 289. [Google Scholar] [CrossRef]
- Arrobas, M.; Lopes, H.; Rodrigues, M.Â. Urban Agriculture in Bragança, Northeast Portugal: Assessing the Nutrient Dynamic in the Soil and Plants, and Their Contamination with Trace Metals. Biol. Agric. Hortic. 2017, 33, 1–13. [Google Scholar] [CrossRef]
- Bretzel, F.; Calderisi, M.; Scatena, M.; Pini, R. Soil Quality Is Key for Planning and Managing Urban Allotments Intended for the Sustainable Production of Home-Consumption Vegetables. Environ. Sci. Pollut. Res. 2016, 23, 17753–17760. [Google Scholar] [CrossRef] [PubMed]
- Bullock, P.; Gregory, P.J. Soils in the Urban Environment; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 978-1-4443-1059-7. [Google Scholar]
- Säumel, I.; Kotsyuk, I.; Hölscher, M.; Lenkereit, C.; Weber, F.; Kowarik, I. How Healthy Is Urban Horticulture in High Traffic Areas? Trace Metal Concentrations in Vegetable Crops from Plantings within Inner City Neighbourhoods in Berlin, Germany. Environ. Pollut. 2012, 165, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Zimdahl, R.L.; Skogerboe, R.K. Behavior of Lead in Soil. Environ. Sci. Technol. 1977, 11, 1202–1207. [Google Scholar] [CrossRef]
- Spittler, T.M.; Feder, W.A. A Study of Soil Contamination and Plant Lead Uptake in Boston Urban Gardens. Commun. Soil Sci. Plant Anal. 1979, 10, 1195–1210. [Google Scholar] [CrossRef]
- Menefee, D.; Hettiarachchi, G. Contaminants in Urban Soils: Bioavailability and Transfer. In Urban Soils; CRC Press: Boca Raton, FL, USA, 2017; pp. 175–198. ISBN 978-1-315-15425-1. [Google Scholar]
- Alloway, B.J. Sources of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 11–50. ISBN 978-94-007-4470-7. [Google Scholar]
- Swartjes, F.A. Introduction to Contaminated Site Management. In Dealing with Contaminated Sites: From Theory towards Practical Application; Swartjes, F.A., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 3–89. ISBN 978-90-481-9757-6. [Google Scholar]
- Swartjes, F.A.; Cornelis, C. Human Health Risk Assessment. In Dealing with Contaminated Sites: From Theory towards Practical Application; Swartjes, F.A., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 209–259. ISBN 978-90-481-9757-6. [Google Scholar]
- Manes, F.; Silli, V.; Salvatori, E.; Incerti, G.; Galante, G.; Fusaro, L.; Perrino, C. Urban Ecosystem Services: Tree Diversity and Stability of PM10 Removal in the Metropolitan Area of Rome. Ann. Bot. 2014, 4, 19–26. [Google Scholar] [CrossRef]
- Malone, M. Seeking Justice, Eating Toxics: Overlooked Contaminants in Urban Community Gardens. Agric. Hum. Values 2022, 39, 165–184. [Google Scholar] [CrossRef]
- Brown, M.D.; Shinn, L.M.; Reeser, G.; Browning, M.; Schwingel, A.; Khan, N.A.; Holscher, H.D. Fecal and Soil Microbiota Composition of Gardening and Non-Gardening Families. Sci. Rep. 2022, 12, 1595. [Google Scholar] [CrossRef]
- Lal, R. Home Gardening and Urban Agriculture for Advancing Food and Nutritional Security in Response to the COVID-19 Pandemic. Food Secur. 2020, 12, 871–876. [Google Scholar] [CrossRef]
- Koriesh, E.M.; Abo-Soud, I.H. Facing Climate Change: Urban Gardening and Sustainable Agriculture. In Climate Change Impacts on Agriculture and Food Security in Egypt: Land and Water Resources—Smart Farming—Livestock, Fishery, and Aquaculture; Ewis Omran, E.-S., Negm, A.M., Eds.; Springer International Publishing: Cham, Swizerland, 2020; pp. 345–419. ISBN 978-3-030-41629-4. [Google Scholar]
- Marquez, G.P.B.; Takeuchi, H.; Montaño, M.N.E.; Hasegawa, T. Performance of Rice Straw as Mono- and Co-Feedstock of Ulva Spp. for Thalassic Biogas Production. Heliyon 2020, 6, 33015390. [Google Scholar] [CrossRef]
- Ehmann, A.; Thumm, U.; Lewandowski, I. Fertilizing Potential of Separated Biogas Digestates in Annual and Perennial Biomass Production Systems. Front. Sustain. Food Syst. 2018, 2, 12. [Google Scholar] [CrossRef]
- Stoknes, K.; Scholwin, F.; Krzesiński, W.; Wojciechowska, E.; Jasińska, A. Efficiency of a Novel “Food to Waste to Food” System Including Anaerobic Digestion of Food Waste and Cultivation of Vegetables on Digestate in a Bubble-Insulated Greenhouse. Waste Manag. 2016, 56, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The Biomass Distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [PubMed]
- Curtis, T.P.; Sloan, W.T. Exploring Microbial Diversity—A Vast Below. Science 2005, 309, 1331–1333. [Google Scholar] [CrossRef] [PubMed]
- Dubey, D.-A.; Ahmad, M.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A.; Sharma, S.; Khare, P.K.; Khan, M.; Khan, M. Soil Microbiome: A Key Player for Conservation of Soil Health under Changing Climate. Biodivers. Conserv. 2019, 28, 2405–2429. [Google Scholar] [CrossRef]
- Callaway, E. Devastating Wheat Fungus Appears in Asia for First Time. Nature 2016, 532, 421–422. [Google Scholar] [CrossRef]
- Blum, W.E.H.; Zechmeister-Boltenstern, S.; Keiblinger, K.M. Does Soil Contribute to the Human Gut Microbiome? Microorganisms 2019, 7, 287. [Google Scholar] [CrossRef]
- Roslund, M.I.; Laitinen, O.H.; Sinkkonen, A. Scoping Review on Soil Microbiome and Gut Health: Are Soil Microorganisms Missing from the Planetary Health Plate? People Nat. 2024, 6, 1078–1095. [Google Scholar] [CrossRef]
- Blaser, M.J.; Cardon, Z.G.; Cho, M.K.; Dangl, J.L.; Donohue, T.J.; Green, J.L.; Knight, R.; Maxon, M.E.; Northen, T.R.; Pollard, K.S.; et al. Toward a Predictive Understanding of Earth’s Microbiomes to Address 21st Century Challenges. mBio 2016, 7, e00714-16. [Google Scholar] [CrossRef] [PubMed]
- Rook, G.A.W. Hygiene Hypothesis and Autoimmune Diseases. Clin. Rev. Allergy Immunol. 2012, 42, 5–15. [Google Scholar] [CrossRef]
- Gascon, M.; Harrall, K.K.; Beavers, A.W.; Glueck, D.H.; Stanislawski, M.A.; Alaimo, K.; Villalobos, A.; Hebert, J.R.; Dexter, K.; Li, K.; et al. Feasibility of Collection and Analysis of Microbiome Data in a Longitudinal Randomized Trial of Community Gardening. Future Microbiol. 2020, 15, 633–648. [Google Scholar] [CrossRef]
- Mhuireach Garden Soil Bacteria Transiently Colonize Gardeners’ Skin after Direct Soil Contact—Mhuireach—2023—Urban Agriculture & Regional Food Systems—Wiley Online Library. Available online: https://acsess.onlinelibrary.wiley.com/doi/full/10.1002/uar2.20035 (accessed on 26 September 2024).
- Petersen, C.; Hamerich, I.K.; Adair, K.L.; Griem-Krey, H.; Torres Oliva, M.; Hoeppner, M.P.; Bohannan, B.J.M.; Schulenburg, H. Host and Microbiome Jointly Contribute to Environmental Adaptation. ISME J. 2023, 17, 1953–1965. [Google Scholar] [CrossRef] [PubMed]
- Probst, M.; Gómez-Brandón, M.; Herbón, C.; Barral, M.T.; Paradelo, R. Fungal-Bacterial Associations in Urban Allotment Garden Soils. Appl. Soil Ecol. 2023, 188, 104896. [Google Scholar] [CrossRef]
- Saarenpää, M.; Roslund, M.I.; Nurminen, N.; Puhakka, R.; Kummola, L.; Laitinen, O.H.; Hyöty, H.; Sinkkonen, A. Urban Indoor Gardening Enhances Immune Regulation and Diversifies Skin Microbiota—A Placebo-Controlled Double-Blinded Intervention Study. Environ. Int. 2024, 187, 108705. [Google Scholar] [CrossRef] [PubMed]
- Oliver, M.A.; Gregory, P.J. Soil, Food Security and Human Health: A Review. Eur. J. Soil Sci. 2015, 66, 257–276. [Google Scholar] [CrossRef]
- Rook, G.A.W. Evolution, the Immune System, and the Health Consequences of Socioeconomic Inequality. mSystems 2022, 7, e01438-21. [Google Scholar] [CrossRef]
- Stein, M.M.; Hrusch, C.L.; Gozdz, J.; Igartua, C.; Pivniouk, V.; Murray, S.E.; Ledford, J.G.; Marques Dos Santos, M.; Anderson, R.L.; Metwali, N.; et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N. Engl. J. Med. 2016, 375, 411–421. [Google Scholar] [CrossRef]
- McDonald, D.; Hyde, E.; Debelius, J.W.; Morton, J.T.; Gonzalez, A.; Ackermann, G.; Aksenov, A.A.; Behsaz, B.; Brennan, C.; Chen, Y.; et al. American Gut: An Open Platform for Citizen Science Microbiome Research. mSystems 2018, 3, e00031-18. [Google Scholar] [CrossRef]
- Jatzlauk, G.; Bartel, S.; Heine, H.; Schloter, M.; Krauss-Etschmann, S. Influences of Environmental Bacteria and Their Metabolites on Allergies, Asthma, and Host Microbiota. Allergy 2017, 72, 1859–1867. [Google Scholar] [CrossRef]
- Aerts, R.; Honnay, O.; Van Nieuwenhuyse, A. Biodiversity and Human Health: Mechanisms and Evidence of the Positive Health Effects of Diversity in Nature and Green Spaces. Br. Med. Bull. 2018, 127, 5–22. [Google Scholar] [CrossRef]
- Flies, E.J.; Skelly, C.; Negi, S.S.; Prabhakaran, P.; Liu, Q.; Liu, K.; Goldizen, F.C.; Lease, C.; Weinstein, P. Biodiverse Green Spaces: A Prescription for Global Urban Health. Front. Ecol. Environ. 2017, 15, 510–516. [Google Scholar] [CrossRef]
- Hanski, I.; von Hertzen, L.; Fyhrquist, N.; Koskinen, K.; Torppa, K.; Laatikainen, T.; Karisola, P.; Auvinen, P.; Paulin, L.; Mäkelä, M.J.; et al. Environmental Biodiversity, Human Microbiota, and Allergy Are Interrelated. Proc. Natl. Acad. Sci. USA 2012, 109, 8334–8339. [Google Scholar] [CrossRef] [PubMed]
- Nurminen, N.; Lin, J.; Grönroos, M.; Puhakka, R.; Kramna, L.; Vari, H.K.; Viskari, H.; Oikarinen, S.; Roslund, M.; Parajuli, A.; et al. Nature-Derived Microbiota Exposure as a Novel Immunomodulatory Approach. Future Microbiol. 2018, 13, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Alaimo, K.; Beavers, A.W.; Crawford, C.; Snyder, E.H.; Litt, J.S. Amplifying Health Through Community Gardens: A Framework for Advancing Multicomponent, Behaviorally Based Neighborhood Interventions. Curr. Environ. Health Rep. 2016, 3, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the Barriers: The Gut Microbiome, Intestinal Permeability and Stress-Related Psychiatric Disorders. Front. Cell. Neurosci. 2015, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Okeke, F.; Roland, B.C.; Mullin, G.E. The Role of the gut Microbiome in the Pathogenesis and Treatment of Obesity. Glob. Adv. Health Medicine 2014, 3, 44–57. [Google Scholar] [CrossRef]
- Brial, F.; Le Lay, A.; Dumas, M.-E.; Gauguier, D. Implication of Gut Microbiota Metabolites in Cardiovascular and Metabolic Diseases. Cell. Mol. Life Sci. 2018, 75, 3977–3990. [Google Scholar] [CrossRef]
- Rosberg, A.-K.; Darlison, J.; Mogren, L.; Alsanius, B. Commercial Wash of Leafy Vegetables Do Not Significantly Decrease Bacterial Load but Leads to Shifts in Bacterial Species Composition. Food Microbiol. 2021, 94, 103667. [Google Scholar] [CrossRef]
- Van Gerrewey, T.; Vandecruys, M.; Ameloot, N.; Perneel, M.; Van Labeke, M.-C.; Boon, N.; Geelen, D. Microbe-Plant Growing Media Interactions Modulate the Effectiveness of Bacterial Amendments on Lettuce Performance Inside a Plant Factory with Artificial Lighting. Agronomy 2020, 10, 1456. [Google Scholar] [CrossRef]
- Li, X.; Kong, P.; Daughtrey, M.; Kosta, K.; Schirmer, S.; Howle, M.; Likins, M.; Hong, C. Characterization of the Soil Bacterial Community from Selected Boxwood Gardens across the United States. Microorganisms 2022, 10, 1514. [Google Scholar] [CrossRef]
- dos Santos, T.B.; Ribas, A.F.; de Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2022, 2, 113–135. [Google Scholar] [CrossRef]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Barbanti, L.; Aamer, M.; Iqbal, M.M.; Nawaz, M.; Mahmood, A.; Ali, A.; et al. Heat Stress in Cultivated Plants: Nature, Impact, Mechanisms, and Mitigation Strategies—A Review. Plant Biosyst.–Int. J. Deal. Asp. Plant Biol. 2021, 155, 211–234. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Rashmi, R.; Toppo, V.; Chole, P.B.; Banadka, A.; Sudheer, W.N.; Nagella, P.; Shehata, W.F.; Al-Mssallem, M.Q.; Alessa, F.M.; et al. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023, 13, 716. [Google Scholar] [CrossRef]
- Nicholson, R.L.; Hammerschmidt, R. Phenolic Compounds and Their Role in Disease Resistance. Annu. Rev. Phytopathol. 1992, 30, 369–389. [Google Scholar] [CrossRef]
- Bennett, R.N.; Wallsgrove, R.M. Secondary Metabolites in Plant Defence Mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Raina, A.; Khan, F.A.; Naushin, F. Chapter 9—Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance: An Overview. In Plant Signaling Molecules; Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 157–168. ISBN 978-0-12-816451-8. [Google Scholar]
- Margaritopoulou, T.; Toufexi, E.; Kizis, D.; Balayiannis, G.; Anagnostopoulos, C.; Theocharis, A.; Rempelos, L.; Troyanos, Y.; Leifert, C.; Markellou, E. Reynoutria Sachalinensis Extract Elicits SA-Dependent Defense Responses in Courgette Genotypes against Powdery Mildew Caused by Podosphaera Xanthii. Sci. Rep. 2020, 10, 3354. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Barański, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Sander, J.-F.; Heitefuss, R. Suceptibility to Erysiphe Graminis f.Sp Tritici and Phenolic Acid Content of Wheat as Influenced by Different Levels of Nitrogen Fertilization. J. Phytopathol. 1998, 146, 495–507. [Google Scholar] [CrossRef]
- Almuayrifi, M.S.B. Effect of Fertilisation, Crop Protection, Pre-Crop and Variety Choice on Yield of Phenols Content Diseases Severity and Yield of Winter Wheat. Ph.D. Thesis, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK, 2013. [Google Scholar]
- Leser, C.; Treutter, D. Effects of Nitrogen Supply on Growth, Contents of Phenolic Compounds and Pathogen (Scab) Resistance of Apple Trees. Physiol. Plant. 2005, 123, 49–56. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, J.; Li, Y.; Luo, G.; Li, L.; Yuan, H.; Mur, L.A.J.; Guo, S. Negative Effects of the Simulated Nitrogen Deposition on Plant Phenolic Metabolism: A Meta-Analysis. Sci. Total Environ. 2020, 719, 137442. [Google Scholar] [CrossRef]
- Mosa, K.A.; Ismail, A.; Helmy, M. Introduction to Plant Stresses. In Plant Stress Tolerance: An Integrated Omics Approach; Mosa, K.A., Ismail, A., Helmy, M., Eds.; Springer International Publishing: Cham, Swizerland, 2017; pp. 1–19. ISBN 978-3-319-59379-1. [Google Scholar]
- Shi, Y.; Ke, X.; Yang, X.; Liu, Y.; Hou, X. Plants Response to Light Stress. J. Genet. Genomics 2022, 49, 735–747. [Google Scholar] [CrossRef]
- Touliatos, D.; Dodd, I.C.; McAinsh, M. Vertical Farming Increases Lettuce Yield per Unit Area Compared to Conventional Horizontal Hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef]
- Wong, C.E.; Teo, Z.W.N.; Shen, L.; Yu, H. Seeing the Lights for Leafy Greens in Indoor Vertical Farming. Trends Food Sci. Technol. 2020, 106, 48–63. [Google Scholar] [CrossRef]
- Boros, I.F.; Székely, G.; Balázs, L.; Csambalik, L.; Sipos, L. Effects of LED Lighting Environments on Lettuce (Lactuca Sativa L.) in PFAL Systems—A Review. Sci. Hortic. 2023, 321, 112351. [Google Scholar] [CrossRef]
- Zha, L.; Liu, W.; Yang, Q.; Zhang, Y.; Zhou, C.; Shao, M. Regulation of Ascorbate Accumulation and Metabolism in Lettuce by the Red:Blue Ratio of Continuous Light Using LEDs. Front. Plant Sci. 2020, 11, 704. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hahida, S.; Yoshihara, T. Effect of Green Light Wavelength and Intensity on Photomorphogenesis and Photosynthesis in Lactuca Sativa. Environ. Exp. Bot. 2012, 75, 128–133. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource Use Efficiency of Indoor Lettuce (Lactuca Sativa L.) Cultivation as Affected by Red:Blue Ratio Provided by LED Lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef]
- Yanagi, T.; Okamoto, K.; Takita, S. Effects of Blue, Red, and Blue/Red Lights of Two Different ppf Levels on Growth and Morphogenesis of Lettuce Plants. Acta Hortic. 1996, 440, 117–122. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.; Yoshihara, T. Blue Light-Emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth after Transplanting in Red Leaf Lettuce. HortScience 2010, 45, 1809–1814. [Google Scholar] [CrossRef]
- Lee, M.-J.; Son, K.-H.; Oh, M.-M. Increase in Biomass and Bioactive Compounds in Lettuce under Various Ratios of Red to Far-Red LED Light Supplemented with Blue LED Light. Hortic. Environ. Biotechnol. 2016, 57, 139–147. [Google Scholar] [CrossRef]
- Kozai, T. Designing a Cultivation System Module (CSM) Considering the Cost Performance: A Step Toward Smart PFALs. In Smart Plant Factory: The Next Generation Indoor Vertical Farms; Kozai, T., Ed.; Springer: Singapore, 2018; pp. 57–80. ISBN 9789811310652. [Google Scholar]
- Yan, Z.; Zuo, J.; Zhou, F.; Shi, J.; Xu, D.; Hu, W.; Jiang, A.; Liu, Y.; Wang, Q. Integrated Analysis of Transcriptomic and Metabolomic Data Reveals the Mechanism by Which LED Light Irradiation Extends the Postharvest Quality of Pak-Choi (Brassica Campestris L. Ssp. Chinensis (L.) Makino Var. Communis Tsen et Lee). Biomolecules 2020, 10, 252. [Google Scholar] [CrossRef]
- Bárcena, A.; Martínez, G.; Costa, L. Low Intensity Light Treatment Improves Purple Kale (Brassica Oleracea Var. Sabellica) Postharvest Preservation at Room Temperature. Heliyon 2019, 5, e02467. [Google Scholar] [CrossRef]
- D’Souza, C.; Yuk, H.-G.; Khoo, G.H.; Zhou, W. Light-Emitting Diodes in Postharvest Quality Preservation and Microbiological Food Safety. In Light Emitting Diodes for Agriculture: Smart Lighting; Dutta Gupta, S., Ed.; Springer: Singapore, 2017; pp. 191–235. ISBN 978-981-10-5807-3. [Google Scholar]
- George, K.; Ziska, L.H.; Bunce, J.A.; Quebedeaux, B. Elevated Atmospheric CO2 Concentration and Temperature across an Urban–Rural Transect. Atmos. Environ. 2007, 41, 7654–7665. [Google Scholar] [CrossRef]
- Chmura, L.; Rozanski, K.; Necki, J.M.; Zimnoch, M.; Korus, A.; Pycia, M. Atmospheric Concentrations of Carbon Dioxide in Southern Poland: Comparison of Mountain and Urban Environments. Pol. J. Environ. Stud. 2008, 17, 859–867. [Google Scholar]
- Song, T.; Wang, Y. Carbon Dioxide Fluxes from an Urban Area in Beijing. Atmospheric Res. 2012, 106, 139–149. [Google Scholar] [CrossRef]
- Cheng, X.L.; Liu, X.M.; Liu, Y.J.; Hu, F. Characteristics of CO2 Concentration and Flux in the Beijing Urban Area. J. Geophys. Res. Atmospheres 2018, 123, 1785–1801. [Google Scholar] [CrossRef]
- Svirejeva-Hopkins, A.; Schellnhuber, H.J.; Pomaz, V.L. Urbanised Territories as a Specific Component of the Global Carbon Cycle. Ecol. Model. 2004, 173, 295–312. [Google Scholar] [CrossRef]
- Drawdown, The Book|Project Drawdown. Available online: https://drawdown.org/the-book (accessed on 3 October 2024).
- Weissert, L.F.; Salmond, J.A.; Schwendenmann, L. A Review of the Current Progress in Quantifying the Potential of Urban Forests to Mitigate Urban CO2 Emissions. Urban Clim. 2014, 8, 100–125. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban Forests and Pollution Mitigation: Analyzing Ecosystem Services and Disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef]
- Greiner, J.T.; McGlathery, K.J.; Gunnell, J.; McKee, B.A. Seagrass Restoration Enhances “Blue Carbon” Sequestration in Coastal Waters. PLoS ONE 2013, 8, e72469. [Google Scholar] [CrossRef]
- Keenan, T.F.; Prentice, I.C.; Canadell, J.G.; Williams, C.A.; Wang, H.; Raupach, M.; Collatz, G.J. Recent Pause in the Growth Rate of Atmospheric CO2 Due to Enhanced Terrestrial Carbon Uptake. Nat. Commun. 2016, 7, 13428. [Google Scholar] [CrossRef]
- Eden, S.; Bear, C.; Walker, G. The Sceptical Consumer? Exploring Views about Food Assurance. Food Policy 2008, 33, 624–630. [Google Scholar] [CrossRef]
- Heuskin, S.; Verheggen, J.F.; Haubruge, É.; Wathelet, J.-P.; Lognay, G. The Use of Semiochemical Slow-Release Devices in Integrated Pest Management Strategies. BASE 2011, 15, 459–470. [Google Scholar]
- Engler, N.; Krarti, M. Review of Energy Efficiency in Controlled Environment Agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Benis, K.; Reinhart, C.; Ferrão, P. Building-Integrated Agriculture (BIA) in Urban Contexts: Testing a Simulation-Based Decision Support Workflow. IBPSA 2017, 15, 1798–1807. [Google Scholar]
- Zhang, Y.; Kacira, M. Air Distribution and Its Uniformity. In Smart Plant Factory: The Next Generation Indoor Vertical Farms; Kozai, T., Ed.; Springer: Singapore, 2018; pp. 153–166. ISBN 9789811310652. [Google Scholar]
- Roberts, J.M.; Bruce, T.J.A.; Monaghan, J.M.; Pope, T.W.; Leather, S.R.; Beacham, A.M. Vertical Farming Systems Bring New Considerations for Pest and Disease Management. Ann. Appl. Biol. 2020, 176, 226–232. [Google Scholar] [CrossRef]
- Johansen, N.S.; Vänninen, I.; Pinto, D.M.; Nissinen, A.I.; Shipp, L. In the Light of New Greenhouse Technologies: 2. Direct Effects of Artificial Lighting on Arthropods and Integrated Pest Management in Greenhouse Crops. Ann. Appl. Biol. 2011, 159, 1–27. [Google Scholar] [CrossRef]
- Roberts, M.R.; Paul, N.D. Seduced by the Dark Side: Integrating Molecular and Ecological Perspectives on the Influence of Light on Plant Defence against Pests and Pathogens. New Phytol. 2006, 170, 677–699. [Google Scholar] [CrossRef]
- Avendaño-Abarca, V.H.; Alvarado-Camarillo, D.; Valdez-Aguilar, L.A.; Sánchez-Ortíz, E.A.; González-Fuentes, J.A.; Cartmill, A.D. Response of Strawberry to the Substitution of Blue Light by Green Light in an Indoor Vertical Farming System. Agronomy 2023, 13, 99. [Google Scholar] [CrossRef]
- Goodman, W.; Minner, J. Will the Urban Agricultural Revolution Be Vertical and Soilless? A Case Study of Controlled Environment Agriculture in New York City. Land Use Policy 2019, 83, 160–173. [Google Scholar] [CrossRef]
- Chiaranunt, P.; White, J.F. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. Plants 2023, 12, 400. [Google Scholar] [CrossRef]
- Calvo, F.J.; Knapp, M.; van Houten, Y.M.; Hoogerbrugge, H.; Belda, J.E. Amblyseius Swirskii: What Made This Predatory Mite Such a Successful Biocontrol Agent? Exp. Appl. Acarol. 2015, 65, 419–433. [Google Scholar] [CrossRef]
- Mapari, R.G.; Tiwari, H.; Bhangale, K.B.; Jagtap, N.; Gujar, K.; Sarode, Y.; Mahajan, A. IOT Based Vertical Farming Using Hydroponics for Spectrum Management & Crop Quality Control. In Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, 24–26 June 2022; pp. 1–5. [Google Scholar]
- Saraswat, S.; Jain, M. Adoption of Vertical Farming Technique for Sustainable Agriculture. In Climate Resilience and Environmental Sustainability Approaches: Global Lessons and Local Challenges; Kaushik, A., Kaushik, C.P., Attri, S.D., Eds.; Springer: Singapore, 2021; pp. 185–201. ISBN 9789811609022. [Google Scholar]
- Zlnnen, T.M. Assessment of Plant Diseases in Hydroponic Culture. Plant Dis. 1988, 72, 96. [Google Scholar] [CrossRef]
- Lau, V.; Mattson, N. Effects of Hydrogen Peroxide on Organically Fertilized Hydroponic Lettuce (Lactuca Sativa L.). Horticulturae 2021, 7, 106. [Google Scholar] [CrossRef]
- Son, J.E.; Kim, H.J.; Ahn, T.I. Chapter 20—Hydroponic Systems. In Plant Factory, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 273–283. ISBN 978-0-12-816691-8. [Google Scholar]
- Caputo, S. Recent Developments in Urban Agriculture. In Small Scale Soil-less Urban Agriculture in Europe; Caputo, S., Ed.; Springer International Publishing: Cham, Swizerland, 2022; pp. 17–28. ISBN 978-3-030-99962-9. [Google Scholar]
- Ochoa, J.; Sanyé-Mengual, E.; Specht, K.; Fernández, J.A.; Bañón, S.; Orsini, F.; Magrefi, F.; Bazzocchi, G.; Halder, S.; Martens, D.; et al. Sustainable Community Gardens Require Social Engagement and Training: A Users’ Needs Analysis in Europe. Sustainability 2019, 11, 3978. [Google Scholar] [CrossRef]
- Vitiello, D.; Wolf-Powers, L. Growing Food to Grow Cities? The Potential of Agriculture Foreconomic and Community Development in the Urban United States. Community Dev. J. 2014, 49, 508–523. [Google Scholar] [CrossRef]
- Ernwein, M.; Salomon-Cavin, J. Au-delà de l’agrarisation de la ville: L’agriculture peut-elle être un outil d’aménagement urbain ? Discussion à partir de l’exemple genevois. Géocarrefour 2014, 89, 31–40. [Google Scholar] [CrossRef]
- Wilson, E.O. Biophilia; Harvard University Press: Cambridge, MA, USA, 1984; ISBN 978-0-674-07441-5. [Google Scholar]
- Dunnett, N.; Qasim, M. Perceived Benefits to Human Well-Being of Urban Gardens. HortTechnology 2000, 10, 40–45. [Google Scholar] [CrossRef]
- Cipriani, J.; Benz, A.; Holmgren, A.; Kinter, D.; McGarry, J.; Rufino, G. A Systematic Review of the Effects of Horticultural Therapy on Persons with Mental Health Conditions. Occup. Ther. Ment. Health 2017, 33, 47–69. [Google Scholar] [CrossRef]
- Devrani, N.; Tiwari, C. Community Gardens and Horticulture Therapy. In New Horizons and Advancements in Horticulture; Stella International Publishing: Haryana, India, 2024; p. 40. ISBN 978-81-968479-3-7. [Google Scholar]
- Campbell-Arvai, V. Engaging Urban Nature: Improving Our Understanding of Public Perceptions of the Role of Biodiversity in Cities. Urban Ecosyst. 2019, 22, 409–423. [Google Scholar] [CrossRef]
- Marsh, P.; Brennan, S.; Vandenberg, M. ‘It’s Not Therapy, It’s Gardening’: Community Gardens as Sites of Comprehensive Primary Healthcare. Aust. J. Prim. Health 2018, 24, 337–342. [Google Scholar] [CrossRef]
- Zoellner, J.; Zanko, A.; Price, B.; Bonner, J.; Hill, J.L. Exploring Community Gardens in a Health Disparate Population: Findings from a Mixed Methods Pilot Study. Prog. Community Health Partnersh. Res. Educ. Action 2012, 6, 153–165. [Google Scholar] [CrossRef]
- Milliron, B.-J.; Vitolins, M.Z.; Gamble, E.; Jones, R.; Chenault, M.C.; Tooze, J.A. Process Evaluation of a Community Garden at an Urban Outpatient Clinic. J. Community Health 2017, 42, 639–648. [Google Scholar] [CrossRef]
- Audate, P.P.; Fernandez, M.A.; Cloutier, G.; Lebel, A. Scoping Review of the Impacts of Urban Agriculture on the Determinants of Health. BMC Public Health 2019, 19, 672. [Google Scholar] [CrossRef] [PubMed]
- Ryang, S. Can Urban Agriculture Contribute to Well-Being? An Analytical Perspective. Ph.D. Thesis, University College London, London, UK, 2016. [Google Scholar]
- AHTA. AHTA Definitions and Positions. Available online: https://www.ahta.org/ahta-definitions-and-positions (accessed on 4 October 2024).
- Armstrong, A.; Nolan, C.; Cremin, K.; Turner, N.; Lawlor, G. The Relationship Between Horticulture, Recovery and Occupational Therapy in Mental Health: A Scoping Review. Occup. Ther. Ment. Health 2023, 1–26. [Google Scholar] [CrossRef]
- Lanier, J.; Schumacher, J.; Calvert, K. Cultivating Community Collaboration and Community Health Through Community Gardens. J. Community Pract. 2015, 23, 492–507. [Google Scholar] [CrossRef]
- Dickey, K.J. One Seed at a Time: How an Urban Community Gardening Program Promotes Prosocial Development in Youth. Master’s Thesis, Texas Tech University, Lubbock, TX, USA, 2019. [Google Scholar]
- Hope, D.; Gries, C.; Zhu, W.; Fagan, W.F.; Redman, C.L.; Grimm, N.B.; Nelson, A.L.; Martin, C.; Kinzig, A. Socioeconomics Drive Urban Plant Diversity. Proc. Natl. Acad. Sci. USA 2003, 100, 8788–8792. [Google Scholar] [CrossRef]
- Chiu, H.-T.; Chu, P.-Y. Exploring the Research on the Happiness of Middle-Aged Women by “Garden Therapy” with Service Design as Thinking. Int. J. Organ. Innov. 2021, 13, 60–80. [Google Scholar]
- Kim, K.-H.; Park, S.-A. Horticultural Therapy Program for Middle-Aged Women’s Depression, Anxiety, and Self-Identify. Complement. Ther. Med. 2018, 39, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yanai, S.; Xu, G. Community Gardens and Psychological Well-Being among Older People in Elderly Housing with Care Services: The Role of the Social Environment. J. Environ. Psychol. 2024, 94, 102232. [Google Scholar] [CrossRef]
- Scott, T.L.; Masser, B.M.; Pachana, N.A. Positive Aging Benefits of Home and Community Gardening Activities: Older Adults Report Enhanced Self-Esteem, Productive Endeavours, Social Engagement and Exercise. SAGE Open Med. 2020, 8, 2050312120901732. [Google Scholar] [CrossRef]
- Bhatti, M. “When I’m in the Garden I Can Create My Own Paradise”: Homes and Gardens in Later Life. Sociol. Rev. 2006, 54, 318–341. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Blanuša, T.; Taylor, J.E.; Salisbury, A.; Halstead, A.J.; Henricot, B.; Thompson, K. The Domestic Garden—Its Contribution to Urban Green Infrastructure. Urban For. Urban Green. 2012, 11, 129–137. [Google Scholar] [CrossRef]
- Ilieva, R.T.; Cohen, N.; Israel, M.; Specht, K.; Fox-Kämper, R.; Fargue-Lelièvre, A.; Poniży, L.; Schoen, V.; Caputo, S.; Kirby, C.K.; et al. The Socio-Cultural Benefits of Urban Agriculture: A Review of the Literature. Land 2022, 11, 622. [Google Scholar] [CrossRef]
- Dinis Ferreira, A.; Pardal, J.; Malta, M.; Ferreira, C.; Soares, D.; Vilhena, J. Improving Urban Ecosystems Resilience at a City Level the Coimbra Case Study. Energy Procedia 2013, 40, 6–14. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Kanematsu, Y.; Yoshikawa, N.; Okubo, T.; Takagaki, M. Environmental and Resource Use Analysis of Plant Factories with Energy Technology Options: A Case Study in Japan. J. Clean. Prod. 2018, 186, 703–717. [Google Scholar] [CrossRef]
- Paulitz, T.C.; Bélanger, R.R. Biological Control in Greenhouse Systems. Annu. Rev. Phytopathol. 2001, 39, 103–133. [Google Scholar] [CrossRef]
- Skar, S.L.G.; Pineda-Martos, R.; Timpe, A.; Pölling, B.; Bohn, K.; Külvik, M.; Delgado, C.; Pedras, C.M.G.; Paço, T.A.; Ćujić, M.; et al. Urban Agriculture as a Keystone Contribution towards Securing Sustainable and Healthy Development for Cities in the Future. Blue-Green Syst. 2019, 2, 1–27. [Google Scholar] [CrossRef]
- Ting, K.C.; Lin, T.; Davidson, P.C. Integrated Urban Controlled Environment Agriculture Systems. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Singapore, 2016; pp. 19–36. ISBN 978-981-10-1848-0. [Google Scholar]
- Gómez, C.; Currey, C.J.; Dickson, R.W.; Kim, H.-J.; Hernández, R.; Sabeh, N.C.; Raudales, R.E.; Brumfield, R.G.; Laury-Shaw, A.; Wilke, A.K.; et al. Controlled Environment Food Production for Urban Agriculture. HortScience 2019, 54, 1448–1458. [Google Scholar] [CrossRef]
Level of Utilization | Investment Costs/Technological Level | ||
---|---|---|---|
Low | Medium | High | |
Individual | Backyard gardening | DIY hydroponics | Mini-plant factory |
Window boxes | Walipini | ||
Container gardens | |||
Interpersonal | Raised bed gardening | Rooftop gardening | Vertical gardening |
Guerrilla gardening | Community gardens | Skyfarming | |
Indoor gardens | Hydroponics | ||
Digeponics | |||
Aquaponics | |||
Collective | Urban orchards | Miyawaki forests | |
Pocket gardens |
Traditional Urban Farming | Controlled-Environment Agriculture | References | |
---|---|---|---|
Economic aspects | |||
Investment costs | Low | High | [78] |
Area needed for same amount of product | 30 times higher | Lower due to continuous production and climatic independence | [79] |
Facility and initial resources needed | Simple tools and abundantly available resources, relatively easy design | High-tech tools and devices, special facility | [80] |
Labor demands: professional skills, work hours, costs, etc. | Low (non-professionals), skills easy to learn, voluntary work | Specially skilled, highly experienced personnel needed | [3,81,82,83,84,85,86,87] |
Level of crop production intensification, expected yields | Extensive production | Highly intensified yield maximization due to high costs | |
Vulnerability of the system | Vulnerable to environmental challenges | Highly regulated, heavy reliance on technology | [88,89] |
Primary objective | Self-sufficiency, social aspects | Profit | [42,90,91,92] |
Food produced | |||
Product value | Product utilized by plot owners | High productivity per unit area | [93] |
Trust in the produced food | High (self-grown) | High or low (artificial conditions) | [94,95] |
Nutritional value | Higher levels of antioxidants due to environmental stress, provides diverse diet | Can be manipulated by fine-tuning the environment | [90,95] |
Food waste | Low due to emotional connection to the food | Possibly slightly higher | [89,96,97] |
Social aspects | |||
Power in local communities | Common aims contribute to strengthening local communities | Service-like production, low involvement of locals | [4] |
Employment | Seasonal production, free work | Providing permanent employment, salary | [98] |
Participants in production | Large number of often lay participants, conflicts may arise | Skilled workers specialize in different roles, aim to reduce human labor to minimize costs | [99,100,101] |
Characteristics of cultivation | |||
Growing media | Natural compound-based media or genuine soil | Soilless cultivation (-ponics) | [102,103,104,105,106,107] |
Plant protection | Challenging, weeds less threatening due to small-scale, highly labor- intensive methods | Sterile environment required, infections and weeds excluded, | [93,108,109,110] |
Optimal growing conditions | Difficult to achieve (urban environment, exposure to weather) | Difficult to achieve (differences among growing levels, artificial conditions) | [111,112] |
Environmental impacts | |||
Energy demand | Low | High, aims to minimize with renewables | [12,13,59,113] |
Water usage | Weather-dependent | Usually uses 70–95% less water | [79,89] |
Species and varieties, biodiversity | Less limited in space, fruits, grapes, no arables | Highly limited | [42,82,109,114,115,116] |
Waste/by-products from cultivation | Low waste (less synthetic material, organic material recycling) | High amount of waste (plastic, electronics, growing media, hydroponic fluid), tends to minimize | [90,96] |
Affecting Factor | Traditional Urban Agriculture | Urban Controlled-Environment Agriculture | References |
---|---|---|---|
Contaminated soil | Cultivation in soil: soil replacement, raised beds filled with controlled-quality soil or compost | Soil abandonment, artificial growing media | [102,103,176,178,179,180,182,183] |
Soil life | Possibly active, supplemented | None; artificial imitation | [25,175,176,271] |
with compost | |||
Light | Natural, buildings may shade | Artificial, adjustable LED lighting | [111,112] |
Temperature | Weather-dependent, heat extremities | Adjustable, fine-tuning | [111] |
Humidity | Weather-dependent, | High humidity issues | [111] |
atmospheric drought | |||
Biodiversity | Possibly high | Usually low (monoculture) | [109] |
Pesticide use | Uncontrolled | Controlled, pesticides may accumulate at lower growing levels, potential in biological control | [83,162,266,272] |
Function | Scenario |
---|---|
Societal functions | Inclusion of labor by handicapped or mentally challenged people |
CEA facilitation in prisons, hospitals, psychiatric institutions, or nursing homes | |
Inclusion of unskilled labor in less knowledge-demanding roles | |
Sharing maintenance of CEA facilities among residential of workplace community | |
Agrobiodiversity | Inclusion of recent breeding results to widen crop species and variety use |
Enrichment of soil-based growing media with soil-bacterial communities | |
Various | Blurring the sharp isolation between built and natural environments by designing light-transmitting surfaces |
Exploiting co-existence by providing support for TUA in seedling production | |
Exploiting dead spaces on rooftops or PFs with the operation of open rooftop gardens |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csambalik, L.; Gál, I.; Madaras, K.; Tóbiás, A.; Pusztai, P. Beyond Efficiency: The Social and Ecological Costs of Plant Factories in Urban Farming—A Review. Urban Sci. 2024, 8, 210. https://doi.org/10.3390/urbansci8040210
Csambalik L, Gál I, Madaras K, Tóbiás A, Pusztai P. Beyond Efficiency: The Social and Ecological Costs of Plant Factories in Urban Farming—A Review. Urban Science. 2024; 8(4):210. https://doi.org/10.3390/urbansci8040210
Chicago/Turabian StyleCsambalik, László, Izóra Gál, Krisztina Madaras, Andrea Tóbiás, and Péter Pusztai. 2024. "Beyond Efficiency: The Social and Ecological Costs of Plant Factories in Urban Farming—A Review" Urban Science 8, no. 4: 210. https://doi.org/10.3390/urbansci8040210
APA StyleCsambalik, L., Gál, I., Madaras, K., Tóbiás, A., & Pusztai, P. (2024). Beyond Efficiency: The Social and Ecological Costs of Plant Factories in Urban Farming—A Review. Urban Science, 8(4), 210. https://doi.org/10.3390/urbansci8040210