Multidrug-Resistant Acinetobacter baumannii: Risk Factors for Mortality in a Tertiary Care Teaching Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Bacterial Strains
2.2. Antimicrobial Susceptibility Testing
2.3. Antimicrobial Treatment Decision and Appropriateness of Therapy
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, H.; Chen, B.; Liu, G.; Ran, J.; Lian, X.; Huang, X.; Wang, N.; Huang, Z. A multi-center study on the risk factors of infection caused by multi-drug resistant Acinetobacter baumannii. BMC Infect. Dis. 2018, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dickstein, Y.; Lellouche, J.; Ben Dalak Amar, M.; Schwartz, D.; Nutman, A.; Daitch, V.; Yahav, D.; Leibovici, L.; Skiada, A.; Antoniadou, A.; et al. Treatment Outcomes of Colistin- and Carbapenem-resistant Acinetobacter baumannii Infections: An Exploratory Subgroup Analysis of a Randomized Clinical Trial. Clin. Infect. Dis. 2019, 69, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Diao, H.; Lu, G.; Zhang, Y.; Wang, Z.; Liu, X.; Ma, Q.; Yu, H.; Li, Y. Risk factors for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii infection of patients admitted in intensive care unit: A systematic review and meta-analysis. J. Hosp. Infect. 2024, 149, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, X.; Wang, L.; Liu, M.; Zheng, K.; Wang, Y. Risk factors and drug resistance of the MDR Acinetobacter baumannii in pneumonia patients in ICU. Open Med. 2019, 14, 772–777. [Google Scholar] [CrossRef]
- Bassetti, M.; Labate, L.; Russo, C.; Vena, A.; Giacobbe, D.R. Therapeutic options for difficult-to-treat Acinetobacter baumannii infections: A 2020 perspective. Expert Opin. Pharmacother. 2021, 22, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lau, M.Y.; Ponnampalavanar, S.; Chong, C.W.; Dwiyanto, J.; Lee, Y.Q.; Woon, J.J.; Kong, Z.X.; Jasni, A.S.; Lee, M.C.C.; Obaidellah, U.H.; et al. The Characterisation of Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae in a Teaching Hospital in Malaysia. Antibiotics 2024, 13, 1107. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, ciad428. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Dimopoulos, G.; Poulakou, G.; Akova, M.; Cisneros, J.M.; De Waele, J.; Petrosillo, N.; Seifert, H.; Timsit, J.F.; Vila, J.; et al. Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med. 2015, 41, 2057–2075. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Saffioti, C.; Losito, A.R.; Rinaldi, M.; Aurilio, C.; Bolla, C.; Boni, S.; Borgia, G.; Carannante, N.; Cassola, G.; et al. Use of colistin in adult patients: A cross-sectional study. J. Glob. Antimicrob. Resist. 2020, 20, 43–49. [Google Scholar] [CrossRef]
- WHO Updates List of Drug-Resistant Bacteria Most Threatening to Human Health. Available online: https://www.who.int/news/item/17-05-2024-who-updates-list-of-drug-resistant-bacteria-most-threatening-to-human-health (accessed on 17 May 2024).
- Stracquadanio, S.; Torti, E.; Longshaw, C.; Henriksen, A.S.; Stefani, S. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014–2018 studies in Italy. J. Glob. Antimicrob. Resist. 2021, 25, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, M.; Gregori, D.; Sasset, L.; Trevenzoli, M.; Scaglione, V.; Lo Menzo, S.; Marinello, S.; Mengato, D.; Venturini, F.; Tiberio, I.; et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms 2023, 11, 984. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Ye, H.; Liu, S. Risk factors for extensive drug-resistance and mortality in geriatric inpatients with bacteremia caused by Acinetobacter baumannii. Am. J. Infect. Control 2015, 43, 857–860. [Google Scholar] [CrossRef]
- Freire, M.P.; de Oliveira Garcia, D.; Garcia, C.P.; Campagnari Bueno, M.F.; Camargo, C.H.; Kono Magri, A.S.G.; Francisco, G.R.; Reghini, R.; Vieira, M.F.; Ibrahim, K.Y.; et al. Bloodstream infection caused by extensively drug-resistant Acinetobacter baumannii in cancer patients: High mortality associated with delayed treatment rather than with the degree of neutropenia. Clin. Microbiol. Infect. 2016, 22, 352–358. [Google Scholar] [CrossRef]
- Muntean, D.; Licker, M.; Horhat, F.; Dumitrașcu, V.; Săndesc, D.; Bedreag, O.; Dugăeșescu, D.; Coșniță, D.A.; Krasta, A.; Bădițoiu, L. Extensively drug-resistant Acinetobacter baumannii and Proteeae association in a Romanian intensive care unit: Risk factors for acquisition. Infect. Drug Resist. 2018, 11, 2187–2197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abarca-Coloma, L.; Puga-Tejada, M.; Nuñez-Quezada, T.; Gómez-Cruz, O.; Mawyin-Muñoz, C.; Barungi, S.; Perán, M. Risk Factors Associated with Mortality in Acinetobacter baumannii Infections: Results of a Prospective Cohort Study in a Tertiary Public Hospital in Guayaquil, Ecuador. Antibiotics 2024, 13, 213. [Google Scholar] [CrossRef] [PubMed]
- Bartal, C.; Rolston, K.V.I.; Nesher, L. Carbapenem-resistant Acinetobacter baumannii: Colonization, Infection and Current Treatment Options. Infect. Dis. Ther. 2022, 11, 683–694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, D.Y.; Zhou, J.X.; Li, X.; Wu, W.B.; Zhou, Y.Q.; Zhang, T.T. Differentiation Between Acinetobacter Baumannii Colonization and Infection and the Clinical Outcome Prediction by Infection in Lower Respiratory Tract. Infect. Drug Resist. 2022, 15, 5401–5409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Černiauskienė, K.; Dambrauskienė, A.; Vitkauskienė, A. Associations between β-Lactamase Types of Acinetobacter baumannii and Antimicrobial Resistance. Medicina 2023, 59, 1386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giske, C.G.; Turnidge, J.; Cantón, R.; Kahlmeter, G. Update from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). J. Clin. Microbiol. 2022, 60, e0027621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Guideline M45; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Lewis, I.; James, S. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Georgios, M.; Egki, T.; Effrosyni, S. Phenotypic and molecular methods for the detection of antibiotic resistance mechanisms in Gram negative nosocomial pathogens. Trends Infect. Dis. 2014, 4, 139–162. [Google Scholar]
- Gonzalez-Villoria, A.M.; Valverde-Garduno, V. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen. J. Pathog. 2016, 2016, 7318075. [Google Scholar] [CrossRef]
- Benaissa, E.; Belouad, E.; Maleb, A.; Elouennass, M. Risk factors for acquiring Acinetobacter baumannii infection in the intensive care unit: Experience from a Moroccan hospital. Access Microbiol. 2023, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care–Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Piperaki, E.T.; Tzouvelekis, L.S.; Miriagou, V.; Daikos, G.L. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Calò, F.; Onorato, L.; De Luca, I.; Macera, M.; Monari, C.; Durante-Mangoni, E.; Massa, A.; Gentile, I.; Di Caprio, G.; Pagliano, P.; et al. Outcome of patients with carbapenem-resistant Acinetobacter baumannii infections treated with cefiderocol: A multicenter observational study. J. Infect. Public Health 2023, 16, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- CDC. Centers for Disease Control and Prevention (CDC) Guidelines for Infection Control in Healthcare. 3 April 2024. Available online: https://www.cdc.gov/infection-control/about/index.html (accessed on 17 May 2024).
- Uwingabiye, J.; Lemnouer, A.; Baidoo, S.; Frikh, M.; Kasouati, J.; Maleb, A.; Benlahlou, Y.; Bssaibis, F.; Mbayo, A.; Doghmi, N.; et al. Intensive care unit-acquired Acinetobacter baumannii infections in a Moroccan teaching hospital: Epidemiology, risk factors and outcome. Germs 2017, 7, 193–205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Appaneal, H.J.; Lopes, V.V.; LaPlante, K.L.; Caffrey, A.R. Treatment, clinical outcomes, and predictors of mortality among a national cohort of admitted patients with Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 2022, 66, e01975-21. [Google Scholar] [CrossRef]
- Arefian, H.; Hagel, S.; Heublein, S.; Rissner, F.; Scherag, A.; Brunkhorst, F.M.; Baldessarini, R.J.; Hartmann, M. Extra length of stay and costs because of health care-associated infections at a German university hospital. Am. J. Infect. Control 2016, 44, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Papanikolopoulou, A.; Maltezou, H.C.; Stoupis, A.; Pangalis, A.; Kouroumpetsis, C.; Chronopoulou, G.; Kalofissoudis, Y.; Kostares, E.; Boufidou, F.; Karalexi, M.; et al. Ventilator-Associated Pneumonia, Multidrug-Resistant Bacteremia and Infection Control Interventions in an Intensive Care Unit: Analysis of Six-Year Time-Series Data. Antibiotics 2022, 11, 1128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hafiz, T.A.; Alghamdi, S.S.; Mubaraki, M.A.; Alghamdi, S.S.M.; Alothaybi, A.; Aldawood, E.; Alotaibi, F. A two-year retrospective study of multidrug-resistant Acinetobacter baumannii respiratory infections in critically Ill patients: Clinical and microbiological findings. J. Infect. Public Health 2023, 16, 313–319. [Google Scholar] [CrossRef]
- Blanco, N.; Harris, A.D.; Rock, C.; Johnson, J.K.; Pineles, L.; Bonomo, R.A.; Srinivasan, A.; Pettigrew, M.M.; Thom, K.A. Risk Factors and Outcomes Associated with Multidrug-Resistant Acinetobacter baumannii upon Intensive Care Unit Admission. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martín-Aspas, A.; Guerrero-Sánchez, F.M.; García-Colchero, F.; Rodríguez-Roca, S.; Girón-González, J.-A. Differential characteristics of Acinetobacter baumannii colonization and infection: Risk factors, clinical picture, and mortality. Infect. Drug Resist. 2018, 11, 861–872. [Google Scholar] [CrossRef]
- Liu, Q.; Li, W.; Du, X.; Li, W.; Zhong, T.; Tang, Y.; Feng, Y.; Tao, C.; Xie, Y. Risk and Prognostic Factors for Multidrug-Resistant Acinetobacter Baumannii Complex Bacteremia: A Retrospective Study in a Tertiary Hospital of West China. PLoS ONE 2015, 10, e0130701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, J.-Y.; Kang, C.-I.; Ko, J.-H.; Lee, W.J.; Seok, H.-R.; Park, G.E.; Cho, S.Y.; Ha, Y.E.; Chung, D.R.; Lee, N.Y. Clinical features and risk factors for development of breakthrough gram-negative bacteremia during carbapenem therapy. Antimicrob. Agents Chemother. 2016, 60, 6673–6678. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yao, Y.; Zhu, B.; Ren, D.; Yang, Q.; Fu, Y.; Yu, Y.; Zhou, J. Risk factors for acquisition and mortality of multidrug-resistant Acinetobacter baumannii bacteremia: A retrospective study from a Chinese hospital. Medicine 2019, 98, e14937. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rangel, K.; De-Simone, S.G. Treatment and Management of Acinetobacter Pneumonia: Lessons Learned from Recent World Event. Infect. Drug Resist. 2024, 17, 507–529. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lawrence, J.; O’Hare, D.; van Batenburg-Sherwood, J.; Sutton, M.; Holmes, A.; Rawson, T.M. Innovative approaches in phenotypic beta-lactamase detection for personalised infection management. Nat. Commun. 2024, 15, 9070. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase–Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2021, 74, 2089–2114. [Google Scholar] [CrossRef] [PubMed]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-Cortés, L.E.; Cisneros, J.M.; Fernández-Cuenca, F.; Bou, G.; Tomás, M.; Garnacho-Montero, J.; Pascual, A.; Martínez-Martínez, L.; Vila, J.; Pachón, J.; et al. Monotherapy versus combination therapy for sepsis due to multidrug-resistant Acinetobacter baumannii: Analysis of a multicentre prospective cohort. J. Antimicrob. Chemother. 2014, 69, 3119–3126. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Si, H.J.; Eom, J.S.; Lee, J.S. Survival of carbapenem-resistant Acinetobacter baumannii bacteremia: Colistin monotherapy versus colistin plus meropenem. J. Int. Med. Res. 2019, 47, 5977–5985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 15290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alrahmany, D.; Omar, A.F.; Alreesi, A.; Harb, G.; Ghazi, I.M. Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics 2022, 11, 1086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiao, D.; Wang, L.; Zhang, D.; Xiang, D.; Liu, Q.; Xing, X. Prognosis of patients with Acinetobacter baumannii infection in the intensive care unit: A retrospective analysis. Exp. Ther. Med. 2017, 13, 1630–1633. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, C.M.; Kim, C.J.; Kim, S.E.; Park, K.H.; Bae, J.Y.; Choi, H.J.; Jung, Y.; Lee, S.S.; Choe, P.G.; Park, W.B.; et al. Risk factors for early mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteraemia. J. Glob. Antimicrob. Resist. 2022, 31, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Itani, R.; Khojah, H.M.J.; Karout, S.; Rahme, D.; Hammoud, L.; Awad, R.; Abu-Farha, R.; Mukattash, T.L.; Raychouni, H.; El-Lakany, A. Acinetobacter baumannii: Assessing susceptibility patterns, management practices, and mortality predictors in a tertiary teaching hospital in Lebanon. Antimicrob. Resist. Infect. Control 2023, 12, 136. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Xu, X.; Yao, J.; Deng, K.; Chen, S.; Shen, Z.; Yang, L.; Feng, G. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. Am. J. Infect. Control 2019, 47, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
Variable | A. baumannii Strains Producing Different Types and Numbers of β-Lactamases | p | ||
---|---|---|---|---|
One Type * (n = 53) | Two Different Types ** (n = 115) | All Three Types *** (n = 9) | ||
Gender, n (%) | ||||
Female | 16 (30.2) | 31 (27.0) | 7 (77.8) a | |
Male | 37 (69.8) | 84 (73.0) | 2 (22.2) b | 0.006 a vs. b |
Age, mean (SD), years | 61.6 (17.5) | 62 (16.1) | 63.6 (16.8) | 0.949 |
Cause of hospitalization, n (%) | ||||
Surgery | 40 (75.5) | 83 (72.2) | 6 (66.7) | 0.825 |
Trauma | 7 (13.2) | 7 (6.1) | 0 (0) | 0.188 |
Comorbid disease, n (%) | 41 (77.4) | 87 (75.7) | 7 (77.8) | 0.965 |
Antibiotic treatment before infection (class), n (%) | ||||
Cephalosporin | 41 (77.4) | 86 (74.8) | 6 (66.7) | 0.781 |
Penicillin + BLI | 31 (58.5) | 69 (60.0) | 4 (44.4) | 0.658 |
Carbapenem | 22 (41.5) | 39 (33.9) | 5 (55.6) | 0.325 |
Antifungal | 8 (15.1) | 22 (19.1) | 0 (0) | 0.308 |
Quinolone | 9 (17.0) | 10 (8.7) | 0 (0) | 0.154 |
Antibiotic treatment after infection, n (%) | ||||
Monotherapy | 18 (40.0) a | 20 (21.1) b | 1 (14.3) | 0.019 a vs. b |
Combination therapy | 27 (60.0) a | 75 (78.9) b | 6 (85.7) | 0.019 a vs. b |
Length of stay before A. baumannii infection, days | 17 (10–30) | 13 (6–21) | 14 (8–33) | 0.353 |
Length of ICU stay before A. baumannii infection, days | 6 (2–11) | 5 (2–10) | 4 (2–13) | 0.908 |
IMV duration before A. baumannii infection, days | 5 (2–10) | 4 (2–9) | 5 (2–19) | 0.497 |
Inflammatory markers on A. baumannii infection onset | ||||
WBC, ×109/L | 12.3 (7.3–16.2) | 11.2 (7.8–15.7) | 12.5 (4.9–16.6) | 0.988 |
CRP, mg/L | 126.5 (76.0–250.3) | 108 (88.8–272.6) | 236.9 (86.8–295.9) | 0.294 |
Treatment Groups | A. baumannii Strains Producing Different Types and Numbers of β-Lactamases | ||
---|---|---|---|
One Type * (n = 53) | Two Different Types ** (n = 115) | All Three Types *** (n = 9) | |
Did not receive an effective antibiotic (n = 46) | 16 (34.8) | 27 (58.7) | 3 (6.7) |
Continuation of empirical treatment & (n = 15) | 3 (20.0) | 10 (66.7) | 2 (13.3) |
Monotherapy with BLI † (n = 23) | 11 (47.8) | 12 (52.2) | 0 (0.0) |
Combination of colistin with BLI √ (n = 68) | 8 (11.8) a | 57 (83.8) b | 3 (4.4) |
Combination of colistin and imipenem or meropenem (n = 14) | 8 (57.1) a | 5 (35.7) b | 1 (7.1) |
Other combinations # (n = 12) | 7 (63.6) a | 4 (36.4) b | 0 (0.0) |
Variable | Survivors (n = 81) | Non-Survivors (n = 115) | p |
---|---|---|---|
Gender, n (%) | |||
Female | 23 (28.4) | 37 (32.2) | 0.572 |
Male | 58 (71.6) | 78 (67.8) | |
Age, mean (SD), years | 55.9 (17.9) | 65.9 (14.2) | <0.001 |
Comorbid diseases, n (%) | |||
Cardiovascular | 40 (49.4) | 82 (71.3) | 0.002 |
Respiratory | 53 (65.4) | 105 (91.3) | <0.001 |
Renal | 7 (8.6) | 16 (13.9) | 0.259 |
Liver | 4 (5.1) | 15 (13.0) | 0.085 |
Diabetes mellitus | 14 (17.3) | 25 (22.2) | 0.591 |
Cancer | 20 (24.7) | 34 (29.6) | 0.452 |
At least one comorbid disease | 55 (67.9) | 95 (82.6) | 0.017 |
Cause of hospitalization, n (%) | |||
Surgery | 68 (84.0) | 73 (63.5) | 0.002 |
Trauma | 10 (12.3) | 5 (4.3) | 0.038 |
IMV | 56 (69.1) | 104 (90.4) | < 0.001 |
Length of hospital stay before ICU, days | 10 (1–19.7) | 10 (4–21) | 0.146 |
Length of ICU stay before A. baumannii infection, days | 5 (1–12) | 5 (2–10) | 0.450 |
Length of hospital stay after A. baumannii infection, days | 21 (12.5–41.5) | 6 (1–21) | <0.001 |
Duration of IMV before A. baumannii infection, days | 3.0 (2.3–10) | 3.5 (2–9) | 0.212 |
Duration of antibiotic treatment before A. baumannii infection, median (IQR), days | 15.0 (8–24.5) | 14.0 (8–23.0) | 0.649 |
Treatment, n (%) | |||
Did not receive effective antibiotic treatment | 14 (27.5) | 37 (72.5) | <0.019 |
Received effective antibiotic treatment | 67 (46.2) | 78 (53.8) | |
Antibiotic treatment after infection, n (%) | |||
Monotherapy | 33 (40.7) | 13 (16.0) | 0.045 |
Combination therapy | 48 (59.3) | 68 (84.0) | |
Duration of effective antibiotic treatment for A. baumannii infection, median (IQR), days | 10.0 (7–14) | 3 (0–8) | <0.001 |
Co-infection with other bacteria, n (%) | |||
No | 29 (35.8) | 65 (56.5) | <0.001 |
Yes | 52 (64.2) | 50 (43.5) | |
A. baumannii strains producing different types and numbers of β-lactamases, n (%) | |||
One type * | 26 (32.1) | 27 (23.5) | 0.407 |
Two different types ** | 46 (56.8) | 69 (60.0) | |
All three types *** | 2 (2.5) | 7 (6.1) |
Risk Factor | Beta Coefficient | SE | Wald | OR (95% CI) | p |
---|---|---|---|---|---|
Effective antibiotic treatment for ≤6 days | 1.93 | 0.45 | 18.59 | 6.92 (2.87–16.66) | <0.001 |
IMV | 1.72 | 0.54 | 10.05 | 5.58 (1.93–16.17) | 0.002 |
Age of >58 years | 1.61 | 0.42 | 14.75 | 4.99 (2.19–11.33) | <0.001 |
Combination therapy | 1.21 | 0.47 | 6.81 | 3.62 (1.35–8.36) | 0.009 |
No co-infection | 0.85 | 0.40 | 4.55 | 2.35 (1.07–5.14) | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Černiauskienė, K.; Vitkauskienė, A. Multidrug-Resistant Acinetobacter baumannii: Risk Factors for Mortality in a Tertiary Care Teaching Hospital. Trop. Med. Infect. Dis. 2025, 10, 15. https://doi.org/10.3390/tropicalmed10010015
Černiauskienė K, Vitkauskienė A. Multidrug-Resistant Acinetobacter baumannii: Risk Factors for Mortality in a Tertiary Care Teaching Hospital. Tropical Medicine and Infectious Disease. 2025; 10(1):15. https://doi.org/10.3390/tropicalmed10010015
Chicago/Turabian StyleČerniauskienė, Kristina, and Astra Vitkauskienė. 2025. "Multidrug-Resistant Acinetobacter baumannii: Risk Factors for Mortality in a Tertiary Care Teaching Hospital" Tropical Medicine and Infectious Disease 10, no. 1: 15. https://doi.org/10.3390/tropicalmed10010015
APA StyleČerniauskienė, K., & Vitkauskienė, A. (2025). Multidrug-Resistant Acinetobacter baumannii: Risk Factors for Mortality in a Tertiary Care Teaching Hospital. Tropical Medicine and Infectious Disease, 10(1), 15. https://doi.org/10.3390/tropicalmed10010015