A Machine Learning Approach to Identify the Preferred Representational System of a Person
Abstract
:1. Introduction
1.1. Representational Systems
1.2. Identification of the Preferred Representation System
1.3. Background of Automating the Identification Process
2. Methodology
2.1. Data Collection
2.2. Labelling Strategy
2.2.1. Creating a Collection of Predicates
2.2.2. Lexical and Syntactic Analysis
2.2.3. Comparison Process and Labelling
2.3. Labelling Validation
2.4. Pre-Processing and Data Cleaning
- MBTI Type;
- 50 posts;
- Preferred Representational System of this person.
2.5. Machine Learning Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Transform Destiny (2015) Introduction to Neuro-Linguistic Programming. Available online: https://www.freenlphomestudy.com/membersonly/iNLP/iNLPManual.pdf (accessed on 12 May 2022).
- Júnior, M.C.; Mendonça, M.; Farias, M.A.D.F.; Henrique, P.; Corumba, D. A Neurolinguistic Method for Identifying OSS Developers’ Context-Specific Preferred Representational Systems. In Proceedings of the Seventh International Conference on Software Engineering Advances, Lisbon, Portugal, 18–23 November 2012; Available online: https://www.researchgate.net/publication/327561064_A_Neurolinguistic_Method_for_Identifying_OSS_Developers’_Context-Specific_Preferred_Representational_Systems (accessed on 12 May 2022).
- Lazarus, J. Successful NLP: For the Results You Want; Crimson Publishing: Surrey, UK, 2010. [Google Scholar]
- Witkowski, T. Thirty-five years of research on neuro-linguistic programming. NLP research data base. State of the art or pseudoscientific decoration? Pol. Psychol. Bull. 2010, 41, 58–66. [Google Scholar] [CrossRef]
- Singer, M.T.; Lalich, J. ‘Crazy Therapies’. What Are They? Do They Work? Jossey-Bass: San Francisco, CA, USA, 1996. [Google Scholar]
- Tosey, P.; Mathison, J. Neuro-linguistic programming and learning theory: A response. Curric. J. 2003, 14, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Kotera, Y. NLP: Why This Therapy Has Failed to Join the Mainstream. 2019. Available online: https://www.derby.ac.uk/blog/neuro-linguistic-programming-psychology (accessed on 10 October 2022).
- Amirhosseini, M.H.; Kazemian, H. Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing. Cogn. Process. 2019, 20, 175–193. Available online: https://link.springer.com/article/10.1007/s10339-019-00912-3 (accessed on 12 May 2022). [CrossRef] [PubMed]
- Clayton, M. John Grinder and Richard Bandler: NLP (Neuro Linguistic Programming). 2017. Available online: https://www.pocketbook.co.uk/blog/2017/08/01/john-grinder-and-richard-bandler-nlp-neuro-linguistic-programming (accessed on 10 October 2022).
- Tosey, P.; Mathison, J. Introducing Neuro-Linguistic Programming Centre for Management Learning & Development; School of Management, University of Surrey: Guildford, Australia, 2006. [Google Scholar]
- Ellerton, R. NLP’s Auditory Digital Representational Systems. 2007. Available online: http://www.renewal.ca/nlp48.html (accessed on 12 May 2022).
- O’Connor, J.; Seymour, J. Introducing Neuro Linguistic Programming: Psychological Skills for Understanding and Influencing People, Revised ed.; The Aquarian Press: London, UK, 1993. [Google Scholar]
- McAfee, K. ‘The Power of Words’, an Introduction to NLP Representational Systems, Becoming a More Effective Communicator. 2009. Available online: https://pdfcoffee.com/nlp-representational-systemspower-of-wordspdf-pdf-free.html (accessed on 12 March 2022).
- Einspruch Eric, L.; Forman Bruce, D. Observations concerning Research Literature on Neuro-Linguistic Programming. J. Couns. Psychol. 1985, 32, 589–596. [Google Scholar] [CrossRef]
- Matthews, D.B. Learning Styles Research: Implications for Increasing Students in Teacher Education Programs. J. Instr. Psychol. 1991, 18, 228–236. [Google Scholar]
- Peters, D.; Jones, G.; Peters, J. Preferred ‘learning styles’ in students studying sports-related programme in higher education in the United Kingdom. Stud. High. Educ. 2008, 33, 155–166. [Google Scholar] [CrossRef] [Green Version]
- NLP Dynamics Ltd. Representational Systems. 2013. Available online: http://www.distancelearning.academy/wp-content/uploads/2015/02/Representational-Systems.pdf (accessed on 13 March 2022).
- Bensted, C. Representational Systems. 2014. Available online: http://badis.co.uk/resources/Repsys.pdf (accessed on 12 May 2022).
- Rayner Institute. The Representational Systems. 2015. Available online: http://www.raynerinstitute.com/uploads/9/8/6/1/9861170/nlp_rep_system.pdf (accessed on 12 May 2022).
- Dilts, R.; Grinder, J.; Bandler, R.; DeLozier, J. Neuro-linguistic Programming: Volume 1; Meta Publications: Cupertino, CA, USA, 1980. [Google Scholar]
- Brefi Group Limited Representational System. 2004. Available online: https://www.scribd.com/document/230814203/Nlp-Representational-Systems-Test (accessed on 14 March 2022).
- Kaggle. Myers-Briggs Personality Type Dataset. Includes a Large Number of People’s MBTI Type and Content Written by Them. 2021. Available online: https://www.kaggle.com/datasnaek/mbti-type (accessed on 12 May 2022).
- Amirhosseini, M.H.; Kazemian, H. Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®. Multimodal Technol. Interact. 2020, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, R.; Knight, I.S. Predicting Myers-Bridge Type Indicator with text classification. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Available online: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6839354.pdf (accessed on 12 May 2022).
- Auspicium Limited Auspicium NLP Practitioner Home Study Manual (2). 2012. Available online: https://toaz.info/doc-viewer (accessed on 23 March 2022).
- Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly Media Inc.: Newton, MA, USA, 2009. [Google Scholar]
- W3-Corpora Project The Brown Corpus. 1998. Available online: https://www1.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/list/private/brown/brown.html (accessed on 15 May 2022).
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 2000. [Google Scholar]
- Vishwanathan, S.V.M.; Murty, M.N. SSVM: A simple SVM algorithm. In Proceedings of the 2002 International Joint Conference on Neural Networks, Honolulu, HI, USA, 12–17 May 2002; Volume 3, pp. 2393–2398. [Google Scholar] [CrossRef] [Green Version]
- Kurt, I.; Ture, M.; Kurum, A.T. Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl. 2008, 34, 366–374. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Larose, D.T. Discovering Knowledge in Data; Wiley & Sons Inc.: Hoboken, NJ, USA, 2005; pp. 96–103. [Google Scholar]
Representational System | Predicates | |||
---|---|---|---|---|
Visual | See | View | Watch | Perspective |
Look | Clear | Image | Light | |
Appear | Observe | Vision | Imagine | |
Show | Outlook | Picture | Illustrate | |
Look | Flash | Sight | Scene | |
Auditory | Hear | Ring | Talk | Announce |
Listen | Silence | Tell | Outspoken | |
Sound | Speechless | Audible | State | |
Music | Oral | Voice | Tune in | |
Ear | Speak | Echo | Tune out | |
Kinaesthetic | Feel | Push | Flow | Grasp |
Touch | Throw | Heavy | Hard | |
Catch | Soft | Rub | Handle | |
Hold | Smooth | Solid | Scrape | |
Contact | Loose | Shift | Tap |
Tag | Meaning |
---|---|
DT | Determiner Noun, Singular |
NN | |
VBZ | Verb, Present Tense with 3rd Person Singular |
JJ | Adjective |
Visual | Auditory | Kinaesthetic | |
---|---|---|---|
Software | 42.81% | 30.78% | 26.40% |
Human | 42.97% | 30.56% | 26.46% |
Difference | 0.16% | 0.22% | 0.06 |
MBTI Personality Type | Total Number of Samples | Visual | Auditory | Kinaesthetic |
---|---|---|---|---|
ISTJ | 80 | 38 | 14 | 28 |
ISFJ | 58 | 18 | 30 | 10 |
INFJ | 494 | 216 | 146 | 132 |
INTJ | 320 | 166 | 76 | 78 |
ISTP | 136 | 64 | 34 | 38 |
ISFP | 120 | 28 | 50 | 42 |
INFP | 860 | 346 | 300 | 214 |
INTP | 398 | 182 | 120 | 96 |
ESTP | 38 | 10 | 16 | 12 |
ESFP | 14 | 8 | 0 | 6 |
ENFP | 254 | 72 | 98 | 84 |
ENTP | 214 | 110 | 42 | 62 |
ESTJ | 14 | 6 | 4 | 4 |
ESFJ | 20 | 2 | 12 | 6 |
ENFJ | 62 | 34 | 14 | 14 |
ENTJ | 68 | 48 | 14 | 6 |
Classifier | Parameters | Value |
---|---|---|
SVM | kernel function | linear kernel |
C | 100 | |
Logistic Regression | solver | newton-cg |
penalty | l2 regularization | |
C | 100 | |
Random Forest | n_estimators | 1000 |
max_features | sqrt | |
min_sample_leaf | 1 | |
random_state | 0 | |
oob_score | TRUE | |
KNN | algorithm | brute |
neighbors | 3 | |
leaf_size | 30 | |
weights | distance | |
metric | Minkowski |
Classifier | Class | Precision | Recall | F1 Score |
---|---|---|---|---|
SVM | Visual | 0.91 | 0.93 | 0.92 |
Auditory | 0.89 | 0.92 | 0.91 | |
Kinaesthetic | 0.98 | 0.88 | 0.93 | |
Logistic Regression | Visual | 0.9 | 0.97 | 0.94 |
Auditory | 0.93 | 0.92 | 0.93 | |
Kinaesthetic | 0.98 | 0.86 | 0.92 | |
Random Forest | Visual | 0.84 | 0.99 | 0.91 |
Auditory | 0.97 | 0.85 | 0.9 | |
Kinaesthetic | 1 | 0.86 | 0.93 | |
KNN | Visual | 0.78 | 1 | 0.88 |
Auditory | 1 | 0.77 | 0.87 | |
Kinaesthetic | 0.98 | 0.8 | 0.88 |
Classifier | Micro Average Precision | Micro Average Recall | Micro Average F1 Score |
---|---|---|---|
SVM | 0.93 | 0.91 | 0.92 |
Logistic Regression | 0.94 | 0.92 | 0.93 |
Random Forest | 0.94 | 0.90 | 0.91 |
KNN | 0.92 | 0.86 | 0.88 |
Classifier | Accuracy Percentage |
---|---|
SVM | 91% |
Logistic Regression | 93% |
Random Forest | 91% |
KNN | 87% |
Classifier | Fold Number | Accuracy Scores Calculated for Each Fold | Mean Accuracy Score |
---|---|---|---|
SVM | 1 | 0.96835443 | 0.96 |
2 | 0.95555556 | ||
3 | 0.96190476 | ||
4 | 0.96825397 | ||
5 | 0.94920635 | ||
6 | 0.96825397 | ||
7 | 0.94285714 | ||
8 | 0.96190476 | ||
9 | 0.94920635 | ||
10 | 0.95555556 | ||
Logistic Regression | 1 | 0.95253165 | 0.93 |
2 | 0.93650794 | ||
3 | 0.93333333 | ||
4 | 0.91428571 | ||
5 | 0.92380952 | ||
6 | 0.93015873 | ||
7 | 0.90793651 | ||
8 | 0.95238095 | ||
9 | 0.91746032 | ||
10 | 0.92698413 | ||
Random Forest | 1 | 0.9556962 | 0.95 |
2 | 0.94920635 | ||
3 | 0.95555556 | ||
4 | 0.94920635 | ||
5 | 0.94920635 | ||
6 | 0.96190476 | ||
7 | 0.94920635 | ||
8 | 0.94920635 | ||
9 | 0.94285714 | ||
10 | 0.94920635 | ||
KNN | 1 | 0.94936709 | 0.94 |
2 | 0.93650794 | ||
3 | 0.95555556 | ||
4 | 0.94920635 | ||
5 | 0.93650794 | ||
6 | 0.94920635 | ||
7 | 0.94285714 | ||
8 | 0.94920635 | ||
9 | 0.93650794 | ||
10 | 0.94920635 |
Classifier | Accuracy Percentage | Mean Accuracy Score after 10-Fold Cross-Validation |
---|---|---|
SVM | 91% | 96% |
Logistic Regression | 93% | 93% |
Random Forest | 91% | 95% |
KNN | 87% | 94% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amirhosseini, M.H.; Wall, J. A Machine Learning Approach to Identify the Preferred Representational System of a Person. Multimodal Technol. Interact. 2022, 6, 112. https://doi.org/10.3390/mti6120112
Amirhosseini MH, Wall J. A Machine Learning Approach to Identify the Preferred Representational System of a Person. Multimodal Technologies and Interaction. 2022; 6(12):112. https://doi.org/10.3390/mti6120112
Chicago/Turabian StyleAmirhosseini, Mohammad Hossein, and Julie Wall. 2022. "A Machine Learning Approach to Identify the Preferred Representational System of a Person" Multimodal Technologies and Interaction 6, no. 12: 112. https://doi.org/10.3390/mti6120112
APA StyleAmirhosseini, M. H., & Wall, J. (2022). A Machine Learning Approach to Identify the Preferred Representational System of a Person. Multimodal Technologies and Interaction, 6(12), 112. https://doi.org/10.3390/mti6120112