Urban Aviation: The Future Aerospace Transportation System for Intercity and Intracity Mobility
Abstract
:1. Introduction
- What are the key challenges and opportunities associated with integrating UAM into existing urban transportation networks?
- What are the requirements for UAM in terms of urban design and infrastructure?
- What are the potential social equity and sustainability implications of UAM?
- How can the challenges be addressed while maximizing the potential benefits?
- How can UAM be implemented to minimize negative impacts on existing public spaces and urban design?
- What strategies can be implemented to ensure its accessibility, affordability, and minimal environmental impact?
2. The Current Nature of Aviation
2.1. Regular Passenger Transport
2.2. General Aviation
2.3. Remotely Piloted or Uncrewed Aviation
2.4. Recreational Aviation
3. The Future Aerospace Transportation System
3.1. Intracity
3.2. Intercity
3.3. Intracontinental
3.4. Intercontinental
3.5. Space
3.6. Aerospaceports
4. Urban Aviation
4.1. Historical Development
4.2. Enabling Technologies
4.3. Prototypes and Pilots
5. Urban Science and Design
5.1. Primer
5.2. Urban Adaptation
5.3. Urban Exploration
5.4. Urban Integration
6. Limitations and Challenges
6.1. Regulatory Barriers
6.1.1. Aircraft Certification
6.1.2. Air Traffic Management
6.1.3. Infrastructure Development
6.1.4. Pilot and Operator Certification
6.1.5. Safety and Security Standards
6.1.6. Legal and Liability Issues
6.2. Public Acceptance
6.2.1. Safety
6.2.2. Noise
6.2.3. Socio-Economic Implications
6.2.4. Infrastructure
6.2.5. Public Awareness and Education
6.3. The Environment
6.3.1. Air Pollution
6.3.2. Noise Pollution
6.3.3. Land Use
6.3.4. Energy Generation
6.3.5. Weather
6.4. Autonomous Future
6.4.1. Year 0 to 5: Initial Autonomous Capabilities
6.4.2. Year 5 to 10: Pilot Optionality in Controlled Urban Environments
6.4.3. Year 10 to 15: Scaling Autonomous UAM Operations
6.4.4. Year 15 to 25: Widespread Pilotless UAM Services
6.4.5. Year 25 Onwards: Fully Autonomous
7. Analysis
7.1. Equity
7.2. Sustainability
7.3. Philosophical and Human Geography Perspectives
8. Discussion
8.1. Key Findings
8.2. Interpretation of Results
8.2.1. Primary Research Questions
- Reduced congestion: UAM can alleviate traffic on roads, leading to shorter commute times.
- Improved connectivity: UAM can connect areas that are not well-served by existing transportation.
- Economic growth: UAM can create jobs and stimulate economic growth.
- Regulatory barriers: There are several regulatory hurdles to overcome, including aircraft certification, air traffic management, infrastructure development, and safety standards. These regulations are needed to ensure the safety and efficiency of UAM operations.
- Public acceptance: Public acceptance of UAM is crucial for its success, but there are concerns about safety, noise, and socio-economic implications. Educating the public about UAM technology, safety features, and benefits is vital to gain wider acceptance.
- Environmental impact: The environmental impact of UAM, particularly in terms of air and noise pollution, needs to be carefully considered.
- Vertiports: These specialized landing and takeoff areas for UAM vehicles need to be seamlessly integrated into urban landscapes. They require reinforced platforms, emergency systems, and potentially fire suppression systems for lithium-ion batteries.
- Charging infrastructure: Extensive high-capacity electrical grids are necessary to support the rapid charging needs of electric UAM vehicles, mirroring the fuel distribution network for traditional aviation.
- Drone corridors: Designated airspace for UAM operations needs to be established to ensure safety and efficiency.
- Integration with existing transportation: UAM should be integrated with existing transportation systems to provide seamless connectivity for passengers. This involves incorporating vertiports into transportation hubs and optimizing connections with other modes of transportation, including electric scooters, autonomous vehicles, and public transit.
- Equity of access: UAM services should be accessible to all members of society, regardless of income level. Implementing strategies like subsidies and tiered pricing models can prevent UAM from becoming an exclusive service for the wealthy, thereby promoting social inclusion.
- Environmental sustainability: Minimizing the environmental impact of UAM is paramount. This involves using renewable energy sources to power vertiports and UAM vehicles, optimizing flight paths to reduce emissions and noise, and adopting sustainable design practices for infrastructure and vehicles.
- Community engagement: Transparent communication and active community engagement are essential to address concerns, build trust, and ensure that UAM aligns with community values and needs.
8.2.2. Secondary Research Questions
- Developing clear regulatory frameworks: Addressing regulatory barriers early on is crucial for facilitating investment and innovation in the UAM sector.
- Building public trust: Public acceptance is critical for the successful integration of UAM. This can be achieved by conducting public awareness campaigns, showcasing safety protocols, and demonstrating the societal and economic benefits of UAM.
- Prioritizing sustainability: Mitigating the environmental impact of UAM requires a focus on renewable energy, efficient flight operations, and sustainable design practices for infrastructure and vehicles.
- Ensuring equitable access: Designing UAM systems to be inclusive and accessible to all income groups is crucial for social equity. Implementing policies that promote affordability can prevent UAM from exacerbating social inequalities.
- Integrating vertiports seamlessly: Vertiports need to be designed to blend into the urban landscape, minimizing visual impact and noise pollution.
- Utilizing underutilized spaces: Reimagining existing underutilized spaces, such as parking structures, as potential vertiport locations can minimize the need for new construction and potentially revitalize these areas.
- Engaging with communities: Early and continuous community engagement is essential for understanding concerns and ensuring that UAM infrastructure aligns with community needs.
- Subsidies and tiered pricing: Providing subsidies for low-income users or implementing tiered pricing models based on income can make UAM services more affordable to a wider range of the population.
- Integration with public transport: Seamless integration with existing public transportation networks can make UAM more accessible to those who rely on public transit.
- Renewable energy sources: Using renewable energy sources to power vertiports and UAM vehicles can significantly reduce the carbon footprint of UAM operations.
- Efficient flight operations: Optimizing flight paths to reduce travel distances and implementing technologies that minimize noise pollution can contribute to UAM sustainability.
- Lifecycle analysis: Conducting a thorough lifecycle analysis of UAM vehicles, from manufacturing to disposal, can help identify areas for improvement and implement strategies to reduce the overall environmental impact.
8.3. Comparison with Previous Studies
8.3.1. Technology
8.3.2. Operations
8.3.3. Environment
8.3.4. Urban Science Dimensions
8.4. Implications and Future Research
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Curley, R. The Complete History of Aviation: From Ballooning to Supersonic Flight; Britannica Educational Publishing: New York, NY, USA, 2011; p. 184. [Google Scholar]
- Wild, G. Misunderstanding Flight Part 2: Epistemology and the Philosophy of Science. Educ. Sci. 2023, 13, 836. [Google Scholar] [CrossRef]
- Glass, A. Flying Cars: The True Story; Houghton Mifflin Harcourt: Boston, MA, USA, 2015. [Google Scholar]
- Erel, S. From 2001 A Space Odyssey to Minority Report: Reflections of Imagining Future on Science Fiction. Bachelor’s Thesis, Blekinge Institute of Technology, Karlskrona, Sweden, 2012. [Google Scholar]
- Bush, M.D.; Mott, J.D. The transformation of learning with technology: Learner-centricity, content and tool malleability, and network effects. Educ. Technol. 2009, 49, 3–20. [Google Scholar]
- Wu, Y.; Peng, K.-L.; Yao, Y.; Guo, Y. Sustainable Space Travel: What Can We Do in Education from Economic and Environmental Perspectives? Sustainability 2024, 16, 684. [Google Scholar] [CrossRef]
- Barrado, C.; Boyero, M.; Brucculeri, L.; Ferrara, G.; Hately, A.; Hullah, P.; Martin-Marrero, D.; Pastor, E.; Rushton, A.P.; Volkert, A. U-Space Concept of Operations: A Key Enabler for Opening Airspace to Emerging Low-Altitude Operations. Aerospace 2020, 7, 24. [Google Scholar] [CrossRef]
- Martínez Raya, A.; González-Sánchez, V.M. Efficiency and Sustainability of Regional Aviation on Insular Territories of the European Union: A Case Study of Public Service Obligations on Scheduled Air Routes among the Balearic Islands. Sustainability 2021, 13, 3949. [Google Scholar] [CrossRef]
- Moradi, N.; Wang, C.; Mafakheri, F. Urban Air Mobility for Last-Mile Transportation: A Review. Vehicles 2024, 6, 1383–1414. [Google Scholar] [CrossRef]
- Thibbotuwawa, A.; Bocewicz, G.; Nielsen, P.; Banaszak, Z. Unmanned Aerial Vehicle Routing Problems: A Literature Review. Appl. Sci. 2020, 10, 4504. [Google Scholar] [CrossRef]
- Bacchini, A.; Cestino, E. Electric VTOL Configurations Comparison. Aerospace 2019, 6, 26. [Google Scholar] [CrossRef]
- Freeman, D.C., Jr.; Talay, T.A.; Austin, R.E. Reusable launch vehicle technology program. Acta Astronaut. 1997, 41, 777–790. [Google Scholar] [CrossRef]
- Metz, D. Developing Policy for Urban Autonomous Vehicles: Impact on Congestion. Urban Sci. 2018, 2, 33. [Google Scholar] [CrossRef]
- Salimbene, O.; Baeza-Romero, M.T.; Pilla, F.; Čok, G. Air Quality Awareness—Empirical Evidence from a Comparative Perspective between Two European Cities. Urban Sci. 2024, 8, 133. [Google Scholar] [CrossRef]
- Papa, E.; Ferreira, A. Sustainable Accessibility and the Implementation of Automated Vehicles: Identifying Critical Decisions. Urban Sci. 2018, 2, 5. [Google Scholar] [CrossRef]
- Abdul Sathar Eqbal, M.; Fernando, N.; Marino, M.; Wild, G. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems. Aerospace 2018, 5, 34. [Google Scholar] [CrossRef]
- Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review. Sensors 2021, 21, 2140. [Google Scholar] [CrossRef]
- Degas, A.; Islam, M.R.; Hurter, C.; Barua, S.; Rahman, H.; Poudel, M.; Ruscio, D.; Ahmed, M.U.; Begum, S.; Rahman, M.A.; et al. A Survey on Artificial Intelligence (AI) and eXplainable AI in Air Traffic Management: Current Trends and Development with Future Research Trajectory. Appl. Sci. 2022, 12, 1295. [Google Scholar] [CrossRef]
- Gavanas, N. Autonomous Road Vehicles: Challenges for Urban Planning in European Cities. Urban Sci. 2019, 3, 61. [Google Scholar] [CrossRef]
- Kelobonye, K.; Xia, J.C.; Swapan, M.S.; McCarney, G.; Zhou, H. Drivers of Change in Urban Growth Patterns: A Transport Perspective from Perth, Western Australia. Urban Sci. 2019, 3, 40. [Google Scholar] [CrossRef]
- Cabrera-Barona, P.F.; Merschdorf, H. A Conceptual Urban Quality Space-Place Framework: Linking Geo-Information and Quality of Life. Urban Sci. 2018, 2, 73. [Google Scholar] [CrossRef]
- Doppler, C.; Holzapfel, F.; Scharrer, M.K.; Lorscheider, T.; Prochart, G. Requirements and design of powertrains for eVTOLs. e+i Elektrotech. Informationstech. 2024, 141, 188–204. [Google Scholar] [CrossRef]
- Nithya, D.S.; Quaranta, G.; Muscarello, V.; Liang, M. Review of Wind Flow Modelling in Urban Environments to Support the Development of Urban Air Mobility. Drones 2024, 8, 147. [Google Scholar] [CrossRef]
- Atci, K.; Weiand, P.; Guner, F. Understanding the fixed pitch RPM-controlled rotor modeling for the conceptual design of UAM vehicles. CEAS Aeronaut. J. 2024, 15, 409–422. [Google Scholar] [CrossRef]
- Liao, X.; Qu, W.; Xu, C.; He, H.; Wang, J.; Shi, W. A review of urban air mobility and its new infrastructure low-altitude public routes. Hangkong Xuebao/Acta Aeronaut. Astronaut. Sin. 2023, 44, 28521. [Google Scholar] [CrossRef]
- Lotinga, M.J.B.; Ramos-Romero, C.; Green, N.; Torija, A.J. Noise from Unconventional Aircraft: A Review of Current Measurement Techniques, Psychoacoustics, Metrics and Regulation. Curr. Pollut. Rep. 2023, 9, 724–745. [Google Scholar] [CrossRef]
- Kiesewetter, L.; Shakib, K.H.; Singh, P.; Rahman, M.; Khandelwal, B.; Kumar, S.; Shah, K. A holistic review of the current state of research on aircraft design concepts and consideration for advanced air mobility applications. Prog. Aerosp. Sci. 2023, 142, 100949. [Google Scholar] [CrossRef]
- Wang, L.; Deng, X.; Gui, J.; Jiang, P.; Zeng, F.; Wan, S. A review of Urban Air Mobility-enabled Intelligent Transportation Systems: Mechanisms, applications and challenges. J. Syst. Archit. 2023, 141, 102902. [Google Scholar] [CrossRef]
- Fakhraian, E.; Semanjski, I.; Semanjski, S.; Aghezzaf, E.-H. Towards Safe and Efficient Unmanned Aircraft System Operations: Literature Review of Digital Twins’ Applications and European Union Regulatory Compliance. Drones 2023, 7, 478. [Google Scholar] [CrossRef]
- Sieb, P.; Michelmann, J.; Flöter, F.; Wicke, K. Identifying challenges in maintenance planning for on-demand UAM fleets using agent-based simulations. CEAS Aeronaut. J. 2023, 14, 637–660. [Google Scholar] [CrossRef]
- Tepylo, N.; Straubinger, A.; Laliberte, J. Public perception of advanced aviation technologies: A review and roadmap to acceptance. Prog. Aerosp. Sci. 2023, 138, 100899. [Google Scholar] [CrossRef]
- Raghunatha, A.; Thollander, P.; Barthel, S. Addressing the emergence of drones—A policy development framework for regional drone transportation systems. Transp. Res. Interdiscipl. Perspect. 2023, 18, 100795. [Google Scholar] [CrossRef]
- Schuchardt, B.I.; Geister, D.; Lüken, T.; Knabe, F.; Metz, I.C.; Peinecke, N.; Schweiger, K. Air Traffic Management as a Vital Part of Urban Air Mobility—A Review of DLR’s Research Work from 1995 to 2022. Aerospace 2023, 10, 81. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeon, J.H.; Lyu, J.H.; Park, J.; Kim, G.Y.; Chey, S.Y.; Quan, Y.-J.; Bhandari, B.; Prusty, B.G.; Ahn, S.-H. Current Applications and Development of Composite Manufacturing Processes for Future Mobility. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 10, 269–291. [Google Scholar] [CrossRef]
- Mazur, A.M.; ten Thije, J.; Vreeken, J.; Hesselink, H.; Dziugieł, B.; Wyka, S.; Liberacki, A.; Idzikowska, T.; Stanczyk, A.D.; Utracka, A.; et al. Regulatory framework on the UAM operational concepts of the ASSURED-UAM project. Aircr. Eng. Aerosp. Technol. 2022, 94, 1491–1498. [Google Scholar] [CrossRef]
- Biehle, T. Social Sustainable Urban Air Mobility in Europe. Sustainability 2022, 14, 9312. [Google Scholar] [CrossRef]
- García-Gutiérrez, A.; Gonzalo, J.; López, D.; Delgado, A. Advances in CFD Modeling of Urban Wind Applied to Aerial Mobility. Fluids 2022, 7, 246. [Google Scholar] [CrossRef]
- Aldemir, H.O.; Ucler, C. Airspace deregulation for UAM: Self-organizing VTOLs in metropoles. Coll. Aviat. Rev. Int. 2022, 40, 40–62. [Google Scholar] [CrossRef]
- Kapoor, R.; Kloet, N.; Gardi, A.; Mohamed, A.; Sabatini, R. Sound Propagation Modelling for Manned and Unmanned Aircraft Noise Assessment and Mitigation: A Review. Atmosphere 2021, 12, 1424. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, Y.; Zhang, Q.; Liu, H. Future urban air mobility management: Review. Acta Aeronaut. Astronaut. Sin. 2021, 42, 024638. [Google Scholar] [CrossRef]
- Yang, X.-G.; Liu, T.; Ge, S.; Rountree, E.; Wang, C.-Y. Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft. Joule 2021, 5, 1644–1659. [Google Scholar] [CrossRef]
- Maia, F.D.; Lourenço da Saúde, J.M. The state of the art and operational scenarios for urban air mobility with unmanned aircraft. Aeronaut. J. 2021, 125, 1034–1063. [Google Scholar] [CrossRef]
- Li, C.L.; Qu, W.Q.; Li, Y.D.; Huang, L.Y.; Wei, P. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft. Jiaotong Yunshu Gongcheng Xuebao/J. Traff. Transp. Eng. 2020, 20, 35–54. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, H.; Liu, Y. An evaluative review of the VTOL technologies for unmanned and manned aerial vehicles. Comput. Commun. 2020, 149, 356–369. [Google Scholar] [CrossRef]
- Steiner, M. Urban Air Mobility: Opportunities for the Weather Community. Bull. Am. Meteorol. Soc. 2019, 100, 2131–2133. [Google Scholar] [CrossRef]
- Srisaeng, P.; Baxter, G.S.; Wild, G. The evolution of low cost carriers in Australia. Aviation 2014, 18, 203–216. [Google Scholar] [CrossRef]
- Baxter, G.; Srisaeng, P.; Wild, G. The air cargo carrying potential of the Airbus A350-900xWB and Boeing 787-9 aircraft on their ultra-long-haul flights: A case study for flights from San Francisco to Singapore. Transp. Telecommun. J. 2018, 19, 301–314. [Google Scholar] [CrossRef]
- Baxter, G.; Srisaeng, P.; Wild, G. A Cross Sectional Study of the Ten Longest Ultra-Long-Range Air Routes. Transp. Telecommun. J. 2019, 20, 162–174. [Google Scholar] [CrossRef]
- Wild, G. Airbus A32x Versus Boeing 737 Safety Occurrences. IEEE Aerosp. Electron. Syst. Mag. 2023, 38, 4–12. [Google Scholar] [CrossRef]
- Srisaeng, P.; Baxter, G.; Wild, G. An adaptive neuro-fuzzy inference system for modelling Australia’s regional airline passenger demand. Int. J. Sustain. Aviat. 2015, 1, 348–374. [Google Scholar] [CrossRef]
- Bednarek, J.R.D.; Bednarek, M.H. Dreams of Flight: General Aviation in the United States; Texas A&M University Press: College Station, TX, USA, 2003. [Google Scholar]
- Mohsan, S.A.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Wild, G.; Murray, J.; Ayiei, A.; Sathar Eqbal, M.A.; Batuwangala, E. Public perception of drones… or should that be remotely piloted aircraft systems? J. Aerosp. Eng. Mech. 2019, 3, 170–176. [Google Scholar] [CrossRef]
- Goyer, N. Air Sports; McGraw-Hill Education: New York, NY, USA, 2003. [Google Scholar]
- Wild, G.; Baxter, G.; Srisaeng, P.; Richardson, S. Machine Learning for Air Transport Planning and Management. In Proceedings of the AIAA Aviation 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar]
- Airlines for America (A4A). Economic Impact of Commercial Aviation. Available online: https://www.airlines.org/impact/ (accessed on 8 October 2024).
- IATA. Global Outlook for Air Transport: Deep Change; International Air Transport Association: Montreal, QC, Canada, 2024. [Google Scholar]
- Geekiyanage, D.; Fernando, T.; Keraminiyage, K. Mapping Participatory Methods in the Urban Development Process: A Systematic Review and Case-Based Evidence Analysis. Sustainability 2021, 13, 8992. [Google Scholar] [CrossRef]
- Bridgelall, R. Locating Electrified Aircraft Service to Reduce Urban Congestion. Information 2024, 15, 186. [Google Scholar] [CrossRef]
- Lewandowski, K. Sustainable Usage of Freight Drones in City Centers, Proposition of Regulations for Safe Usage of Drones. Sustainability 2021, 13, 8634. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, H.; Wang, F.; Ning, C.; Liu, H.; Zhong, G. An Operational Capacity Assessment Method for an Urban Low-Altitude Unmanned Aerial Vehicle Logistics Route Network. Drones 2023, 7, 582. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Song, B.D.; Lee, S. The Flying Warehouse Delivery System: A Quantitative Approach for the Optimal Operation Policy of Airborne Fulfillment Center. IEEE Trans. Intell. Transp. 2021, 22, 7521–7530. [Google Scholar] [CrossRef]
- Brueckner, J.K.; Pai, V. Technological innovation in the airline industry: The impact of regional jets. Int. J. Ind. Organ. 2009, 27, 110–120. [Google Scholar] [CrossRef]
- Pollock, L.; Wild, G. An Examination of High-Speed Aircraft—Part 1: Past, Present, and Future. Transp. Eng. 2024, 18, 100290. [Google Scholar] [CrossRef]
- Eames, J.D. Concorde Operations. SAE Trans. 1991, 100, 2603–2619. [Google Scholar]
- Wilken, J.; Sippel, M.; Berger, M. Critical Analysis of SpaceX’s Next Generation Space Transportation System: Starship and Super Heavy. In Proceedings of the HiSST: 2nd International Conference on High-Speed Vehicle Science Technology, Bruges, Belgium, 11–15 September 2022. [Google Scholar]
- Leslie, M. Space Tourism Begins to Take Off. Engineering 2022, 10, 4–6. [Google Scholar] [CrossRef]
- Collins, P. Space Hotels: Civil Engineering’s New Frontier. J. Aerosp. Eng. 2002, 15, 10–19. [Google Scholar] [CrossRef]
- Schweinsberg, S.; Fennell, D. Space Tourism: A Historical and Existential Perspective. Sustainability 2024, 16, 79. [Google Scholar] [CrossRef]
- Cozmuta, I.; Rasky, D.J. Exotic optical fibers and glasses: Innovative material processing opportunities in earth’s orbit. New Space 2017, 5, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Hornsey, M.J.; Fielding, K.S.; Harris, E.A.; Bain, P.G.; Grice, T.; Chapman, C.M. Protecting the Planet or Destroying the Universe? Understanding Reactions to Space Mining. Sustainability 2022, 14, 4119. [Google Scholar] [CrossRef]
- Kazda, A.; Caves, R.E. Airport Design and Operation; Emerald Group Publishing Limited: Bingley, UK, 2015. [Google Scholar]
- Adams, C.; Petrov, G. Spaceport Master Planning: Principles and Precedents. In Proceedings of the Space 2006 Forum, San Jose, CA, USA, 19–21 September 2006; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2006. [Google Scholar]
- Ahn, B.; Hwang, H.-Y. Design Criteria and Accommodating Capacity Analysis of Vertiports for Urban Air Mobility and Its Application at Gimpo Airport in Korea. Appl. Sci. 2022, 12, 6077. [Google Scholar] [CrossRef]
- Risen, T. Uber, NASA: Stop saying “flying cars”. Aerosp. Am. 2017, 55, 9. [Google Scholar]
- Jones, G.; Viken, S.; Washburn, A.; Jenkins, L.; Cagle, C. An Active Flow Circulation Controlled Flap Concept for General Aviation Aircraft Applications. In Proceedings of the 1st Flow Control Conference, St. Louis, MO, USA, 24–26 June 2002; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2002. [Google Scholar]
- Moore, M. 21st Century Personal Air Vehicle Research. In Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years, Dayton, OH, USA, 14–17 July 2003; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2003. [Google Scholar]
- Moore, M. Aviation Frontiers—On Demand Aircraft. In Proceedings of the 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Fort Worth, TX, USA, 13–15 September 2010; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2010. [Google Scholar]
- Moore, M.D. The third wave of aeronautics: On-demand mobility. SAE Trans. 2006, 115, 713–722. [Google Scholar]
- Gawdiak, Y.; Holmes, B.; Sawhill, B.; Herriot, J.; Ballard, D.; Creedon, J.; Eckhause, J.; Long, D.; Hemm, R.; Murphy, C.; et al. Air Transportation Strategic Trade Space Modeling and Assessment Through Analysis of On-Demand Air Mobility with Electric Aircraft. In Proceedings of the 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, IN, USA, 17–19 September 2012; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2012. [Google Scholar]
- Goyal, R.; Reiche, C.; Fernando, C.; Cohen, A. Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets. Sustainability 2021, 13, 7421. [Google Scholar] [CrossRef]
- Wing, D.J.; Chancey, E.T.; Politowicz, M.S.; Ballin, M.G. Achieving Resilient In-Flight Performance for Advanced Air Mobility through Simplified Vehicle Operations. In Proceedings of the AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2020. [Google Scholar]
- Moller, P. Airborne personalized travel using ‘powered lift aircraft’. In Proceedings of the AIAA and SAE, 1998 World Aviation Conference, Anaheim, CA, USA, 28–30 September 1998. [Google Scholar]
- DeLaurentis, D.; Kang, T.; Lim, C.; Mavris, D.; Schrage, D. System of Systems Modeling for Personal Air Vehicles. In Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, USA, 4–6 September 2002; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2002. [Google Scholar]
- Dyatkin, B. The long and winding path to nuclear fusion: The ultimate energy source. MRS Bull. 2021, 46, 882–885. [Google Scholar] [CrossRef]
- Haiven, M.; Webb, G.; Olutola, S.; Benivolski, X. Writing Back Against Amazon’s Empire: Science Fiction, Corporate Storytelling, and the Dignity of the Workers’ Word. tripleC Commun. Capital. Crit. 2024, 22, 329–347. [Google Scholar] [CrossRef]
- Carter, C.E.; Barnett, H.; Burns, K.; Cohen, N.; Durall, E.; Lordick, D.; Nack, F.; Newman, A.; Ussher, S. Defining STEAM Approaches for Higher Education. Eur. J. STEM Educ. 2021, 6. [Google Scholar] [CrossRef]
- Dorn-Gomba, L.; Ramoul, J.; Reimers, J.; Emadi, A. Power Electronic Converters in Electric Aircraft: Current Status, Challenges, and Emerging Technologies. IEEE Trans. Transp. Electrif. 2020, 6, 1648–1664. [Google Scholar] [CrossRef]
- Sahoo, S.; Zhao, X.; Kyprianidis, K. A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft. Aerospace 2020, 7, 44. [Google Scholar] [CrossRef]
- Park, S.M.; Jeon, J.H.; Choi, W.J. Study on Bearing Strength and Failure Modes of Single Bolted Joint Carbon/Epoxy Composite Materials. Polymers 2024, 16, 847. [Google Scholar] [CrossRef]
- Qiao, X.; Chen, G.; Lin, W.; Zhou, J. The Impact of Battery Performance on Urban Air Mobility Operations. Aerospace 2023, 10, 631. [Google Scholar] [CrossRef]
- Donateo, T. Simulation Approaches and Validation Issues for Open-Cathode Fuel Cell Systems in Manned and Unmanned Aerial Vehicles. Energies 2024, 17, 900. [Google Scholar] [CrossRef]
- Pongsakornsathien, N.; Bijjahalli, S.; Gardi, A.; Symons, A.; Xi, Y.; Sabatini, R.; Kistan, T. A Performance-Based Airspace Model for Unmanned Aircraft Systems Traffic Management. Aerospace 2020, 7, 154. [Google Scholar] [CrossRef]
- Bijjahalli, S.; Sabatini, R.; Gardi, A. GNSS Performance Modelling and Augmentation for Urban Air Mobility. Sensors 2019, 19, 4209. [Google Scholar] [CrossRef]
- Chow, J.C.K.; Hol, J.D.; Luinge, H. Tightly-Coupled Joint User Self-Calibration of Accelerometers, Gyroscopes, and Magnetometers. Drones 2018, 2, 6. [Google Scholar] [CrossRef]
- Gupta, A.; Fernando, X. Federated Reinforcement Learning for Collaborative Intelligence in UAV-Assisted C-V2X Communications. Drones 2024, 8, 321. [Google Scholar] [CrossRef]
- Stroeve, S. What Matters in the Effectiveness of Airborne Collision Avoidance Systems? Monte Carlo Simulation of Uncertainties for TCAS II and ACAS Xa. Aerospace 2023, 10, 952. [Google Scholar] [CrossRef]
- Weinert, A.; Alvarez, L.; Owen, M.; Zintak, B. Near Midair Collision Analog for Drones Based on Unmitigated Collision Risk. J. Air Transp. 2022, 30, 37–48. [Google Scholar] [CrossRef]
- Fasano, G.; Opromolla, R. Analytical Framework for Sensing Requirements Definition in Non-Cooperative UAS Sense and Avoid. Drones 2023, 7, 621. [Google Scholar] [CrossRef]
- Schweiger, K.; Preis, L. Urban Air Mobility: Systematic Review of Scientific Publications and Regulations for Vertiport Design and Operations. Drones 2022, 6, 179. [Google Scholar] [CrossRef]
- Baxter, G.; Kourousis, K.; Wild, G. Fire Resistant Aircraft Unit Load Devices and Fire Containment Covers: A New Development in the Global Air Cargo Industry. J. Aerosp. Technol. Manag. 2014, 6, 202–209. [Google Scholar] [CrossRef]
- Papas, P. Meeting the challenge of mitigating Li-ion battery fires for aviation. Appl. Energy Combust. Sci. 2024, 20, 100286. [Google Scholar] [CrossRef]
- A4A. Major U.S. Pipelines Carrying Jet Fuel. Available online: https://www.airlines.org/media/major-u-s-pipelines-carrying-jet-fuel/ (accessed on 8 October 2024).
- Trainelli, L.; Salucci, F.; Riboldi, C.E.D.; Rolando, A.; Bigoni, F. Optimal Sizing and Operation of Airport Infrastructures in Support of Electric-Powered Aviation. Aerospace 2021, 8, 40. [Google Scholar] [CrossRef]
- Baxter, G.; Srisaeng, P.; Wild, G. Sustainable airport energy management: The case of kansai international airport. Int. J. Traff. Transp. Eng. 2018, 8, 334–358. [Google Scholar] [CrossRef]
- Manapongpun, P.; Karoonkornsakul, C.; Peechaphand, K.; Kriengkomol, P.; Rajawana, A.; Ritmetee, P.; Lounsrimongkol, N.; Chenchai, N. DroneBox: A Fully Automated Drone System for Surveillance Application. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2022; p. D031S017R003. [Google Scholar]
- Caballero-Martin, D.; Lopez-Guede, J.M.; Estevez, J.; Graña, M. Artificial Intelligence Applied to Drone Control: A State of the Art. Drones 2024, 8, 296. [Google Scholar] [CrossRef]
- Mishra, S.; Palanisamy, P. Autonomous Advanced Aerial Mobility—An End-to-End Autonomy Framework for UAVs and Beyond. IEEE Access 2023, 11, 136318–136349. [Google Scholar] [CrossRef]
- Murray, J.; Richardson, S.; Molloy, O.; Wild, G. Safety Review of Small Unmanned Aircraft Systems Operations. In Proceedings of the AIAA Aviation Forum, Chicago, IL, USA, 27 June–1 July 2022; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2022. [Google Scholar]
- Majd, A.; Loni, M.; Sahebi, G.; Daneshtalab, M. Improving Motion Safety and Efficiency of Intelligent Autonomous Swarm of Drones. Drones 2020, 4, 48. [Google Scholar] [CrossRef]
- Panov, I.; Ul Haq, A. A Critical Review of Information Provision for U-Space Traffic Autonomous Guidance. Aerospace 2024, 11, 471. [Google Scholar] [CrossRef]
- Gordo, V.; Becerra, I.; Fransoy, A.; Ventas, E.; Menendez-Ponte, P.; Xu, Y.; Tojal, M.; Perez-Castan, J.; Perez Sanz, L. A Layered Structure Approach to Assure Urban Air Mobility Safety and Efficiency. Aerospace 2023, 10, 609. [Google Scholar] [CrossRef]
- Wild, G.; Pollock, L.; Abdelwahab, A.K.; Murray, J. The Need for Aerospace Structural Health Monitoring: A review of aircraft fatigue accidents. Int. J. Progn. Health Manag. 2021, 12. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, Á.; Turkoglu, C.; Cuerno-Rejado, C. A Systematic Approach towards the Integration of Initial Airworthiness Regulatory Requirements in Remotely Piloted Aircraft System Conceptual Design Methodologies. Aerospace 2024, 11, 735. [Google Scholar] [CrossRef]
- Kim, J. Urban Air Mobility Noise: Further Considerations on Indoor Space. Int. J. Environ. Res. Public Health 2022, 19, 11298. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.S.; Dipro, S.H.; Hasan, K.; Islam, T.; Shetty, S. Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework for Civilian Urban Air Mobility. Appl. Sci. 2023, 13, 755. [Google Scholar] [CrossRef]
- Ukwandu, E.; Ben-Farah, M.A.; Hindy, H.; Bures, M.; Atkinson, R.; Tachtatzis, C.; Andonovic, I.; Bellekens, X. Cyber-Security Challenges in Aviation Industry: A Review of Current and Future Trends. Information 2022, 13, 146. [Google Scholar] [CrossRef]
- Bijjahalli, S.; Gardi, A.; Pongsakornsathien, N.; Sabatini, R.; Kistan, T. A Unified Airspace Risk Management Framework for UAS Operations. Drones 2022, 6, 184. [Google Scholar] [CrossRef]
- Kang, Y.-E.; Jung, Y.-H. Machine Learning-Based Air-to-Ground Channel Model Selection Method for UAV Communications Using Digital Surface Model Data. Sensors 2022, 22, 9234. [Google Scholar] [CrossRef]
- Mohanta, K.; Al-Rubaye, S. Towards 6G Satellite–Terrestrial Networks: Analysis of Air Mobility Operations. Electronics 2024, 13, 2855. [Google Scholar] [CrossRef]
- Nguyen, D.-D.; Dang, Q.-D. Development of an Intelligent Drone Management System for Integration into Smart City Transportation Networks. Drones 2024, 8, 512. [Google Scholar] [CrossRef]
- Pascioni, K.A.; Thai, A.D.; Bain, J.J. Propeller Source Noise Separation from Flight Test Measurements of the Joby Aviation Aircraft. In Proceedings of the 30th AIAA/CEAS Aeroacoustics Conference, Rome, Italy, 4–7 June 2024; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2024. [Google Scholar]
- Hardee, H.; Perry, D.; Waldron, G. Electric charge. Flight Int. 2024, 54–57. [Google Scholar]
- Ugwueze, O.; Statheros, T.; Horri, N.; Bromfield, M.A.; Simo, J. An Efficient and Robust Sizing Method for eVTOL Aircraft Configurations in Conceptual Design. Aerospace 2023, 10, 311. [Google Scholar] [CrossRef]
- Thomas, D. SpaceX Starships Reusability Revolution: Mitigating Engine Failure Risks Through Advanced Failure Analysis. J. Fail. Anal. Prev. 2024, 24, 1501–1503. [Google Scholar] [CrossRef]
- Cardoso, S.H.S.B.; Oliveira, M.V.R.d.; Godoy, J.R.S. eVTOL Certification in FAA and EASA Performance-Based Regulation Environments: A Bird Strike Study-Case. J. Aerosp. Technol. Manag. 2022, 14, e2122. [Google Scholar] [CrossRef]
- Zweifel, T.D. Sunk Sub: Looking Under the Hood. J. Intercult. Manag. Ethics 2023, 6, 55–63. [Google Scholar] [CrossRef]
- Thipphavong, D.P.; Apaza, R.; Barmore, B.; Battiste, V.; Burian, B.; Dao, Q.; Feary, M.; Go, S.; Goodrich, K.H.; Homola, J.; et al. Urban Air Mobility Airspace Integration Concepts and Considerations. In Proceedings of the Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2018. [Google Scholar]
- Harms, P.; Hofer, M.; Artmann, M. Planning cities with nature for sustainability transformations—A systematic review. Urban Transform. 2024, 6, 9. [Google Scholar] [CrossRef]
- Veloso, Á.; Fonseca, F.; Ramos, R. Insights from Smart City Initiatives for Urban Sustainability and Contemporary Urbanism. Smart Cities 2024, 7, 3188–3209. [Google Scholar] [CrossRef]
- Mohanty, M. Sustainable Urban Planning and Making Sustainable Cities. In Sustainable Cities and Communities; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–12. [Google Scholar]
- Silva, T.; Verde, D.; Paiva, S.; Barreto, L.; Pereira, A.I. Accessibility strategies to promote inclusive mobility through multi-objective approach. SN Appl. Sci. 2023, 5, 150. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, B. Spatial Heterogeneity of Urban Road Network Fractal Characteristics and Influencing Factors. Sustainability 2023, 15, 12141. [Google Scholar] [CrossRef]
- Wang, L.; Xue, X.; Zhao, Z.; Wang, Z. The Impacts of Transportation Infrastructure on Sustainable Development: Emerging Trends and Challenges. Int. J. Environ. Res. Public Health 2018, 15, 1172. [Google Scholar] [CrossRef]
- Aderibigbe, O.-O.; Gumbo, T. Sustainable Transport Planning. In Emerging Technologies for Smart Cities: Sustainable Transport Planning in the Global North and Global South; Aderibigbe, O.-O., Gumbo, T., Fadare, S.O., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 81–104. [Google Scholar]
- Knowles, R.D.; Ferbrache, F.; Nikitas, A. Transport’s historical, contemporary and future role in shaping urban development: Re-evaluating transit oriented development. Cities 2020, 99, 102607. [Google Scholar] [CrossRef]
- Afrin, T.; Yodo, N. A Survey of Road Traffic Congestion Measures towards a Sustainable and Resilient Transportation System. Sustainability 2020, 12, 4660. [Google Scholar] [CrossRef]
- Gan, J.; Li, L.; Xiang, Q.; Ran, B. A Prediction Method of GHG Emissions for Urban Road Transportation Planning and Its Applications. Sustainability 2020, 12, 10251. [Google Scholar] [CrossRef]
- Dilrukshi, D.; Jayasinghe, A. An investigation of combined effects of road capacity and accessibility on urban density, land use mix, and vitality. J. South Asian Logist. Transp. 2023, 3, 25–44. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, J. Fractal Dimension of a Transportation Network and its Relationship with Urban Growth: A Study of the Dallas-Fort Worth Area. Environ. Plan. B Plan. Des. 2004, 31, 895–911. [Google Scholar] [CrossRef]
- Sicuaio, T.; Zhao, P.; Pilesjo, P.; Shindyapin, A.; Mansourian, A. Sustainable and Resilient Land Use Planning: A Multi-Objective Optimization Approach. ISPRS Int. J. Geo-Inf. 2024, 13, 99. [Google Scholar] [CrossRef]
- Iannillo, A.; Fasolino, I. Land-Use Mix and Urban Sustainability: Benefits and Indicators Analysis. Sustainability 2021, 13, 13460. [Google Scholar] [CrossRef]
- Alderwick, H.; Hutchings, A.; Briggs, A.; Mays, N. The impacts of collaboration between local health care and non-health care organizations and factors shaping how they work: A systematic review of reviews. BMC Public Health 2021, 21, 753. [Google Scholar] [CrossRef]
- López-Lambas, M.E.; Corazza, M.V.; Monzon, A.; Musso, A. Rebalancing urban mobility: A tale of four cities. Proc. Inst. Civil Eng. Urban Des. Plan. 2013, 166, 274–287. [Google Scholar] [CrossRef]
- Deweerdt, T.; Fabre, A. The Role of Land Use Planning in Urban Transport to Mitigate Climate Change: A Literature Review. Adv. Environ. Eng. Res. 2022, 03, 033. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Xia, L.; He, J.; Lin, B. Investigating the Effect of Transit-Oriented Development (TOD) on Social Equity—Examining the Displacement of Footscray, Melbourne. Buildings 2024, 14, 824. [Google Scholar] [CrossRef]
- Hamed Abdi, M.; Lamíquiz Daudén, F.J. Understanding transportation prerequisites to be integrated with urban development in developing countries: Iran as a case. Transp. Res. Procedia 2021, 58, 370–376. [Google Scholar] [CrossRef]
- Kafrawy, M.; Attia, S.; Khalil, H.A. The impact of transit-oriented development on fast-urbanizing cities: Applied analytical study on Greater Cairo Region. J. Contemp. Urban Aff. 2022, 6, 83–95. [Google Scholar] [CrossRef]
- Feizi, F. Adaptation and Mitigation for Meeting the Climate Change through Urban Plans: Assessing Urban Development Plans of Tehran, Iran. Preprints 2021. [Google Scholar] [CrossRef]
- Sallis, J.F.; Bull, F.; Burdett, R.; Frank, L.D.; Griffiths, P.; Giles-Corti, B.; Stevenson, M. Use of science to guide city planning policy and practice: How to achieve healthy and sustainable future cities. Lancet 2016, 388, 2936–2947. [Google Scholar] [CrossRef]
- Azizi, L.; Kouddane, N. The green city as a driver of sustainable development. J. Umm Al-Qura Univ. Eng. Archit. 2024. [Google Scholar] [CrossRef]
- Pinto, L.V.; Inácio, M.; Pereira, P. Green and blue infrastructure (GBI) and urban nature-based solutions (NbS) contribution to human and ecological well-being and health. Oxf. Open Infrastruct. Health 2023, 1, ouad004. [Google Scholar] [CrossRef]
- Schoeman, C.; Schoeman, I. Green infrastructure: Implications for spatial, land use and transportation planning. Int. J. Environ. Impacts 2019, 2, 72–84. [Google Scholar] [CrossRef]
- Bibri, S.E. Data-driven smart sustainable cities of the future: Urban computing and intelligence for strategic, short-term, and joined-up planning. Comput. Urban Sci. 2021, 1, 8. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Q.; De Vries, B. Land Use Spatial Optimization Using Accessibility Maps to Integrate Land Use and Transport in Urban Areas. Appl. Spat. Anal. Policy 2022, 15, 1193–1217. [Google Scholar] [CrossRef]
- Zhang, R. Spatial Analysis of Transportation Networks for Urban Planning. Int. J. New Dev. Eng. Soc. 2023, 7, 1–5. [Google Scholar] [CrossRef]
- Sert, E.; Osmanlı, N.; Eruc, R.; Uyan, M. Determination of transportation networks base on the optimal public transportation policy using spatial and network analysis methods: A case of the Konya, Turkey. Int. J. Eng. Geosci. 2017, 2, 27–34. [Google Scholar] [CrossRef]
- Pu, Y.; Ji, X.; Lian, C. The Sense of Travel Deprivation and Its Impact on Travel Decision: A Case Study of China’s Rapidly Urbanizing Region. J. Adv. Transp. 2022, 2022, 7703504. [Google Scholar] [CrossRef]
- Sowmiya Narayanan, K.J.; Manimaran, A. Recent developments in geographic information systems across different application domains: A review. Knowl. Inf. Syst. 2024, 66, 1523–1547. [Google Scholar] [CrossRef]
- Gearin, E.; Hurt, C.S. Making Space: A New Way for Community Engagement in the Urban Planning Process. Sustainability 2024, 16, 2039. [Google Scholar] [CrossRef]
- Smit, W.; Hancock, T.; Kumaresen, J.; Santos-Burgoa, C.; Sánchez-Kobashi Meneses, R.; Friel, S. Toward a Research and Action Agenda on Urban Planning/Design and Health Equity in Cities in Low and Middle-Income Countries. J. Urban Health 2011, 88, 875–885. [Google Scholar] [CrossRef]
- Deep, G. Evaluating the impact of community engagement in urban planning on sustainable development. World J. Adv. Res. Rev. 2023, 20, 1633–1638. [Google Scholar] [CrossRef]
- Jacyna, M.; Kotylak, P. Decision-making problems of collective transport development in terms of sustainable urban mobility. J. KONBiN 2020, 50, 359–376. [Google Scholar] [CrossRef]
- Tembo, D.; Hickey, G.; Montenegro, C.; Chandler, D.; Nelson, E.; Porter, K.; Dikomitis, L.; Chambers, M.; Chimbari, M.; Mumba, N.; et al. Effective engagement and involvement with community stakeholders in the co-production of global health research. BMJ 2021, 372, n178. [Google Scholar] [CrossRef]
- Lotero Velez, L.; Darler, W.; Gunn, S. Urban mobility and inequalities. Some perspectives from different disciplines. LIAS Work. Pap. Ser. 2019, 2. [Google Scholar] [CrossRef]
- Rojas-Rueda, D.; Morales-Zamora, E. Equitable Urban Planning: Harnessing the Power of Comprehensive Plans. Curr. Environ. Health Rep. 2023, 10, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Manaugh, K.; Badami, M.G.; El-Geneidy, A.M. Integrating social equity into urban transportation planning: A critical evaluation of equity objectives and measures in transportation plans in North America. Transp. Policy 2015, 37, 167–176. [Google Scholar] [CrossRef]
- Patil, D.S.; Bailey, A.; Yadav, U.N.; George, S.; Helbich, M.; Ettema, D.; Ashok, L. Contextual factors influencing the urban mobility infrastructure interventions and policies for older adults in low- and middle-income countries: A realist review. BMC Public Health 2022, 22, 1489. [Google Scholar] [CrossRef] [PubMed]
- Christian, D.A.; Bachtiar, A.; Candi, C. Analysis of Health-Based Transportation System for Health Transformation in DKI Jakarta. J. Soc. Res. 2023, 2, 4103–4112. [Google Scholar] [CrossRef]
- Gupta, A.; Shukla, A.K. Optimal approaches in global warming mitigation and adaptation strategies at city scale. Discov. Sustain. 2024, 5, 272. [Google Scholar] [CrossRef]
- Parihar, J.; Birman, S. Heat Resilience in Urban Environments: Strategies for Sustainable City Climate Management. In The Climate-Health-Sustainability Nexus: Understanding the Interconnected Impact on Populations and the Environment; Singh, P., Yadav, N., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 305–324. [Google Scholar]
- Alamoudi, M.; Imam, A.; Majrashi, A.; Osra, O.; Hegazy, I. Integrating intelligent and sustainable transportation systems in Jeddah: A multidimensional approach for urban mobility enhancement. Int. J. Low-Carbon Technol. 2024, 19, 1301–1314. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Barrera-Gómez, J.; Basagaña, X.; Cirach, M.; Daher, C.; Pulido, M.F.; Iungman, T.; Gasparrini, A.; Hoek, G.; de Hoogh, K.; et al. Study protocol of the European Urban Burden of Disease Project: A health impact assessment study. BMJ Open 2022, 12, e054270. [Google Scholar] [CrossRef]
- Gomez, A. Urban Air Mobility. PAS QuickNotes; American Planning Association: Chicago, IL, USA, 2021; Volume 91. [Google Scholar]
- Li, X. Repurposing Existing Infrastructure for Urban Air Mobility: A Scenario Analysis in Southern California. Drones 2023, 7, 37. [Google Scholar] [CrossRef]
- Chahba, S.; Sehab, R.; Morel, C.; Krebs, G.; Akrad, A. Fast Sizing Methodology and Assessment of Energy Storage Configuration on the Flight Time of a Multirotor Aerial Vehicle. Aerospace 2023, 10, 425. [Google Scholar] [CrossRef]
- Rahman, B.; Bridgelall, R.; Habib, M.F.; Motuba, D. Integrating Urban Air Mobility into a Public Transit System: A GIS-Based Approach to Identify Candidate Locations for Vertiports. Vehicles 2023, 5, 1803–1817. [Google Scholar] [CrossRef]
- Thipphavong, D.P. Analysis of Electrical Grid Capacity in Major U.S. Metropolitan Areas for Urban Air Mobility. In Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA, 12–16 June 2023; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2023. [Google Scholar]
- Thipphavong, D.P. Analysis of Electrical Grid Capacity by Interconnection for Urban Air Mobility. In Proceedings of the AIAA Aviation Forum, Chicago, IL, USA, 27 June–1 July 2022; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2022. [Google Scholar]
- Taye, A.G.; Pradeep, P.; Wei, P.; Jones, J.C.; Bonin, T.; Eberle, D. Energy Demand Analysis for eVTOL Charging Stations in Urban Air Mobility. In Proceedings of the AIAA Aviation Forum and Ascend, Las Vegas, NV, USA, 29 July–2 August 2024; AIAA Aviation Forum and ASCEND Co-Located Conference Proceedings. American Institute of Aeronautics and Astronautics: Reston VA, USA, 2024. [Google Scholar]
- Thu, Z.W.; Kim, D.; Lee, J.; Won, W.-J.; Lee, H.J.; Ywet, N.L.; Maw, A.A.; Lee, J.-W. Multivehicle Point-to-Point Network Problem Formulation for UAM Operation Management Used with Dynamic Scheduling. Appl. Sci. 2022, 12, 11858. [Google Scholar] [CrossRef]
- Donateo, T.; Ficarella, A. A Methodology for the Comparative Analysis of Hybrid Electric and All-Electric Power Systems for Urban Air Mobility. Energies 2022, 15, 638. [Google Scholar] [CrossRef]
- Wild, G.; Baxter, G.; Sabatini, R. Sustainable technologies for aircraft energy generation, storage, and distribution. In Proceedings of the Practical Responses to Climate Change, Melbourne, Australia, 25–27 November 2014; pp. 1–9. [Google Scholar]
- Niklaß, M.; Dzikus, N.; Swaid, M.; Berling, J.; Lührs, B.; Lau, A.; Terekhov, I.; Gollnick, V. A Collaborative Approach for an Integrated Modeling of Urban Air Transportation Systems. Aerospace 2020, 7, 50. [Google Scholar] [CrossRef]
- Ren, X.; Li, R. The Location Problem of Medical Drone Vertiports for Emergency Cardiac Arrest Needs. Sustainability 2024, 16, 44. [Google Scholar] [CrossRef]
- Hoffmann, R.; Nishimura, H.; Gomes, P. Exploring Safety Culture in Urban Air Mobility: System of Systems Perspectives Using Enterprise Architecture. Systems 2024, 12, 178. [Google Scholar] [CrossRef]
- Tobey, M.B.; Binder, R.B.; Chang, S.; Yoshida, T.; Yamagata, Y.; Yang, P.P.J. Urban Systems Design: A Conceptual Framework for Planning Smart Communities. Smart Cities 2019, 2, 522–537. [Google Scholar] [CrossRef]
- Desai, K.; Al Haddad, C.; Antoniou, C. Roadmap to Early Implementation of Passenger Air Mobility: Findings from a Delphi Study. Sustainability 2021, 13, 10612. [Google Scholar] [CrossRef]
- Shafqat, R.; Marinova, D.; Khan, S. Placemaking in Informal Settlements: The Case of France Colony, Islamabad, Pakistan. Urban Sci. 2021, 5, 49. [Google Scholar] [CrossRef]
- Rossi, E.; Attaianese, E. Research Synergies between Sustainability and Human-Centered Design: A Systematic Literature Review. Sustainability 2023, 15, 12884. [Google Scholar] [CrossRef]
- García, I.; Crookston, J. Connectivity and Usership of Two Types of Multi-Modal Transportation Network: A Regional Trail and a Transit-Oriented Commercial Corridor. Urban Sci. 2019, 3, 34. [Google Scholar] [CrossRef]
- Wu, M.; Yan, B.; Huang, Y.; Sarker, M.N. Big Data-Driven Urban Management: Potential for Urban Sustainability. Land 2022, 11, 680. [Google Scholar] [CrossRef]
- Newman, P.; Davies-Slate, S.; Conley, D.; Hargroves, K.; Mouritz, M. From TOD to TAC: Why and How Transport and Urban Policy Needs to Shift to Regenerating Main Road Corridors with New Transit Systems. Urban Sci. 2021, 5, 52. [Google Scholar] [CrossRef]
- Debnath, R.; Pettit, C.; Leao, S.Z. Geodesign Approaches to City Resilience Planning: A Systematic Review. Sustainability 2022, 14, 938. [Google Scholar] [CrossRef]
- Kiba-Janiak, M.; Witkowski, J. Sustainable Urban Mobility Plans: How Do They Work? Sustainability 2019, 11, 4605. [Google Scholar] [CrossRef]
- Zhang, J.; Roumeliotis, I.; Zolotas, A. Sustainable Aviation Electrification: A Comprehensive Review of Electric Propulsion System Architectures, Energy Management, and Control. Sustainability 2022, 14, 5880. [Google Scholar] [CrossRef]
- Eisenman, T.S.; Coleman, A.F.; LaBombard, G. Street Trees for Bicyclists, Pedestrians, and Vehicle Drivers: A Systematic Multimodal Review. Urban Sci. 2021, 5, 56. [Google Scholar] [CrossRef]
- Kesselring, S.; Simon-Philipp, C.; Bansen, J.; Hefner, B.; Minnich, L.; Schreiber, J. Sustainable Mobilities in the Neighborhood: Methodological Innovation for Social Change. Sustainability 2023, 15, 3583. [Google Scholar] [CrossRef]
- Talen, E. The Scale of Urbanism. Urban Sci. 2023, 7, 87. [Google Scholar] [CrossRef]
- Cofone, L.; Sabato, M.; Di Rosa, E.; Colombo, C.; Paglione, L. Evaluating the Environmental Impact of Anthropogenic Activities on Human Health: A Systematic Review. Urban Sci. 2024, 8, 49. [Google Scholar] [CrossRef]
- Jeong, J.; So, M.; Hwang, H.-Y. Selection of Vertiports Using K-Means Algorithm and Noise Analyses for Urban Air Mobility (UAM) in the Seoul Metropolitan Area. Appl. Sci. 2021, 11, 5729. [Google Scholar] [CrossRef]
- Wild, G.; Murray, J.; Baxter, G. Exploring Civil Drone Accidents and Incidents to Help Prevent Potential Air Disasters. Aerospace 2016, 3, 22. [Google Scholar] [CrossRef]
- Bell, D. Intermodal Mobility Hubs and User Needs. Soc. Sci. 2019, 8, 65. [Google Scholar] [CrossRef]
- Lee, J.-a.; Lee, J.-h.; Je, M.-h. Guidelines on Unused Open Spaces between Buildings for Sustainable Urban Management. Sustainability 2021, 13, 13482. [Google Scholar] [CrossRef]
- Crupi, F. Urban Regeneration and Green and Blue Infrastructure: The Case of the “Acilia–Madonnetta” Urban and Metropolitan Centrality in the Municipality of Rome. Urban Sci. 2022, 6, 56. [Google Scholar] [CrossRef]
- Sun, Y. Sharing and Riding: How the Dockless Bike Sharing Scheme in China Shapes the City. Urban Sci. 2018, 2, 68. [Google Scholar] [CrossRef]
- Wen, L.; Kenworthy, J.; Guo, X.; Marinova, D. Solving Traffic Congestion through Street Renaissance: A Perspective from Dense Asian Cities. Urban Sci. 2019, 3, 18. [Google Scholar] [CrossRef]
- Jafarzadehfadaki, M.; Sisiopiku, V.P. Embracing Urban Micromobility: A Comparative Study of E-Scooter Adoption in Washington, D.C., Miami, and Los Angeles. Urban Sci. 2024, 8, 71. [Google Scholar] [CrossRef]
- Nikitas, A.; Kougias, I.; Alyavina, E.; Njoya Tchouamou, E. How Can Autonomous and Connected Vehicles, Electromobility, BRT, Hyperloop, Shared Use Mobility and Mobility-As-A-Service Shape Transport Futures for the Context of Smart Cities? Urban Sci. 2017, 1, 36. [Google Scholar] [CrossRef]
- Conway, M.W.; Salon, D.; King, D.A. Trends in Taxi Use and the Advent of Ridehailing, 1995–2017: Evidence from the US National Household Travel Survey. Urban Sci. 2018, 2, 79. [Google Scholar] [CrossRef]
- Musili, C.; Salon, D. Do Private Transport Services Complement or Compete against Public Transit? Evidence from the Commuter Vans in Eastern Queens, New York. Urban Sci. 2019, 3, 24. [Google Scholar] [CrossRef]
- Rothfeld, R.; Fu, M.; Balać, M.; Antoniou, C. Potential Urban Air Mobility Travel Time Savings: An Exploratory Analysis of Munich, Paris, and San Francisco. Sustainability 2021, 13, 2217. [Google Scholar] [CrossRef]
- Koumoutsidi, A.; Pagoni, I.; Polydoropoulou, A. A New Mobility Era: Stakeholders’ Insights regarding Urban Air Mobility. Sustainability 2022, 14, 3128. [Google Scholar] [CrossRef]
- Kussl, S.; Wald, A. Smart Mobility and its Implications for Road Infrastructure Provision: A Systematic Literature Review. Sustainability 2023, 15, 210. [Google Scholar] [CrossRef]
- Chen, S.; Zong, S.; Chen, T.; Huang, Z.; Chen, Y.; Labi, S. A Taxonomy for Autonomous Vehicles Considering Ambient Road Infrastructure. Sustainability 2023, 15, 11258. [Google Scholar] [CrossRef]
- Bhuiya, M.; Aziz, M.M.; Mursheda, F.; Lum, R.; Brar, N.; Youssef, M. A New Hyperloop Transportation System: Design and Practical Integration. Robotics 2022, 11, 23. [Google Scholar] [CrossRef]
- Mrak, I.; Ambruš, D.; Marović, I. A Holistic Approach to Strategic Sustainable Development of Urban Voids as Historic Urban Landscapes from the Perspective of Urban Resilience. Buildings 2022, 12, 1852. [Google Scholar] [CrossRef]
- Silva, C.; Johnson, W.R.; Solis, E.; Patterson, M.D.; Antcliff, K.R. VTOL Urban Air Mobility Concept Vehicles for Technology Development. In Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2018. [Google Scholar]
- Mou, Y.; Jiang, M.; Zhu, G. Certification Considerations of eVTOL Aircraft. In Proceedings of the 32nd Congress of International Council of the Aeronautical Sciences, Shanghai, China, 6–10 September 2021; pp. 3–17. [Google Scholar]
- Lapesa Barrera, D. ICAO and the Aviation Authorities. In Aircraft Maintenance Programs; Lapesa Barrera, D., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 3–9. [Google Scholar]
- Johnson, W.; Silva, C. NASA concept vehicles and the engineering of advanced air mobility aircraft. Aeronaut. J. 2022, 126, 59–91. [Google Scholar] [CrossRef]
- Torens, C.; Nagarajan, P.; Schirmer, S.; Dauer, J.; Baumeister, J.E.; Kohn, F.; Finkbeiner, B.; Manfredi, G.; Löhr, F. Certification Aspects of Runtime Assurance for Urban Air Mobility. In Proceedings of the AIAA SciTech 2024 Forum, Orlando, FL, USA, 8–12 January 2024; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2024. [Google Scholar]
- Garikapati, D.; Shetiya, S.S. Autonomous Vehicles: Evolution of Artificial Intelligence and the Current Industry Landscape. Big Data Cogn. Comput. 2024, 8, 42. [Google Scholar] [CrossRef]
- Franciscone, B.G.; Fernandes, E. Challenges to the Operational Safety and Security of eVTOL Aircraft in Metropolitan Regions: A Literature Review. J. Airl. Oper. Aviat. Manag. 2023, 2, 45–56. [Google Scholar] [CrossRef]
- Agustinho, J.R.; Bento, C.A.d.M. Operational requirements analysis for electric vertical takeoff and landing vehicle in the Brazilian regulatory framework. J. Aerosp.Technol. Manag. 2022, 14, e1922. [Google Scholar] [CrossRef]
- Xie, Y.; Pongsakornsathien, N.; Gardi, A.; Sabatini, R. Explanation of Machine-Learning Solutions in Air-Traffic Management. Aerospace 2021, 8, 224. [Google Scholar] [CrossRef]
- Pinto Neto, E.C.; Baum, D.M.; Almeida, J.R.; Camargo, J.B.; Cugnasca, P.S. Deep Learning in Air Traffic Management (ATM): A Survey on Applications, Opportunities, and Open Challenges. Aerospace 2023, 10, 358. [Google Scholar] [CrossRef]
- Pak, H.; Asmer, L.; Kokus, P.; Schuchardt, B.I.; End, A.; Meller, F.; Schweiger, K.; Torens, C.; Barzantny, C.; Becker, D.; et al. Can Urban Air Mobility become reality? Opportunities and challenges of UAM as innovative mode of transport and DLR contribution to ongoing research. CEAS Aeronaut. J. 2024. [Google Scholar] [CrossRef]
- Wang, Z.; Delahaye, D.; Farges, J.-L.; Alam, S. Air Traffic Assignment for Intensive Urban Air Mobility Operations. J. Aerosp. Inf. Syst. 2021, 18, 860–875. [Google Scholar] [CrossRef]
- Bauranov, A.; Rakas, J. Designing airspace for urban air mobility: A review of concepts and approaches. Prog. Aerosp. Sci. 2021, 125, 100726. [Google Scholar] [CrossRef]
- Safwat, N.E.D.; Sabatini, R.; Gardi, A.; Hafez, I.M.; Newagy, F. Urban Air Mobility Communication Performance Considering Cochannel Interference. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 5089–5100. [Google Scholar] [CrossRef]
- Al-Rubaye, S.; Tsourdos, A.; Namuduri, K. Advanced Air Mobility Operation and Infrastructure for Sustainable Connected eVTOL Vehicle. Drones 2023, 7, 319. [Google Scholar] [CrossRef]
- Michaelides-Mateou, S. Challenges and Trends in the Aviation Industry: Integrating UAVs in Non-segregated Airspace. In Unmanned Aerial Vehicles Applications: Challenges and Trends; Abdelkader, M., Koubaa, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 377–409. [Google Scholar]
- Yedavalli, P.; Cohen, A. Planning Land Use Constrained Networks of Urban Air Mobility Infrastructure in the San Francisco Bay Area. Transp. Res. Rec. 2022, 2676, 106–116. [Google Scholar] [CrossRef]
- Li, J.; Yang, R.; Li, C.; Zhou, Y.; Huang, L. Initial Research on The Vertiport for The Urban Air Mobility. In Proceedings of the 2nd International Conference on Information, Control and Automation, ICICA, Chongqing, China, 2–4 December 2023. [Google Scholar]
- Yan, Y.; Wang, K.; Qu, X. Urban air mobility (UAM) and ground transportation integration: A survey. Front. Eng. Manag. 2024. [Google Scholar] [CrossRef]
- Jiang, X.; Tang, Y.; Cao, J.; Bulusu, V.; Yang, H.; Peng, X.; Zheng, Y.; Zhao, J.; Sengupta, R. Simulating Integration of Urban Air Mobility into Existing Transportation Systems: Survey. J. Air Transp. 2024, 32, 97–107. [Google Scholar] [CrossRef]
- Cokorilo, O. Urban Air Mobility: Safety Challenges. Transp. Res. Procedia 2020, 45, 21–29. [Google Scholar] [CrossRef]
- Shi, Y. Aviation Safety for Urban Air Mobility: Pilot Licensing and Fatigue Management. J. Intell. Robot. Syst. 2024, 110, 35. [Google Scholar] [CrossRef]
- Panesar, K.; Mathur, A.; Atkins, E.; Sarter, N. Moving From Piloted to Autonomous Operations: Investigating Human Factors Challenges in Urban Air Mobility. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2021, 65, 241–245. [Google Scholar] [CrossRef]
- Torens, C.; Volkert, A.; Becker, D.; Gerbeth, D.; Schalk, L.; Garcia Crespillo, O.; Zhu, C.; Stelkens-Kobsch, T.; Gehrke, T.; Metz, I.C.; et al. HorizonUAM: Safety and Security Considerations for Urban Air Mobility. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2021. [Google Scholar]
- Bauranov, A.; Rakas, J. Urban air mobility and manned eVTOLs: Safety implications. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8–12 September 2019; pp. 1–8. [Google Scholar]
- Tang, A.C. A Review on Cybersecurity Vulnerabilities for Urban Air Mobility. In Proceedings of the AIAA SciTech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2021. [Google Scholar]
- Freeman, K.; Garcia, S. A Survey of Cyber Threats and Security Controls Analysis for Urban Air Mobility Environments. In Proceedings of the AIAA SciTech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2021. [Google Scholar]
- Jadhav, P.; Lercel, D.; Hubbard, S.; Schreckengast, S. Exploring the State of SMS Implementation at Airports. Coll. Aviat. Rev. Int. 2023, 41, 75–93. [Google Scholar] [CrossRef]
- Kwon, D.; Son, S.; Park, Y.; Kim, H.; Park, Y.; Lee, S.; Jeon, Y. Design of Secure Handover Authentication Scheme for Urban Air Mobility Environments. IEEE Access 2022, 10, 42529–42541. [Google Scholar] [CrossRef]
- Hoffmann, R.; Pereira, D.P.; Nishimura, H. Security Viewpoint and Resilient Performance in the Urban Air Mobility Operation. IEEE Open J. Syst. Eng. 2023, 1, 123–138. [Google Scholar] [CrossRef]
- Ravich, T. On-demand aviation: Governance challenges of urban air mobility. Penn State Law Rev. 2020, 124, 657–689. [Google Scholar]
- Immel, J.J.; Langlinais, J.A. The challenges to urban air mobility. Air Space Law 2020, 33, 16. [Google Scholar]
- Serrao, J.; Nilsson, S.; Kimmel, S. A Legal and Regulatory Assessment for the Potential of Urban Air Mobility (UAM); Transportation Sustainability Research Center: Berkeley, CA, USA, 2018. [Google Scholar]
- Graydon, M.; Neogi, N.A.; Wasson, K. Guidance for Designing Safety into Urban Air Mobility: Hazard Analysis Techniques. In Proceedings of the AIAA SciTech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2020. [Google Scholar]
- Turner, J.S.; Baxenberg, S.M. Clearing the Air: ULC Rightfully Rejects Property Rights Advocates’ Line in the Sky. Air & Space Law. 2020, 33, 1. [Google Scholar]
- Shenoy, K.K.; Tyagi, D. Use of unmanned aircraft systems and regulatory landscape: Unravelling the future challenges in the high sky. Int. J. Aviat. Aeronaut. Aerosp. 2022, 9, 7. [Google Scholar] [CrossRef]
- Simoneau, T. Airspace Ownership Controversies in the United States: A Concise History. Coll. Aviat. Rev. Int. 2023, 41, 1–28. [Google Scholar] [CrossRef]
- Bagratuni, M. An Empirical Investigation on the Influence of Temporal Distance on the Acceptance of Innovations-Using the Example of Urban Air Mobility. OSF Prepr. 2021. [Google Scholar] [CrossRef]
- Wasson, K.; Neogi, N.; Graydon, M.; Maddalon, J.; Miner, P.; McCormick, G.F. Functional Hazard Assessment for the eVTOL Aircraft Supporting Urban Air Mobility (UAM) Applications: Exploratory Demonstrations; NASA/TM-20210024234; NASA Langley Research Center: Hampton, VA, USA, 2022. [Google Scholar]
- McKinsey & Company. Study on the Societal Acceptance of Urban Air Mobility in Europe; European Union Aviation Safety Agency: Cologne, Germany, 2021. [Google Scholar]
- Macrae, C. Learning from the Failure of Autonomous and Intelligent Systems: Accidents, Safety, and Sociotechnical Sources of Risk. Risk Anal. 2022, 42, 1999–2025. [Google Scholar] [CrossRef] [PubMed]
- Cwerner, S.B. Vertical Flight and Urban Mobilities: The Promise and Reality of Helicopter Travel. Mobilities 2006, 1, 191–215. [Google Scholar] [CrossRef]
- Myers III, P.L. SMS derived vs. public perceived risk in aviation technology acceptance (Literature Review). Int. J. Aviat. Aeronaut. Aerosp. 2016, 3, 1–19. [Google Scholar] [CrossRef]
- Kellermann, R.; Fischer, L.; Ediciones Universidad de ValladolidAutoridad UVA. Drones for parcel and passenger transport: A qualitative exploration of public acceptance. Sociol. Tecnocienc. 2020, 10, 106–138. [Google Scholar]
- Ellis, K.; Krois, P.; Davirs, M.D.; Koelling, J. In-Time System-Wide Safety Assurance (ISSA) Concept of Operations; NASA/TM-20190032480; NASA Langley Research Center: Hampton, VA, USA, 2019. [Google Scholar]
- Ellis, K.; Koelling, J.; Davies, M.; Krois, P. In-Time System-Wide Safety Assurance (ISSA) Concept of Operations and Design Considerations for Urban Air Mobility (UAM); NASA/TM-20205003981; NASA Langley Research Center: Hampton, VA, USA, 2020. [Google Scholar]
- Young, S.D.; Ancel, E.; Dill, E.T.; Moore, A.; Quach, C.C.; Smalling, K.M.; Ellis, K.K. Flight Testing In-Time Safety Assurance Technologies for UAS Operations. In Proceedings of the AIAA Aviation 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2022. [Google Scholar]
- Ellis, K.K.; Krois, P.; Koelling, J.H.; Prinzel, L.J.; Davies, M.D.; Mah, R.W. Defining Services, Functions, and Capabilities for an Advanced Air Mobility (AAM) In-time Aviation Safety Management System (IASMS). In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2021. [Google Scholar]
- Ellis, K.K.; Krois, P.; Koelling, J.; Prinzel, L.J.; Davies, M.; Mah, R. A Concept of Operations (ConOps) of an In-time Aviation Safety Management System (IASMS) for Advanced Air Mobility (AAM). In Proceedings of the AIAA SciTech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2021. [Google Scholar]
- Yedavalli, P.; Mooberry, J. An Assessment of Public Perception of Urban Air Mobility (UAM); Airbus UTM: Sunnyvale, CA, USA, 2019; pp. 1–28. [Google Scholar]
- Greenwood, E.; Brentner, K.S.; Rau, R.F.; Ted Gan, Z.F. Challenges and opportunities for low noise electric aircraft. Int. J. Aeroacoust. 2022, 21, 315–381. [Google Scholar] [CrossRef]
- Eißfeldt, H. Supporting Urban Air Mobility with Citizen Participatory Noise Sensing: A Concept. In Proceedings of the WWW’19: Companion Proceedings of The 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 93–95. [Google Scholar]
- Woodward, J.M.; Briscoe, L.L.; Dunholter, P.H. Aircraft Noise: A Toolkit for Managing Community Expectations; 0309118018; Transportation Research Board: Washington, DC, USA, 2009. [Google Scholar]
- Rizzi, S.; Rafaelof, M. Community noise assessment of urban air mobility vehicle operations using the FAA Aviation Environmental Design Tool. INTER-NOISE and NOISE-CON Congress Conf. Proc. 2021, 263, 450–461. [Google Scholar] [CrossRef]
- Rizzi, S.A.; Huff, D.L.; Boyd, D.D.; Bent, P.; Henderson, B.S.; Pascioni, K.A.; Sargent, D.C.; Josephson, D.L.; Marsan, M.; He, H.B. Urban Air Mobility Noise: Current Practice, Gaps, and Recommendations; NASA/TP-20205007433; NASA: Hampton, VA, USA, 2020. [Google Scholar]
- Rizzi, S.A.; Christian, A.; Letica, S.J.; Lympany, S.V. Annoyance Model Assessments of Urban Air Mobility Vehicle Operations. In Proceedings of the 30th AIAA/CEAS Aeroacoustics Conference (2024), Rome, Italy, 4–7 June 2024; Aeroacoustics Conferences. American Institute of Aeronautics and Astronautics: Reston VA, USA, 2024. [Google Scholar]
- Rizzi, S.A.; Rafaelof, M. On the Modeling of UAM Aircraft Community Noise in AEDT Helicopter Mode. In Proceedings of the AIAA Aviation 2023 Forum, San Diego, CA, USA, 12–16 June 2023; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2023. [Google Scholar]
- Rizzi, S.A.; Rafaelof, M. Second Generation UAM Community Noise Assessment Using the FAA Aviation Environmental Design Tool. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2021. [Google Scholar]
- Ahmed, S.S.; Fountas, G.; Eker, U.; Anastasopoulos, P.C. Are we willing to relocate with the future introduction of flying cars? An exploratory empirical analysis of public perceptions in the United States. Transp. A Transp. Sci. 2022, 18, 1025–1052. [Google Scholar] [CrossRef]
- Grotta, C.A.D.; Ferruzzo Correa, D.; Pereira, L.; Krus, P. Urban Air Mobility (UAM) and the Urban Circulation Space: Evaluation Proposal for the Reduction of Social Inequalities. In Proceedings of IDEAS 2022: Interdisciplinary Conference on Innovation, Design, Entrepreneurship, and Sustainable Systems; Pereira, L., Krus, P., Klofsten, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 233–241. [Google Scholar]
- Davis, J.A. Social Equity and the Journey Toward Fairness. J. Public Admin. Res. Theory 2021, 31, 467–469. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, C. Assessing Electric Vertical Take-Off and Landing for Urban Air Taxi Services: Key Parameters and Future Transportation Impact. Sustainability 2024, 16, 4732. [Google Scholar] [CrossRef]
- Ison, D.C. Taking Flight or Taking a Pass? Exploring Factors Influencing Consumer Willingness to Pay for eVTOL Travel. Int. J. Aviat. Aeronaut. Aerosp. 2024, 11, 5. [Google Scholar] [CrossRef]
- Ison, D. Consumer Willingness to Fly on Advanced Air Mobility (AAM) Electric Vertical Takeoff and Landing (eVTOL) Aircraft. Coll. Aviat. Rev. Int. 2024, 42, 29–56. [Google Scholar] [CrossRef]
- Long, Q.; Ma, J.; Jiang, F.; Webster, C.J. Demand analysis in urban air mobility: A literature review. J. Air Transp. Manag. 2023, 112, 102436. [Google Scholar] [CrossRef]
- Cohen, A.P.; Shaheen, S.A.; Farrar, E.M. Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. IEEE Trans. Intell. Transp. 2021, 22, 6074–6087. [Google Scholar] [CrossRef]
- Chae, M.; Kim, S.H.; Kim, M.; Park, H.-T.; Kim, S.H. Potential market based policy considerations for urban air mobility. J. Air Transp. Manag. 2024, 119, 102654. [Google Scholar] [CrossRef]
- Fu, M.; Rothfeld, R.; Antoniou, C. Exploring Preferences for Transportation Modes in an Urban Air Mobility Environment: Munich Case Study. Transp. Res. Rec. 2019, 2673, 427–442. [Google Scholar] [CrossRef]
- Hae Choi, J.; Park, Y. Exploring economic feasibility for airport shuttle service of urban air mobility (UAM). Transp. Res. Part A Policy Pract. 2022, 162, 267–281. [Google Scholar] [CrossRef]
- Espejo-Díaz, J.A.; Alfonso-Lizarazo, E.; Montoya-Torres, J.R. Improving access to emergency medical services using advanced air mobility vehicles. Flex. Serv. Manuf. J. 2023. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Peng, J.K.; Wang, X.; Papadias, D.; Kopasz, J. Performance and cost of fuel cells for urban air mobility. Int. J. Hydrogen Energy 2021, 46, 36917–36929. [Google Scholar] [CrossRef]
- Husemann, M.; Kirste, A.; Stumpf, E. Analysis of cost-efficient urban air mobility systems: Optimization of operational and configurational fleet decisions. Eur. J. Oper. Res. 2024, 317, 678–695. [Google Scholar] [CrossRef]
- Ragbir, N.K.; Rice, S.; Winter, S.R.; Choy, E.C.; Milner, M.N. How weather, distance, flight time, and geography affect consumer willingness to fly in autonomous air taxis. Coll. Aviat. Rev. Int. 2020, 38, 69–87. [Google Scholar] [CrossRef]
- Ison, D.C. Public Opinion Concerning the Siting of Vertiports. Int. J. Aviat. Aeronaut. Aerosp. 2023, 10, 3. [Google Scholar] [CrossRef]
- Imanov, T. Urban Air Mobility (UAM) Network. Case Study: Baku Metropolitan Area. Int. J. Aviat. Sci. Technol. 2024, 5, 53–74. [Google Scholar] [CrossRef]
- Swaid, M.; Papakonstantinou, S.; Kloock-Schreiber, D.; Gollnick, V. Design of a uam ground infrastructure network with respect to maintenance capacity requirements. In Proceedings of the 34th Congress of the International Council of the Aeronautrical Sciences, Florence, Italy, 9–13 September 2024. [Google Scholar]
- Abbasi, F.A.; Ngouna, R.H.; Memon, M.A.; Al Reshan, M.S.; Sulaiman, A.; Shaikh, A. Fostering UAM implementation: From bibliometric analysis to insightful knowledge on the demand. Soc. Netw. Anal. Min. 2024, 14, 80. [Google Scholar] [CrossRef]
- Straubinger, A.; Michelmann, J.; Biehle, T. Business model options for passenger urban air mobility. CEAS Aeronaut. J. 2021, 12, 361–380. [Google Scholar] [CrossRef]
- Al Haddad, C.; Chaniotakis, E.; Straubinger, A.; Plötner, K.; Antoniou, C. Factors affecting the adoption and use of urban air mobility. Transp. Res. Part A Policy Pract. 2020, 132, 696–712. [Google Scholar] [CrossRef]
- Kalakou, S.; Marques, C.; Prazeres, D.; Agouridas, V. Citizens’ attitudes towards technological innovations: The case of urban air mobility. Technol. Forecast. Soc. 2023, 187, 122200. [Google Scholar] [CrossRef]
- Çınar, E.; Tuncal, A. The Future of UAVs in Urban Air Mobility: Public Perception and Concerns. Türkiye İnsansız Hava Araçları Dergisi 2023, 5, 50–58. [Google Scholar] [CrossRef]
- End, A.; Barzantny, C.; Stolz, M.; Grupe, P.; Schmidt, R.; Papenfuß, A.; Eißfeldt, H. Public acceptance of civilian drones and air taxis in Germany: A comprehensive overview. PsyArXiv Prepr. 2023. [Google Scholar] [CrossRef]
- Park, G.; Park, H.; Park, H.; Chun, N.; Kim, S.-H.; Lee, K. Public Perception of UAM: Are we ready for the new mobility that we have dreamed of? Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2022, 66, 40–44. [Google Scholar] [CrossRef]
- Hoffmann, R.; Silva, F.; Nishimura, H. Evaluating the Eco-Efficiency of Urban Air Mobility: Understanding Environmental and Social Impacts for Informed Passenger Choices. INCOSE Int. Symp. 2024, 34, 967–984. [Google Scholar] [CrossRef]
- Babetto, L.; Kirste, A.; Deng, J.; Husemann, M.; Stumpf, E. Adoption of the Urban Air Mobility System: Analysis of technical, legal and social aspects from a European perspective. J. Air Transp. Res. Soc. 2023, 1, 152–174. [Google Scholar] [CrossRef]
- Kohlman, L.W.; Patterson, M.D.; Raabe, B.E. Urban Air Mobility Network and Vehicle Type-Modeling and Assessment; NASA/TM-2019-220072; NASA: Moffett Field, CA, USA, 2019. [Google Scholar]
- Melo, S.P.; Cerdas, F.; Barke, A.; Thies, C.; Spengler, T.S.; Herrmann, C. Life Cycle Engineering Modelling Framework for batteries powering electric aircrafts—The contribution of eVTOLs towards a more sustainable urban mobility. Procedia CIRP 2022, 105, 368–373. [Google Scholar] [CrossRef]
- André, N.; Hajek, M. Robust Environmental Life Cycle Assessment of Electric VTOL Concepts for Urban Air Mobility. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2019. [Google Scholar]
- Donateo, T.; Ficarella, A.; Surdo, L. Energy consumption and environmental impact of Urban Air mobility. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1226, 012065. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Faiyetole, A.A.; Sivowaku, J.T. The effects of aircraft noise on psychosocial health. J. Transp. Health 2021, 22, 101230. [Google Scholar] [CrossRef]
- Basner, M.; Clark, C.; Hansell, A.; Hileman, J.I.; Janssen, S.; Shepherd, K.; Sparrow, V. Aviation Noise Impacts: State of the Science. Noise Health 2017, 19, 41–50. [Google Scholar]
- Miranda, J.N.; Lee, S. Community Noise Impact of Urban Air Mobility Aircraft with Noise Propagation Effects. In Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA, 12–16 June 2023; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2023. [Google Scholar]
- Koehler, M.; Baader, F.; Brandstätt, P. Noise prediction for urban air taxi operation. INTER-NOISE NOISE-CON Congr. Conf. Proc. 2021, 263, 2984–2995. [Google Scholar] [CrossRef]
- Wiedemann, M.; Liang, M.; Keremane, G.; Quigley, K. Advanced Air Mobility: A comparative review of policies from around the world—lessons for Australia. Transp. Res. Interdiscipl. Perspect. 2024, 24, 100988. [Google Scholar] [CrossRef]
- Perperidou, D.G.; Kirgiafinis, D. Urban Air Mobility (UAM) Integration to Urban Planning. In Smart Energy for Smart Transport; CSUM 2022. Lecture Notes in Intelligent Transportation and Infrastructure; Nathanail, E.G., Gavanas, N., Adamos, G., Eds.; Springer: Cham, Switzerland, 2023; pp. 1676–1686. [Google Scholar] [CrossRef]
- Alcoforado, M.J.; Andrade, H. Global Warming and the Urban Heat Island. In Urban Ecology: An International Perspective on the Interaction Between Humans and Nature; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer US: Boston, MA, USA, 2008; pp. 249–262. [Google Scholar]
- Lopes, D.; Silva, J. Urban air mobility (UAM) in the metropolitan region of São Paulo: Potential and threats. J. Airl. Airp. Manag. 2023, 13, 1–11. [Google Scholar] [CrossRef]
- Garrow, L.A.; German, B.J.; Leonard, C.E. Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transp. Res. Part C Emerg. Technol. 2021, 132, 103377. [Google Scholar] [CrossRef]
- Afonso, F.; Ferreira, A.; Ribeiro, I.; Lau, F.; Suleman, A. On the design of environmentally sustainable aircraft for urban air mobility. Transp. Res. Part D Transp. Environ. 2021, 91, 102688. [Google Scholar] [CrossRef]
- Pradeep, P.; Wei, P. Energy-Efficient Arrival with RTA Constraint for Multirotor eVTOL in Urban Air Mobility. J. Aerosp. Inf. Syst. 2019, 16, 263–277. [Google Scholar] [CrossRef]
- Kohlman, L.W.; Patterson, M.D. System-Level Urban Air Mobility Transportation Modeling and Determination of Energy-Related Constraints. In Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2018. [Google Scholar]
- Mudumba, S.V.; Chao, H.; Maheshwari, A.; DeLaurentis, D.A.; Crossley, W.A. Modeling CO2 Emissions from Trips using Urban Air Mobility and Emerging Automobile Technologies. Transp. Res. Rec. 2021, 2675, 1224–1237. [Google Scholar] [CrossRef]
- Vashi, S.J.; Edsel, A.; Das Biswas, S.; Morgan, G.; Kilbourne, M.; Gadre, R.; Mall, K.; DeLaurentis, D.A.; Crossley, W.; Patterson, M.D.; et al. Refined Analysis of CO2 Emissions in Urban Air Mobility Networks. In Proceedings of the AIAA Aviation Forum and ASCEND 2024, Las Vegas, NV, USA, 29 July–2 August 2024; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2024. [Google Scholar]
- Cho, S.-H.; Kim, M. Assessment of the environmental impact and policy responses for urban air mobility: A case study of Seoul metropolitan area. J. Clean. Prod. 2022, 360, 132139. [Google Scholar] [CrossRef]
- Adkins, K.A.; Akbas, M.; Compere, M. Real-time urban weather observations for urban air mobility. Int. J. Aviat. Aeronaut. Aerosp. 2020, 7, 11. [Google Scholar] [CrossRef]
- Adkins, K.A. Urban flow and small unmanned aerial system operations in the built environment. Int. J. Aviat. Aeronaut. Aerosp. 2019, 6, 10. [Google Scholar] [CrossRef]
- Reiche, C.; McGillen, C.; Siegel, J.; Brody, F. Are We Ready to Weather Urban Air Mobility (UAM)? In Proceedings of the 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 9–11 April 2019; pp. 1–7. [Google Scholar]
- Reiche, C.; Cohen, A.P.; Fernando, C. An Initial Assessment of the Potential Weather Barriers of Urban Air Mobility. IEEE Trans. Intell. Transp. 2021, 22, 6018–6027. [Google Scholar] [CrossRef]
- Chao, H.; Maheshwari, A.; DeLaurentis, D.; Crossley, W. Weather Impact Assessment for Urban Aerial Trips in Metropolitan Areas. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2021. [Google Scholar]
- Bonin, T.; Jones, J.; Enea, G.; Levitt, I.; Phojanamongkolkij, N. Development of a Weather Capability for the Urban Air Mobility Airspace Research Roadmap. In Proceedings of the 2023 Integrated Communication, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 18–20 April 2023; pp. 1–11. [Google Scholar]
- Ison, D. Analysis of VTOL Downwash and Outwash to Establish Vertiport Safety Standards: A Theoretical Approach. Coll. Aviat. Rev. Int. 2024, 42, 17–40. [Google Scholar]
- Allison, E. UAM: Can it become a reality? In Proceedings of the 22nd World Knowledge Forum, Seoul, Republic of Korea, 14–16 September 2021. [Google Scholar]
- Billings, C.E. Aviation Automation: The Search for A Human-Centered Approach; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2018. [Google Scholar]
- Moir, I.; Seabridge, A. Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chen, T.; Clothier, R.; Mohamed, A.; Badawy, R. An Experimental Study of Human Performance in Controlling Micro Aerial Vehicles in Turbulent Environment. In Proceedings of the Fourth Australasian Unmanned Systems Conference, Melbourne, Australia, 15–16 December 2014. [Google Scholar]
- Belabbas, B.; Dautermann, T.; Looye, G.; Kladetzke, J. GBAS based autoland system: A bottom up approach for GAST-D requirements. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010; pp. 566–574. [Google Scholar]
- Ludwig, T.; Korn, B.; Geister, R. Towards higher levels of automation in taxi guidance: Using GBAS Terminal Area Path (TAP) messages for transmitting taxi routes. In Proceedings of the 2011 IEEE/AIAA 30th Digital Avionics Systems Conference, Seattle, WA, USA, 16–20 October 2011; pp. 4B5-1–4B5-11. [Google Scholar]
- Chai, S.; Doshi, A.R.; Silvestri, L. How Catastrophic Innovation Failure Affects Organizational and Industry Legitimacy: The 2014 Virgin Galactic Test Flight Crash. Organ. Sci. 2021, 33, 1068–1093. [Google Scholar] [CrossRef]
- Crockett, K.; Goltz, S.; Garratt, M.; Latham, A. Trust in Computational Intelligence Systems: A Case Study in Public Perceptions. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 3227–3234. [Google Scholar]
- Kang, K.-D. A Review of Efficient Real-Time Decision Making in the Internet of Things. Technologies 2022, 10, 12. [Google Scholar] [CrossRef]
- Rostami-Shahrbabaki, M.; Weikl, S.; Niels, T.; Bogenberger, K. Modeling Vehicle Flocking in Lane-Free Automated Traffic. Transp. Res. Rec. 2023, 2677, 499–512. [Google Scholar] [CrossRef]
- Ghosh, A.; Huang, S. Cooperative Traffic Control where Autonomous Cars Meet Human Drivers. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019; pp. 1–6. [Google Scholar]
- Danaher, J. Techno-optimism: An Analysis, an Evaluation and a Modest Defence. Philos. Technol. 2022, 35, 54. [Google Scholar] [CrossRef]
- Drew, R. Technological Determinism. In A Companion to Popular Culture; Wiley: Hoboken, NJ, USA, 2016; pp. 165–183. [Google Scholar]
- Herruzo-Domínguez, G.; Aladro-Prieto, J.-M.; Rey-Pérez, J. Analysis of Touristification Processes in Historic Town Centers: The City of Seville. Architecture 2024, 4, 24–34. [Google Scholar] [CrossRef]
- Guo, J.; Chen, L.; Li, L.; Na, X.; Vlacic, L.; Wang, F.Y. Exploring the Economic Feasibility of Advanced Air Mobility in the Early Stages. IEEE Trans. Intell. Veh. 2024, 9, 4826–4830. [Google Scholar] [CrossRef]
- Organ, A.J. Creating a Framework for Community Integration of Urban Air Mobility. Master’s Thesis, Cranfield University, Bedford, UK, 2022. [Google Scholar]
- Çetin, E.; Cano, A.; Deransy, R.; Tres, S.; Barrado, C. Implementing Mitigations for Improving Societal Acceptance of Urban Air Mobility. Drones 2022, 6, 28. [Google Scholar] [CrossRef]
- Boeing, G. The Effects of Inequality, Density, and Heterogeneous Residential Preferences on Urban Displacement and Metropolitan Structure: An Agent-Based Model. Urban Sci. 2018, 2, 76. [Google Scholar] [CrossRef]
- Liberacki, A.; Trincone, B.; Duca, G.; Aldieri, L.; Vinci, C.P.; Carlucci, F. The Environmental Life Cycle Costs (ELCC) of Urban Air Mobility (UAM) as an input for sustainable urban mobility. J. Clean. Prod. 2023, 389, 136009. [Google Scholar] [CrossRef]
- Rizzi, P.; Rizzi, C. The Impact of New Technologies on the Evolution of a Greener Aviation Industry and the Emerging of a New Urban Air Mobility (UAM). In The Impact of COVID-19 on World Aviation Industry: Challenges and Opportunities; Rizzi, P., Rizzi, C., Tettamanti, M., Eds.; World Scientific: Singapore, 2022; pp. 105–158. [Google Scholar]
- Hua, J.; Mankbadi, R.R. Prediction and Control of Broadband Noise Associated with Advanced Air Mobility—A Review. Appl. Sci. 2024, 14, 8455. [Google Scholar] [CrossRef]
- Prakasha, P.S.; Papantoni, V.; Nagel, B.; Brand, U.; Vogt, T.; Naeem, N.; Ratei, P.; Villacis, S. Urban Air Mobility Vehicle and Fleet-level Life-Cycle Assessment Using a System-of-Systems Approach. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2021. [Google Scholar]
- Diederich, J. Neo-Luddism. In The Psychology of Artificial Superintelligence; Diederich, J., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 73–93. [Google Scholar]
- Packer, J. The Ethics of Labor Automation: AI, Technological Disenfranchisement, and Libertarian Paternalism. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2019. [Google Scholar]
- Knezic, S. Techno-pessimism and virtual worlds AI, sci-fi and the films of Jon Rafman. Artlink 2023, 43, 50–59. [Google Scholar]
- Amineh, R.J.; Asl, H.D. Review of constructivism and social constructivism. J. Soc. Sci. Lit. Lang. 2015, 1, 9–16. [Google Scholar]
- Roper, J.; Hurst, B. Public relations, futures planning and political talk for addressing wicked problems. Public Relat. Rev. 2019, 45, 101828. [Google Scholar] [CrossRef]
- Ta, M.D.; Wendt, S.; Sigurjonsson, T.O. Applying Artificial Intelligence to Promote Sustainability. Sustainability 2024, 16, 4879. [Google Scholar] [CrossRef]
- Etzioni, A. Communitarianism revisited. J. Political Ideol. 2014, 19, 241–260. [Google Scholar] [CrossRef]
- Kristjánsson, K. Situationism and the Concept of a Situation. Eur. J. Philos. 2012, 20, E52–E72. [Google Scholar] [CrossRef]
- Debord, G. Society of the Spectacle and Other Films; Rebel Press: Wellington, New Zealand, 1992. [Google Scholar]
- Smith, P. The contemporary dérive: A partial review of issues concerning the contemporary practice of psychogeography. Cult. Geogr. 2010, 17, 103–122. [Google Scholar] [CrossRef]
- Roberts, T.; Lapworth, A.; Dewsbury, J.D. From ‘world’ to ‘earth’: Non-phenomenological subjectivity in Deleuze and Guattari’s geophilosophy. Subjectivity 2022, 15, 135–151. [Google Scholar] [CrossRef]
- Bridgelall, R. Aircraft Innovation Trends Enabling Advanced Air Mobility. Inventions 2024, 9, 84. [Google Scholar] [CrossRef]
- Lee, H.; Sengupta, B.; Araghizadeh, M.S.; Myong, R.S. Review of vortex methods for rotor aerodynamics and wake dynamics. Adv. Aerodyn. 2022, 4, 20. [Google Scholar] [CrossRef]
- Cerny, M.; Breitsamter, C. Investigation of small-scale propellers under non-axial inflow conditions. Aerosp. Sci. Technol. 2020, 106, 106048. [Google Scholar] [CrossRef]
- Donateo, T. Semi-Empirical Models for Stack and Balance of Plant in Closed-Cathode Fuel Cell Systems for Aviation. Energies 2023, 16, 7676. [Google Scholar] [CrossRef]
- Schuchardt, B.I.; Becker, D.; Becker, R.-G.; End, A.; Gerz, T.; Meller, F.; Metz, I.C.; Niklaß, M.; Pak, H.; Schier-Morgenthal, S.; et al. Urban Air Mobility Research at the DLR German Aerospace Center? Getting the HorizonUAM Project Started. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2021. [Google Scholar]
- Varma, T. Agile Product Development: How to Design Innovative Products That Create Customer Value; Apress: New York City, NY, USA, 2015. [Google Scholar]
Ref | Year | Title | Perspective |
---|---|---|---|
[9] | 2024 | Urban Air Mobility for Last-Mile Transportation: A Review | O.R. |
[22] | 2024 | Requirements and design of powertrains for eVTOLs | Propulsion |
[23] | 2024 | Review of Wind Flow Modelling in Urban Environments to Support the Development of Urban Air Mobility | Weather |
[24] | 2024 | Understanding the fixed pitch RPM-controlled rotor modeling for the conceptual design of UAM vehicles | Rotor |
[25] | 2023 | A review of urban air mobility and its new infrastructure low-altitude public routes | Operations |
[26] | 2023 | Noise from Unconventional Aircraft: A Review of Current Measurement Techniques, Psychoacoustics, Metrics and Regulation | Noise |
[27] | 2023 | A holistic review of the current state of research on aircraft design concepts and consideration for advanced air mobility applications | Aircraft |
[28] | 2023 | A review of Urban Air Mobility-enabled Intelligent Transportation Systems: Mechanisms, applications and challenges | System |
[29] | 2023 | Towards Safe and Efficient Unmanned Aircraft System Operations: Literature Review of Digital Twins’ Applications and European Union Regulatory Compliance | Digital/Reg |
[30] | 2023 | Identifying challenges in maintenance planning for on-demand UAM fleets using agent-based simulations | Airworthiness |
[31] | 2023 | Public perception of advanced aviation technologies: A review and roadmap to acceptance | Perception |
[32] | 2023 | Addressing the emergence of drones—A policy development framework for regional drone transportation systems | Policy/Reg |
[33] | 2023 | Air Traffic Management as a Vital Part of Urban Air Mobility—A Review of DLR’s Research Work from 1995 to 2022 | ATM |
[34] | 2023 | Current Applications and Development of Composite Manufacturing Processes for Future Mobility | Materials |
[35] | 2022 | Regulatory framework on the UAM operational concepts of the ASSURED-UAM project | Policy/Reg? |
[36] | 2022 | Social Sustainable Urban Air Mobility in Europe | Public |
[37] | 2022 | Advances in CFD Modeling of Urban Wind Applied to Aerial Mobility | Weather |
[38] | 2022 | Airspace Deregulation for UAM: Self-organizing VTOLs in Metropoles | ATM |
[39] | 2021 | Sound propagation modelling for manned and unmanned aircraft noise assessment and mitigation: A review | Noise |
[40] | 2021 | Future urban air mobility management: Review | ATM |
[41] | 2021 | Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft | Batteries |
[42] | 2021 | The state of the art and operational scenarios for urban air mobility with unmanned aircraft | Operations |
[43] | 2020 | Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft | ATM |
[10] | 2020 | Unmanned aerial vehicle routing problems: A literature review | Routing |
[44] | 2020 | An evaluative review of the VTOL technologies for unmanned and manned aerial vehicles | Aircraft |
[45] | 2019 | Urban air mobility: Opportunities for the weather community | Weather |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wild, G. Urban Aviation: The Future Aerospace Transportation System for Intercity and Intracity Mobility. Urban Sci. 2024, 8, 218. https://doi.org/10.3390/urbansci8040218
Wild G. Urban Aviation: The Future Aerospace Transportation System for Intercity and Intracity Mobility. Urban Science. 2024; 8(4):218. https://doi.org/10.3390/urbansci8040218
Chicago/Turabian StyleWild, Graham. 2024. "Urban Aviation: The Future Aerospace Transportation System for Intercity and Intracity Mobility" Urban Science 8, no. 4: 218. https://doi.org/10.3390/urbansci8040218
APA StyleWild, G. (2024). Urban Aviation: The Future Aerospace Transportation System for Intercity and Intracity Mobility. Urban Science, 8(4), 218. https://doi.org/10.3390/urbansci8040218