Exploring the Impact of Spatial Arrangements on BREEAM Outstanding Projects in London, UK
Abstract
:1. Introduction
2. Explorative Analysis of Related Studies
2.1. Exploring Urban Spatial Arrangements and Sustainable Building Design
2.2. Spatial Analysis Tools and Environmental Assessment Methods for Sustainable Urban Planning
2.3. Research Gap
3. Materials and Methods
4. Research Results and Analysis
4.1. Clusters and Micro-Clusters Analysis
4.2. Land Use Diversity Analysis and BREEAM Outstanding-Rated Projects in London
4.3. Subway Network Analysis
4.4. Street Network Analysis Using Betweenness Centrality of Edges
4.5. Street Network Analysis Using Node Degrees
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rega, C.; Bonifazi, A. The rise of resilience in spatial planning: A journey through disciplinary boundaries and contested practices. Sustainability 2020, 12, 7277. [Google Scholar] [CrossRef]
- Jo, S. Spatial configuration and built form. J. Urban Des. 1998, 3, 285–302. [Google Scholar] [CrossRef]
- Kumar, P. Climate change and cities: Challenges ahead. Front. Sustain. Cities 2021, 3, 645613. [Google Scholar] [CrossRef]
- Maxwell, J.W.; Reuveny, R. Resource Scarcity and Conflict in Developing Countries. J. Peace Res. 2000, 37, 301–322. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Resseger, M.; Tobio, K. Inequality in cities. J. Reg. Sci. 2009, 49, 617–646. [Google Scholar] [CrossRef]
- Awadh, O. Sustainability and green building rating systems: LEED, BREEAM, GSAS and Estidama critical analysis. J. Build. Eng. 2017, 11, 25–29. [Google Scholar] [CrossRef]
- Schweber, L. The effect of BREEAM on clients and construction professionals. Build. Res. Inf. 2013, 41, 129–145. [Google Scholar] [CrossRef]
- Campbell, E. BREEAM Ratings. Available online: https://www.tallyworkspace.com/articles/breeam-ratings# (accessed on 10 August 2024).
- Rebelatto, B.G.; Salvia, A.L.; Brandli, L.L.; Leal Filho, W. Examining Energy Efficiency Practices in Office Buildings through the Lens of LEED, BREEAM, and DGNB Certifications. Sustainability 2024, 16, 4345. [Google Scholar] [CrossRef]
- Jorge-Ortiz, A.; Braulio-Gonzalo, M.; Bovea, M.D. Exploring how waste management is being approached in green building rating systems: A case study. Waste Manag. Res. 2023, 41, 1121–1133. [Google Scholar] [CrossRef]
- Serrano-Baena, M.M.; Hidalgo Fernández, R.E.; Carranza-Cañadas, P.; Triviño-Tarradas, P. How the Implementation of BREEAM in hotels could help to achieve the SDGs. Appl. Sci. 2021, 11, 11131. [Google Scholar] [CrossRef]
- Udawatta, N.; Zuo, J.; Chiveralls, K.; Zillante, G. From green buildings to living buildings? Rating schemes and waste management practices in Australian educational buildings. Eng. Constr. Archit. Manag. 2021, 28, 1278–1294. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, Z.; Li, H.; Zhang, X.; Jiang, M. Developing a strategic framework for adopting water-saving measures in construction projects. Environ. Geochem. Health 2020, 42, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Futcher, J.; Mills, G.; Emmanuel, R.; Korolija, I. Creating sustainable cities one building at a time: Towards an integrated urban design framework. Cities 2017, 66, 63–71. [Google Scholar] [CrossRef]
- Marat-Mendes, T. Sustainability and the study of urban form T. Marat-Mendes. Urban Morphol. 2013, 17, 123–124. [Google Scholar] [CrossRef]
- Arundel, R.; Ronald, R. The role of urban form in sustainability of community: The case of Amsterdam. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 33–53. [Google Scholar] [CrossRef]
- van Diepen, A.; Voogd, H. Sustainability and planning: Does urban form matter? Int. J. Sustain. Dev. 2001, 4, 59–74. [Google Scholar] [CrossRef]
- Ko, Y. Urban form and residential energy use: A review of design principles and research findings. J. Plan. Lit. 2013, 28, 327–351. [Google Scholar] [CrossRef]
- Dave, S. High urban densities in developing countries: A sustainable solution? Built Environ. 2010, 36, 9–27. [Google Scholar] [CrossRef]
- Monteiro, J.; Sousa, N.; Coutinho-Rodrigues, J.; Natividade-Jesus, E. Challenges ahead for sustainable cities: An urban form and transport system review. Energies 2024, 17, 409. [Google Scholar] [CrossRef]
- Wang, Y.; Bakker, F.; De Groot, R.; Wörtche, H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Build. Environ. 2014, 77, 88–100. [Google Scholar] [CrossRef]
- Brown, B.B.; Yamada, I.; Smith, K.R.; Zick, C.D.; Kowaleski-Jones, L.; Fan, J.X. Mixed land use and walkability: Variations in land use measures and relationships with BMI, overweight, and obesity. Health Place 2009, 15, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Sohn, D.W.; Moudon, A.V.; Lee, J. The economic value of walkable neighborhoods. Urban Des. Int. 2012, 17, 115–128. [Google Scholar] [CrossRef]
- Leyden, K.M. Social capital and the built environment: The importance of walkable neighborhoods. Am. J. Public Health 2003, 93, 1546–1551. [Google Scholar] [CrossRef] [PubMed]
- Bibri, S.E. Compact urbanism and the synergic potential of its integration with data-driven smart urbanism: An extensive interdisciplinary literature review. Land Use Policy 2020, 97, 104703. [Google Scholar] [CrossRef]
- Angel, S.; Franco, S.A.; Liu, Y.; Blei, A.M. The shape compactness of urban footprints. Prog. Plan. 2020, 139, 100429. [Google Scholar] [CrossRef]
- Štrbac, S.; Kašanin-Grubin, M.; Pezo, L.; Stojić, N.; Lončar, B.; Ćurčić, L.; Pucarević, M. Green infrastructure designed through nature-based solutions for sustainable urban development. Int. J. Environ. Res. Public Health 2023, 20, 1102. [Google Scholar] [CrossRef]
- He, B.-J. Green building: A comprehensive solution to urban heat. Energy Build. 2022, 271, 112306. [Google Scholar] [CrossRef]
- Al-Kodmany, K. Sustainability and the 21st century vertical city: A review of design approaches of tall buildings. Buildings 2018, 8, 102. [Google Scholar] [CrossRef]
- Pozoukidou, G.; Chatziyiannaki, Z. 15-Minute City: Decomposing the new urban planning eutopia. Sustainability 2021, 13, 928. [Google Scholar] [CrossRef]
- Allam, Z.; Bibri, S.E.; Chabaud, D.; Moreno, C. The ‘15-Minute City’concept can shape a net-zero urban future. Humanit. Soc. Sci. Commun. 2022, 9, 1–5. [Google Scholar] [CrossRef]
- Allam, Z.; Bibri, S.E.; Chabaud, D.; Moreno, C. The theoretical, practical, and technological foundations of the 15-minute city model: Proximity and its environmental, social and economic benefits for sustainability. Energies 2022, 15, 6042. [Google Scholar] [CrossRef]
- AlWaer, H.; Cooper, I. Understanding the 20-Minute Neighbourhood: Making Opportunities for People to Live Well Locally; University of Dundee: Dundee, UK, 2024. [Google Scholar]
- Wey, W.-M.; Zhang, H.; Chang, Y.-J. Alternative transit-oriented development evaluation in sustainable built environment planning. Habitat Int. 2016, 55, 109–123. [Google Scholar] [CrossRef]
- Motieyan, H.; Mesgari, M.S. Towards sustainable urban planning through transit-oriented development (A case study: Tehran). ISPRS Int. J. Geo-Inf. 2017, 6, 402. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.T.; Lee, M.G. Mitigation of urban heat island effect and greenroofs. Indoor Built Environ. 2014, 23, 62–69. [Google Scholar] [CrossRef]
- Park, J.; Shin, Y.; Kim, S.; Lee, S.-W.; An, K. Efficient plant types and coverage rates for optimal green roof to reduce urban heat island effect. Sustainability 2022, 14, 2146. [Google Scholar] [CrossRef]
- Robinson, J.; Attuyer, K. Extracting value, London style: Revisiting the role of the state in urban development. Int. J. Urban Reg. Res. 2021, 45, 303–331. [Google Scholar] [CrossRef]
- Evans, G. Designing legacy and the legacy of design: London 2012 and the Regeneration Games. ARQ Archit. Res. Q. 2014, 18, 353–366. [Google Scholar] [CrossRef]
- Kaika, M. Architecture and crisis: Re-inventing the icon, re-imag (in) ing London and re-branding the City. Trans. Inst. Br. Geogr. 2010, 35, 453–474. [Google Scholar] [CrossRef]
- Venerandi, A.; Zanella, M.; Romice, O.; Dibble, J.; Porta, S. Form and urban change–An urban morphometric study of five gentrified neighbourhoods in London. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 1056–1076. [Google Scholar] [CrossRef]
- Foord, J. Mixed-use trade-offs: How to live and work in a compact city neighbourhood. Built Environ. 2010, 36, 47–62. [Google Scholar] [CrossRef]
- Ferm, J.; Panayotopoulos-Tsiros, D.; Griffiths, S. Planning urban manufacturing, industrial building typologies, and built environments: Lessons from inner London. Urban Plan. 2021, 6, 350–367. [Google Scholar] [CrossRef]
- Heblich, S.; Redding, S.J.; Sturm, D.M. The making of the modern metropolis: Evidence from London. Q. J. Econ. 2020, 135, 2059–2133. [Google Scholar] [CrossRef]
- Fleischmann, M.; Romice, O.; Porta, S. Measuring urban form: Overcoming terminological inconsistencies for a quantitative and comprehensive morphologic analysis of cities. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2133–2150. [Google Scholar] [CrossRef]
- Wang, J.; Fleischmann, M.; Venerandi, A.; Romice, O.; Kuffer, M.; Porta, S. EO+ Morphometrics: Understanding cities through urban morphology at large scale. Landsc. Urban Plan. 2023, 233, 104691. [Google Scholar] [CrossRef]
- Pomponi, F.; Saint, R.; Arehart, J.H.; Gharavi, N.; D’Amico, B. Decoupling density from tallness in analysing the life cycle greenhouse gas emissions of cities. NPJ Urban Sustain. 2021, 1, 33. [Google Scholar] [CrossRef]
- Tobin, M.; Hajna, S.; Orychock, K.; Ross, N.; DeVries, M.; Villeneuve, P.J.; Frank, L.D.; McCormack, G.R.; Wasfi, R.; Steinmetz-Wood, M. Rethinking walkability and developing a conceptual definition of active living environments to guide research and practice. BMC Public Health 2022, 22, 450. [Google Scholar] [CrossRef]
- Baobeid, A.; Koç, M.; Al-Ghamdi, S.G. Walkability and its relationships with health, sustainability, and livability: Elements of physical environment and evaluation frameworks. Front. Built Environ. 2021, 7, 721218. [Google Scholar] [CrossRef]
- Berardi, U. Sustainability assessments of buildings, communities, and cities. In Assessing and Measuring Environmental Impact and Sustainability; Elsevier: Amsterdam, The Netherlands, 2015; pp. 497–545. [Google Scholar]
- Sung, H.; Lee, S.; Cheon, S.; Yoon, J. Pedestrian safety in compact and mixed-use urban environments: Evaluation of 5D measures on pedestrian crashes. Sustainability 2022, 14, 646. [Google Scholar] [CrossRef]
- Tsihrintzis, V.A.; Hamid, R. Modeling and management of urban stormwater runoff quality: A review. Water Resour. Manag. 1997, 11, 136–164. [Google Scholar] [CrossRef]
- Wallington, T.J.; Anderson, J.E.; Dolan, R.H.; Winkler, S.L. Vehicle emissions and urban air quality: 60 years of progress. Atmosphere 2022, 13, 650. [Google Scholar] [CrossRef]
- Ujang, N.; Kozlowski, M.; Maulan, S. Linking place attachment and social interaction: Towards meaningful public places. J. Place Manag. Dev. 2018, 11, 115–129. [Google Scholar] [CrossRef]
- Badach, J.; Szczepański, J.; Bonenberg, W.; Gębicki, J.; Nyka, L. Developing the urban Blue-Green Infrastructure as a tool for urban air quality management. Sustainability 2022, 14, 9688. [Google Scholar] [CrossRef]
- Elliott, H.; Eon, C.; Breadsell, J.K. Improving City vitality through urban heat reduction with green infrastructure and design solutions: A systematic literature review. Buildings 2020, 10, 219. [Google Scholar] [CrossRef]
- Balany, F.; Muttil, N.; Muthukumaran, S.; Wong, M.S.; Ng, A.W. Studying the effect of blue-green infrastructure on microclimate and human thermal comfort in melbourne’s central business district. Sustainability 2022, 14, 9057. [Google Scholar] [CrossRef]
- BREEAM. BREEAM New Construction. Available online: https://breeam.com/standards/new-construction (accessed on 13 September 2024).
- BREEAM. London School of Economics Gets BREEAM Rating of Outstanding. Available online: https://breeam.com/case-studies?q=land+use&categories=463241&_its=eF5Vj0sOgjAURffSsQj90ZYdOHANpJ-HNKnUlCoDI2v3qSOn95zc3PskjxjIQLQT0k_ONb5TrhHcssZa2TfcWEe58V5OnBzIWm0F1EuqO1VMCaGp7Pdkl7CzUSmt-LhCHvnUsaCMkIH3jkntvTHG9ZpyCUBph1W21hLdvca8kOFJbneX4jpDwfZLzpcE6IR8tREx2bbt-EuPPl-RFJiglK8913pbh7b9d1qU_GyXBdIJD36n4f7izzl8HuBK8sIgVvhwQbkQrzdBJFO1 (accessed on 27 September 2024).
- Leyzerova, A.; Sharovarova, E.; Alekhin, V. Sustainable strategies of urban planning. Procedia Eng. 2016, 150, 2055–2061. [Google Scholar] [CrossRef]
- Borowczyk, J. Sustainable urban development: Spatial analyses as novel tools for planning a universally designed city. Sustainability 2018, 10, 1407. [Google Scholar] [CrossRef]
- Mao, T.; Li, Q. The Impact of Sustainable Development and Spatial Rationality Planning of Urban Buildings Under the Guidance of Local Government Policies: Environmental Policy and Green Building Design Principles. Lex Localis-J. Local Self-Gov. 2024, 22, 197–216. [Google Scholar] [CrossRef]
- De Castro Mazarro, A.; George Kaliaden, R.; Wende, W.; Egermann, M. Beyond urban ecomodernism: How can degrowth-aligned spatial practices enhance urban sustainability transformations. Urban Stud. 2023, 60, 1304–1315. [Google Scholar] [CrossRef]
- Vetter, A. The matrix of convivial technology–assessing technologies for degrowth. J. Clean. Prod. 2018, 197, 1778–1786. [Google Scholar] [CrossRef]
- Shakibamanesh, A.; Karimian, B. Utilizing Space Syntax Techniques to Understand the Relationship Between Spatial Configuration and Walkability in Urban Neighborhoods (Case Study: Valiasr Neighborhood, Tehran). Urban Plan. Constr. 2024, 2, 40–54. [Google Scholar] [CrossRef]
- van Bergen, J. ShoreScape: A landscape approach to the natural adaptation of urbanized sandy shores. A+BE Archit. Built Environ. 2023, 13, 1–356. [Google Scholar]
- Santos, J.R. Tokyo, Japan–urbanistic hybridity in a networked metropolis. J. Place Manag. Dev. 2022, 15, 70–89. [Google Scholar] [CrossRef]
- Bonilla-Duarte, S.; Gómez-Valenzuela, V.; Vargas-de la Mora, A.-L.; García-García, A. Urban forest sustainability in residential areas in the city of Santo Domingo. Forests 2021, 12, 884. [Google Scholar] [CrossRef]
- Carmona, M. Sustainable urban design: Principles to practice. Int. J. Sustain. Dev. 2009, 12, 48–77. [Google Scholar] [CrossRef]
- Liu, J.; Tanaka, T.; Tan, L. The impact of building spatial layouts on microclimate in residential districts: A case study in Kumamoto. J. Civ. Eng. Urban Plan. 2023, 5, 46–53. [Google Scholar]
- Adeel, A.; Notteboom, B.; Yasar, A. Insights into the Impact of Mega Transport Infrastructure Projects on the Transformation of the Urban Fabric of Lahore; KU Leuven: Leuven, Belgium, 2022. [Google Scholar]
- McCormick, K.; Anderberg, S.; Coenen, L.; Neij, L. Advancing sustainable urban transformation. J. Clean. Prod. 2013, 50, 1–11. [Google Scholar] [CrossRef]
- Cohen, M. A systematic review of urban sustainability assessment literature. Sustainability 2017, 9, 2048. [Google Scholar] [CrossRef]
- Lafortezza, R.; Davies, C.; Sanesi, G.; Konijnendijk, C.C. Green Infrastructure as a tool to support spatial planning in European urban regions. IForest-Biogeosci. For. 2013, 6, 102. [Google Scholar] [CrossRef]
- Sharifi, A.; Murayama, A. Neighborhood sustainability assessment in action: Cross-evaluation of three assessment systems and their cases from the US, the UK, and Japan. Build. Environ. 2014, 72, 243–258. [Google Scholar] [CrossRef]
- Fleischmann, M.; Feliciotti, A.; Romice, O.; Porta, S. Methodological foundation of a numerical taxonomy of urban form. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 1283–1299. [Google Scholar] [CrossRef]
- Fleischmann, M.; Feliciotti, A.; Romice, O.; Porta, S. Morphological tessellation as a way of partitioning space: Improving consistency in urban morphology at the plot scale. Comput. Environ. Urban Syst. 2020, 80, 101441. [Google Scholar] [CrossRef]
- Fleischmann, M. Momepy: Urban morphology measuring toolkit. J. Open Source Softw. 2019, 4, 1807. [Google Scholar] [CrossRef]
- Gonçalves, P.; Vierikko, K.; Elands, B.; Haase, D.; Luz, A.C.; Santos-Reis, M. Biocultural diversity in an urban context: An indicator-based decision support tool to guide the planning and management of green infrastructure. Environ. Sustain. Indic. 2021, 11, 100131. [Google Scholar] [CrossRef]
- Pupphachai, U.; Zuidema, C. Sustainability indicators: A tool to generate learning and adaptation in sustainable urban development. Ecol. Indic. 2017, 72, 784–793. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Sánchez, L.E. Mainstreaming environmental issues into housing plans: The approach of Strategic Environmental Assessment. Environ. Impact Assess. Rev. 2019, 77, 145–153. [Google Scholar] [CrossRef]
- Nyerges, T.L.; Jankowski, P. Regional and Urban GIS: A Decision Support Approach; Guilford Press: New York, NY, USA, 2009. [Google Scholar]
- BREEAM. Explore BREEAM. Available online: https://tools.breeam.com/projects/explore/map.jsp (accessed on 13 August 2024).
- Porta, S.; Crucitti, P.; Latora, V. The network analysis of urban streets: A primal approach. Environ. Plan. B Plan. Des. 2006, 33, 705–725. [Google Scholar] [CrossRef]
- Crucitti, P.; Latora, V.; Porta, S. Centrality in networks of urban streets. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 015113. [Google Scholar] [CrossRef]
- Oskarbski, J.; Birr, K.; Żarski, K. Bicycle traffic model for sustainable urban mobility planning. Energies 2021, 14, 5970. [Google Scholar] [CrossRef]
- Jiang, B.; Claramunt, C. A structural approach to the model generalization of an urban street network. GeoInformatica 2004, 8, 157–171. [Google Scholar] [CrossRef]
- Boeing, G. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 2017, 65, 126–139. [Google Scholar] [CrossRef]
- Five, C. Sustainability in the Spotlight: 280 Bishopsgate. Available online: https://corefive.co.uk/sustainability-in-the-spotlight-280-bishopsgate/ (accessed on 27 September 2024).
- SRM. Available online: https://www.srm.com/news-and-comment/100-liverpool-street-certified-breeam-outstanding/ (accessed on 27 September 2024).
- Soulti, E. White Collar Factory. Available online: https://www.designingbuildings.co.uk/wiki/White_Collar_Factory (accessed on 27 September 2024).
- Bloomberg. Bloomberg BREEAM Certificates; Bloomberg: New York, NY, USA, 2017. [Google Scholar]
- Steemers, K. Energy and the city: Density, buildings and transport. Energy Build. 2003, 35, 3–14. [Google Scholar] [CrossRef]
- Jabareen, Y.R. Sustainable urban forms: Their typologies, models, and concepts. J. Plan. Educ. Res. 2006, 26, 38–52. [Google Scholar] [CrossRef]
- Newman, P.; Beatley, T.; Boyer, H. Resilient cities: Responsing to peak oil and climate change. Aust. Plan. 2009, 46, 59. [Google Scholar] [CrossRef]
- Cervero, R. Built environments and mode choice: Toward a normative framework. Transp. Res. Part D Transp. Environ. 2002, 7, 265–284. [Google Scholar] [CrossRef]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Hillier, B. Space Is the Machine: A Configurational Theory of Architecture; Space Syntax: London, UK, 2007. [Google Scholar]
- Sevtsuk, A. Path and Place: A Study of Urban Geometry and Retail Activity in Cambridge and Somerville; Massachusetts Institute of Technology: Cambridge, MA, USA, 2010. [Google Scholar]
- Essex, S.; Chalkley, B. Mega-sporting events in urban and regional policy: A history of the Winter Olympics. Plan. Perspect. 2004, 19, 201–204. [Google Scholar] [CrossRef]
- Smith, A. Events and Urban Regeneration: The Strategic Use of Events to Revitalise Cities; Routledge: London, UK, 2012. [Google Scholar]
- Horcea-Milcu, A.-I.; Leventon, J.; Lang, D.J. Making transdisciplinarity happen: Phase 0, or before the beginning. Environ. Sci. Policy 2022, 136, 187–197. [Google Scholar] [CrossRef]
- Lorenz, S. Transdisciplinary sustainability research. Procedural perspectives and professional cooperation. Curr. Res. Environ. Sustain. 2022, 4, 100182. [Google Scholar] [CrossRef]
- Kreß-Ludwig, M.; Marg, O.; Schneider, R.; Lux, A. Lessons from transdisciplinary urban research to promote sustainability transformation in real-world labs: Categories, pathways, and key principles for generating societal impact. GAIA Ecol. Perspect. Sci. Soc. 2024, 33, 10–17. [Google Scholar] [CrossRef]
- Butt, A.N. Biomimicry and the BREEAM category of energy for sustainable architecture and sustainable urbanism. GSC Adv. Res. Rev. 2022, 12, 109–122. [Google Scholar] [CrossRef]
- Butt, A.N. Transdisciplinary education for reducing environmental impact of AEC industry. Transdiscipl. J. Eng. Sci. 2024, 15, 395–426. [Google Scholar] [CrossRef]
- Butt, A.N.; Dimitrijević, B. Developing and testing a general framework for conducting transdisciplinary research. Sustainability 2023, 15, 4596. [Google Scholar] [CrossRef]
- Hirt, S.; Luescher, A. Collaboration between architects and planners in an urban design studio: Potential for interdisciplinary learning. J. Des. Res. 2007, 6, 422–443. [Google Scholar] [CrossRef]
- Kovacic, I.; Filzmoser, M.; Denk, F. Interdisciplinary design: Influence of team structure on project success. Procedia Soc. Behav. Sci. 2014, 119, 549–556. [Google Scholar] [CrossRef]
- Harding, J.; Suresh, S.; Renukappa, S.; Mushatat, S. Do building information modelling applications benefit design teams in achieving BREEAM accreditation? J. Constr. Eng. 2014, 2014, 390158. [Google Scholar] [CrossRef]
Cluster Number | Functions of Certified Projects in Clusters and Micro-Clusters |
---|---|
C1 (n = 20) | Offices (n = 11); Mixed Use (n = 4); Higher Education (n = 2); Retail (n = 1); Industrial (n = 1); Prisons (n = 1) |
C2 (n = 13) | Offices (n = 8); Mixed Use (n = 5) |
C3 (n = 10) | Offices (n = 6); Mixed Use (n = 4) |
C4 (n = 8) | Retail (n = 4); Offices (n = 3); Higher Education (n = 1) |
C5 (n = 7) | Offices (n = 6); Mixed Use (n = 1) |
C6 (n = 7) | Offices (n = 5); Mixed Use (n = 2) |
C7 (n = 6) | Offices (n = 4); Mixed Use (n = 1); Higher Education (n = 1) |
C8 (n = 6) | Mixed Use (n = 4); Offices (n = 1); Higher Education (n = 1) |
C9 (n = 6) | Offices (n = 3); Mixed Use (n = 3) |
C10 (n = 6) | Offices (n = 5); Mixed Use (n = 1) |
C11 (n = 6) | Fire Stations (n = 4); Offices (n = 1); Industrial (n = 1) |
C12 (n = 6) | Offices (n = 6) |
C13 (n = 5) | Offices (n = 3); Mixed Use (n = 1); Higher Education (n = 1) |
C14 (n = 5) | Offices (n = 5) |
C15 (n = 5) | Offices (n = 4); Mixed Use (n = 1) |
C16 (n = 5) | Offices (n = 4); Residential (n = 1) |
Spatial Arrangement Factor | Description | Impact on BREEAM Outstanding Rating | Examples in London, UK |
---|---|---|---|
Environmental features (green and blue infrastructure) | Combined strategies of using both natural spaces (green) and water systems (blue) to enhance urban sustainability. | Projects that successfully combine both elements may achieve higher scores in multiple BREEAM categories, particularly “Energy,” and “Land Use & Ecology”. | 280 Bishopsgate [89] |
Subway networks | Proximity to subway (London Underground and Overground lines) stations. | Enhances “Transport” category by reducing car use, promoting public transport, and improving connectivity and accessibility. | 100 Liverpool Street [90] |
Street networks: centrality of edges | The analysis of street connections between different areas, focusing on how accessible and connected streets are. | Higher centrality supports pedestrian movement, enhances walkability, and increases the social sustainability of the project, possibly improving “Transport” and “Health & Wellbeing” scores. | White Collar Factory [91] |
Street networks: nodes | The intersection points or junctions in the street network that serve as focal areas for traffic and pedestrian movement. | Higher node centrality reflects better access to amenities, encouraging mixed-use development and reducing the need for private transport, boosting scores in “Transport” and “Energy”. | Bloomberg London [92] |
Clusters and Number of Projects | Land Use Diversity Types (1 km Radius) | Number of Subway Stations (1 km Radius) | Average Betweenness Centrality of Edges of Study Areas A and B (1 km2) | Average Node Degrees of Study Areas A and B (1 km2) | Average Street Meshedness of Study Areas A and B (1 km2) |
---|---|---|---|---|---|
C1 (n = 20) | 5 | 5 | 0.015 | 4.055 | 0.442 |
C2 (n = 13) | 3 | 3 | 0.016 | 4.224 | 0.490 |
C3 (n = 10) | 2 | 3 | 0.013 | 4.214 | 0.476 |
C4 (n = 8) | 6 | 0 | 0.016 | 4.394 | 0.570 |
C5 (n = 7) | 5 | 6 | 0.016 | 4.111 | 0.437 |
C6 (n = 7) | 3 | 8 | 0.013 | 4.247 | 0.497 |
C7 (n = 6) | 3 | 11 | 0.015 | 4.243 | 0.502 |
C8 (n = 6) | 3 | 9 | 0.012 | 3.958 | 0.399 |
C9 (n = 6) | 4 | 3 | 0.019 | 4.548 | 0.565 |
C10 (n = 6) | 2 | 7 | 0.013 | 4.202 | 0.482 |
C11 (n = 6) | 2 | 6 | 0.014 | 4.358 | 0.543 |
C12 (n = 6) | 4 | 2 | 0.018 | 4.320 | 0.528 |
C13 (n = 5) | 3 | 7 | 0.012 | 4.044 | 0.427 |
C14 (n = 5) | 4 | 7 | 0.013 | 4.346 | 0.517 |
C15 (n = 5) | 4 | 1 | 0.022 | 4.181 | 0.527 |
C16 (n = 5) | 3 | 3 | 0.017 | 4.202 | 0.513 |
Study Area | Average Betweenness Centrality of Edges | Average Node Degrees | Average Street Meshedness |
---|---|---|---|
Study Area A | 0.003 | 4.459 | 0.538 |
C1 | 0.015 | 4.055 | 0.442 |
C2 | 0.016 | 4.224 | 0.490 |
C3 | 0.013 | 4.214 | 0.476 |
C5 | 0.016 | 4.111 | 0.437 |
C6 | 0.013 | 4.247 | 0.497 |
C7 | 0.015 | 4.243 | 0.502 |
C8 | 0.012 | 3.958 | 0.399 |
C9 | 0.019 | 4.548 | 0.565 |
C10 | 0.013 | 4.202 | 0.482 |
C11 | 0.014 | 4.358 | 0.543 |
C12 | 0.018 | 4.320 | 0.528 |
C13 | 0.012 | 4.044 | 0.427 |
C14 | 0.013 | 4.346 | 0.517 |
Study Area B | 0.005 | 4.47 | 0.569 |
C4 | 0.016 | 4.394 | 0.570 |
C15 | 0.022 | 4.181 | 0.527 |
C16 | 0.017 | 4.202 | 0.513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, A.N.; Rigoni, C. Exploring the Impact of Spatial Arrangements on BREEAM Outstanding Projects in London, UK. Urban Sci. 2024, 8, 239. https://doi.org/10.3390/urbansci8040239
Butt AN, Rigoni C. Exploring the Impact of Spatial Arrangements on BREEAM Outstanding Projects in London, UK. Urban Science. 2024; 8(4):239. https://doi.org/10.3390/urbansci8040239
Chicago/Turabian StyleButt, Anosh Nadeem, and Carolina Rigoni. 2024. "Exploring the Impact of Spatial Arrangements on BREEAM Outstanding Projects in London, UK" Urban Science 8, no. 4: 239. https://doi.org/10.3390/urbansci8040239
APA StyleButt, A. N., & Rigoni, C. (2024). Exploring the Impact of Spatial Arrangements on BREEAM Outstanding Projects in London, UK. Urban Science, 8(4), 239. https://doi.org/10.3390/urbansci8040239