The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies
Abstract
:1. Introduction
2. Development and Transmission of Antimicrobial Resistance in Campylobacter
2.1. Mechanisms of Resistance and Bacterial Evolution
2.2. Selective Pressure, Fitness Cost, and Adaptive Compensations
2.3. Transmission Pathways
3. Mechanisms of Antimicrobial Resistance
3.1. Resistance to β-Lactams
3.2. Resistance to Fluoroquinolones
3.3. Resistance to Tetracyclines
3.4. Resistance to Macrolides
3.5. Resistance to Aminoglycosides
4. Factors Influencing Antimicrobial Resistance in Campylobacter
4.1. Irrational Use of Antibiotics and the Role of the Environment
4.2. Genetic Adaptability of the Pathogen
5. Intervention Strategies Used to Control Campylobacter
5.1. Pre-Harvest and Post-Harvest Intervention Strategies
5.1.1. Pre-Harvest Intervention Strategies
5.1.2. Post-Harvest Intervention Strategies
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, M.; Yang, J.; Li, Y.; Zhang, L.; Peng, Y.; Chen, W.; Liu, J. Diagnostic Accuracy of MALDI-TOF Mass Spectrometry for the Direct Identification of Clinical Pathogens from Urine. Open Med. 2020, 15, 266–273. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Rev. Antimicrob. Resist. 2014. Available online: https://wellcomecollection.org/works/rdpck35v/items (accessed on 13 January 2025).
- Hendrickson, S.M.; Thomas, A.; Raué, H.-P.; Prongay, K.; Haertel, A.J.; Rhoades, N.S.; Slifka, J.F.; Gao, L.; Quintel, B.K.; Amanna, I.J.; et al. Campylobacter Vaccination Reduces Diarrheal Disease and Infant Growth Stunting among Rhesus Macaques. Nat. Commun. 2023, 14, 3806. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.M.; Abd El-Hamid, M.I.; El-Malt, R.M.S.; Azab, D.S.; Albogami, S.; Al-Sanea, M.M.; Soliman, W.E.; Ghoneim, M.M.; Bendary, M.M. Molecular Detection of Fluoroquinolone Resistance among Multidrug-, Extensively Drug-, and Pan-Drug-Resistant Campylobacter Species in Egypt. Antibiotics 2021, 10, 1342. [Google Scholar] [CrossRef]
- Ranasinghe, S.; Fhogartaigh, C.N. Bacterial Gastroenteritis. Medicine 2021, 49, 687–693. [Google Scholar] [CrossRef]
- Whitehouse, C.A.; Zhao, S.; Tate, H. Antimicrobial Resistance in Campylobacter Species: Mechanisms and Genomic Epidemiology. Adv. Appl. Microbiol. 2018, 103, 1–47. [Google Scholar] [CrossRef]
- Silva, J.; Leite, D.; Fernandes, M.; Mena, C.; Gibbs, P.A.; Teixeira, P. Campylobacter spp. as a Foodborne Pathogen: A Review. Front. Microbiol. 2011, 2, 200. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.C.; Rodrigues, L.C.; Viviani, L.; Dodds, J.P.; Evans, M.R.; Hunter, P.R.; Gray, J.J.; Letley, L.H.; Rait, G.; Tompkins, D.S.; et al. Longitudinal Study of Infectious Intestinal Disease in the UK (IID2 Study): Incidence in the Community and Presenting to General Practice. Gut 2012, 61, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Hermans, D.; Van Deun, K.; Martel, A.; Van Immerseel, F.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Colonization Factors of Campylobacter Jejuni in the Chicken Gut. Vet. Res. 2011, 42, 82. [Google Scholar] [CrossRef]
- Lopes, B.S.; Strachan, N.J.C.; Ramjee, M.; Thomson, A.; MacRae, M.; Shaw, S.; Forbes, K.J. Nationwide Stepwise Emergence and Evolution of Multidrug-Resistant Campylobacter Jejuni Sequence Type 5136, United Kingdom. Emerg. Infect. Dis. 2019, 25, 1320–1329. [Google Scholar] [CrossRef]
- Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.; Logue, C.M.; Zhang, Q. Antibiotic Resistance in Campylobacter: Emergence, Transmission and Persistence. Future Microbiol. 2009, 4, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Allos, B.M. Campylobacter Jejuni Infections: Update on Emerging Issues and Trends. Clin. Infect. Dis. 2001, 32, 1201–1206. [Google Scholar] [CrossRef]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and Alternative Strategies for the Prevention, Control, and Treatment of Antibiotic-Resistant Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Iovine, N.M. Resistance Mechanisms in Campylobacter Jejuni. Virulence 2013, 4, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Cambau, E.; Gutmann, L. Mechanisms of Resistance to Quinolones. Drugs 1993, 45 (Suppl. S3), 15–23. [Google Scholar] [CrossRef] [PubMed]
- Weigel, L.M.; Steward, C.D.; Tenover, F.C. gyrA Mutations Associated with Fluoroquinolone Resistance in Eight Species of Enterobacteriaceae. Antimicrob. Agents Chemother. 1998, 42, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Michel, L.O.; Zhang, Q. CmeABC Functions as a Multidrug Efflux System in Campylobacter Jejuni. Antimicrob. Agents Chemother. 2002, 46, 2124–2131. [Google Scholar] [CrossRef]
- Payot, S.; Avrain, L.; Magras, C.; Praud, K.; Cloeckaert, A.; Chaslus-Dancla, E. Relative Contribution of Target Gene Mutation and Efflux to Fluoroquinolone and Erythromycin Resistance, in French Poultry and Pig Isolates of Campylobacter Coli. Int. J. Antimicrob. Agents 2004, 23, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, K.; Osek, J. Antimicrobial Resistance Mechanisms among Campylobacter. BioMed Res. Int. 2013, 2013, 340605. [Google Scholar] [CrossRef]
- Adler-Mosca, H.; Lüthy-Hottenstein, J.; Martinetti Lucchini, G.; Burnens, A.; Altwegg, M. Development of Resistance to Quinolones in Five Patients with Campylobacteriosis Treated with Norfloxacin or Ciprofloxacin. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Dïnç, A.Z. Extended Spectrum Beta-Lactamase Activity and Multidrug Resistance of Salmonella Serovars Isolated from Chicken Carcasses from Different Regions of Turkey. Ank. Üniversitesi Vet. Fakültesi Derg. 2015, 62, 119–123. [Google Scholar] [CrossRef]
- Bolinger, H.; Kathariou, S. The Current State of Macrolide Resistance in Campylobacter Spp.: Trends and Impacts of Resistance Mechanisms. Appl. Environ. Microbiol. 2017, 83, e00416-17. [Google Scholar] [CrossRef]
- Zeitouni, S.; Collin, O.; Andraud, M.; Ermel, G.; Kempf, I. Fitness of Macrolide Resistant Campylobacter coli and Campylobacter jejuni. Microb. Drug Resist. 2012, 18, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Huong, L.Q.; Chisnall, T.; Rodgers, J.D.; Cawthraw, S.A.; Card, R.M. Prevalence, Antibiotic Resistance, and Genomic Characterisation of Campylobacter Spp. in Retail Chicken in Hanoi, Vietnam. Microb. Genom. 2024, 10, 001190. [Google Scholar] [CrossRef]
- Mor-Mur, M.; Yuste, J. Emerging Bacterial Pathogens in Meat and Poultry: An Overview. Food Bioprocess Technol. 2010, 3, 24–35. [Google Scholar] [CrossRef]
- Newell, D.G.; Elvers, K.T.; Dopfer, D.; Hansson, I.; Jones, P.; James, S.; Gittins, J.; Stern, N.J.; Davies, R.; Connerton, I.; et al. Biosecurity-Based Interventions and Strategies to Reduce Campylobacter spp. on Poultry Farms. Appl. Environ. Microbiol. 2011, 77, 8605–8614. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; de Schaetzen, M.-A.; Van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial Resistance in the Food Chain: A Review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef]
- Facciolà, A.; Riso, R.; Avventuroso, E.; Visalli, G.; Delia, S.A.; Laganà, P. Campylobacter: From Microbiology to Prevention. J. Prev. Med. Hyg. 2017, 58, E79–E92. [Google Scholar]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Casagrande Proietti, P.; Guelfi, G.; Bellucci, S.; De Luca, S.; Di Gregorio, S.; Pieramati, C.; Franciosini, M.P. Beta-Lactam Resistance in Campylobacter coli and Campylobacter jejuni Chicken Isolates and the Association between BlaOXA-61 Gene Expression and the Action of β-Lactamase Inhibitors. Vet. Microbiol. 2020, 241, 108553. [Google Scholar] [CrossRef] [PubMed]
- Ocejo, M.; Oporto, B.; Lavín, J.L.; Hurtado, A. Whole Genome-Based Characterisation of Antimicrobial Resistance and Genetic Diversity in Campylobacter jejuni and Campylobacter coli from Ruminants. Sci. Rep. 2021, 11, 8998. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Zhang, Q.; Shen, J. Antimicrobial Resistance in Campylobacter spp. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.-J.; Jeong, S.H. Class D β-Lactamases. J. Antimicrob. Chemother. 2021, 76, 836–864. [Google Scholar] [CrossRef]
- Griggs, D.J.; Peake, L.; Johnson, M.M.; Ghori, S.; Mott, A.; Piddock, L.J.V. β-Lactamase-Mediated β-Lactam Resistance in Campylobacter Species: Prevalence of Cj0299 (blaOXA-61) and Evidence for a Novel β-Lactamase in C. jejuni. Antimicrob. Agents Chemother. 2009, 53, 3357–3364. [Google Scholar] [CrossRef]
- Zeng, X.; Brown, S.; Gillespie, B.; Lin, J. A Single Nucleotide in the Promoter Region Modulates the Expression of the β-Lactamase OXA-61 in Campylobacter jejuni. J. Antimicrob. Chemother. 2014, 69, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Deforet, F.; Jehanne, Q.; Bénéjat, L.; Aptel, J.; Prat, R.; Desbiolles, C.; Ducournau, A.; Jauvain, M.; Bonnet, R.; Vandenesch, F.; et al. Combined Genomic-Proteomic Approach in the Identification of Campylobacter coli Amoxicillin-Clavulanic Acid Resistance Mechanism in Clinical Isolates. Front. Microbiol. 2023, 14, 1285236. [Google Scholar] [CrossRef] [PubMed]
- Gourmelon, M.; Boukerb, A.M.; Nabi, N.; Banerji, S.; Joensen, K.G.; Serghine, J.; Cormier, A.; Megraud, F.; Lehours, P.; Alter, T.; et al. Genomic Diversity of Campylobacter Lari Group Isolates from Europe and Australia in a One Health Context. Appl. Environ. Microbiol. 2022, 88, e01368-22. [Google Scholar] [CrossRef]
- Fiedoruk, K.; Daniluk, T.; Rozkiewicz, D.; Oldak, E.; Prasad, S.; Swiecicka, I. Whole-Genome Comparative Analysis of Campylobacter jejuni Strains Isolated from Patients with Diarrhea in Northeastern Poland. Gut Pathog. 2019, 11, 32. [Google Scholar] [CrossRef]
- Alfredson, D.A.; Korolik, V. Isolation and Expression of a Novel Molecular Class D Beta-Lactamase, OXA-61, from Campylobacter jejuni. Antimicrob. Agents Chemother. 2005, 49, 2515–2518. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Mendoza, D.; Martínez-Flores, I.; Santamaría, R.I.; Lozano, L.; Bustamante, V.H.; Pérez-Morales, D. Genomic Analysis Reveals the Genetic Determinants Associated with Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. Front. Microbiol. 2020, 11, 513070. [Google Scholar] [CrossRef]
- Gibreel, A.; Taylor, D.E. Macrolide Resistance in Campylobacter jejuni and Campylobacter coli. J. Antimicrob. Chemother. 2006, 58, 243–255. [Google Scholar] [CrossRef]
- Jensen, L.B.; Aarestrup, F.M. Macrolide Resistance in Campylobacter coli of Animal Origin in Denmark. Antimicrob. Agents Chemother. 2001, 45, 371–372. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.; Chuma, T.; Okamoto, K.; Itoh, K. Rapid Detection of Mutations Associated with Resistance to Erythromycin in Campylobacter jejuni/coli by PCR and Line Probe Assay. Int. J. Antimicrob. Agents 2001, 18, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Gibreel, A.; Kos, V.N.; Keelan, M.; Trieber, C.A.; Levesque, S.; Michaud, S.; Taylor, D.E. Macrolide Resistance in Campylobacter jejuni and Campylobacter coli: Molecular Mechanism and Stability of the Resistance Phenotype. Antimicrob. Agents Chemother. 2005, 49, 2753–2759. [Google Scholar] [CrossRef]
- Vacher, S.; Ménard, A.; Bernard, E.; Mégraud, F. PCR-Restriction Fragment Length Polymorphism Analysis for Detection of Point Mutations Associated with Macrolide Resistance in Campylobacter spp. Antimicrob. Agents Chemother. 2003, 47, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Connell, S.R.; Trieber, C.A.; Dinos, G.P.; Einfeldt, E.; Taylor, D.E.; Nierhaus, K.H. Mechanism of Tet(O)-Mediated Tetracycline Resistance. EMBO J. 2003, 22, 945–953. [Google Scholar] [CrossRef]
- Hormeño, L.; Campos, M.J.; Vadillo, S.; Quesada, A. Occurrence of Tet(O/M/O) Mosaic Gene in Tetracycline-Resistant Campylobacter. Microorganisms 2020, 8, 1710. [Google Scholar] [CrossRef]
- Han, J.; Wang, Y.; Sahin, O.; Shen, Z.; Guo, B.; Shen, J.; Zhang, Q. A Fluoroquinolone Resistance Associated Mutation in gyrA Affects DNA Supercoiling in Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2012, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-S.; Chen, B.-H.; Teng, R.-H.; Wang, Y.-W.; Chang, J.-H.; Liang, S.-Y.; Tsao, C.-S.; Hong, Y.-P.; Sung, H.-Y.; Chiou, C.-S. Antimicrobial Resistance in Campylobacter coli and Campylobacter jejuni from Human Campylobacteriosis in Taiwan, 2016 to 2019. Antimicrob. Agents Chemother. 2022, 66, e01736-21. [Google Scholar] [CrossRef] [PubMed]
- Morita, D.; Mukhopadhyay, A.K.; Chowdhury, G.; Maruyama, F.; Kanda, M.; Yamamoto, Y.; Tahara, H.; Mukherjee, P.; Bardhan, M.; Kumagai, T.; et al. Genomic Epidemiology and Genetic Characteristics of Clinical Campylobacter Species Cocirculating in West Bengal, India, 2019, Using Whole Genome Analysis. Antimicrob. Agents Chemother. 2024, e01108-24. [Google Scholar] [CrossRef]
- Riccio, M.L.; Docquier, J.-D.; Dell’Amico, E.; Luzzaro, F.; Amicosante, G.; Rossolini, G.M. Novel 3-N-Aminoglycoside Acetyltransferase Gene, Aac(3)-Ic, from a Pseudomonas Aeruginosa Integron. Antimicrob. Agents Chemother. 2003, 47, 1746–1748. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, D.R.; Cox, G.; D’Erasmo, M.P.; Shakya, T.; Meck, C.; Mohd, N.; Wright, G.D.; Murelli, R.P. Inhibition of the ANT(2″)-Ia Resistance Enzyme and Rescue of Aminoglycoside Antibiotic Activity by Synthetic α-Hydroxytropolones. Bioorg Med. Chem. Lett. 2014, 24, 4943–4947. [Google Scholar] [CrossRef]
- Yao, H.; Liu, D.; Wang, Y.; Zhang, Q.; Shen, Z. High Prevalence and Predominance of the Aph(2″)-If Gene Conferring Aminoglycoside Resistance in Campylobacter. Antimicrob. Agents Chemother. 2017, 61, e00112-17. [Google Scholar] [CrossRef]
- Zhao, S.; Mukherjee, S.; Chen, Y.; Li, C.; Young, S.; Warren, M.; Abbott, J.; Friedman, S.; Kabera, C.; Karlsson, M.; et al. Novel Gentamicin Resistance Genes in Campylobacter Isolated from Humans and Retail Meats in the USA. J. Antimicrob. Chemother. 2015, 70, 1314–1321. [Google Scholar] [CrossRef]
- Hormeño, L.; Ugarte-Ruiz, M.; Palomo, G.; Borge, C.; Florez-Cuadrado, D.; Vadillo, S.; Píriz, S.; Domínguez, L.; Campos, M.J.; Quesada, A. Ant(6)-I Genes Encoding Aminoglycoside O-Nucleotidyltransferases Are Widely Spread Among Streptomycin Resistant Strains of Campylobacter jejuni and Campylobacter coli. Front. Microbiol. 2018, 9, 2515. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.T.; Lynch, H.; Burke, S.; Hawkins, K.; Buttimer, C.; Mc Carthy, C.; Egan, J.; Whyte, P.; Bolton, D.; Coffey, A.; et al. Antimicrobial Resistance Determinants Circulating among Thermophilic Campylobacter Isolates Recovered from Broilers in Ireland Over a One-Year Period. Antibiotics 2020, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Guirado, P.; Miró, E.; Iglesias-Torrens, Y.; Navarro, F.; Campoy, S.; Alioto, T.S.; Gómez-Garrido, J.; Madrid, C.; Balsalobre, C. A New Variant of the aadE-Sat4-aphA-3 Gene Cluster Found in a Conjugative Plasmid from a MDR Campylobacter Jejuni Isolate. Antibiotics 2022, 11, 466. [Google Scholar] [CrossRef]
- Gharbi, M.; Abbas, M.A.S.; Hamrouni, S.; Maaroufi, A. First Report of Aac(6′)-Ib and Aac(6′)-Ib-Cr Variant Genes Associated with Mutations in gyrA Encoded Fluoroquinolone Resistance in Avian Campylobacter coli Strains Collected in Tunisia. Int. J. Mol. Sci. 2023, 24, 16116. [Google Scholar] [CrossRef]
- Wang, Y.; Taylor, D.E. Chloramphenicol Resistance in Campylobacter coli: Nucleotide Sequence, Expression, and Cloning Vector Construction. Gene 1990, 94, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone Antibiotics. Med. Chem. Commun. 2019, 10, 1719–1739. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.I.; MacGowan, A.P. Development of the Quinolones. J. Antimicrob. Chemother. 2003, 51 (Suppl. S1), 1–11. [Google Scholar] [CrossRef] [PubMed]
- Millanao, A.R.; Mora, A.Y.; Villagra, N.A.; Bucarey, S.A.; Hidalgo, A.A. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021, 26, 7153. [Google Scholar] [CrossRef] [PubMed]
- Sproston, E.L.; Wimalarathna, H.M.L.; Sheppard, S.K. Trends in Fluoroquinolone Resistance in Campylobacter. Microb. Genom. 2018, 4, e000198. [Google Scholar] [CrossRef]
- Goulart, D.B.; Beyi, A.F.; Wu, Z.; Adiguzel, M.C.; Schroeder, A.; Singh, K.; Xu, C.; Ocal, M.M.; Dewell, R.; Dewell, G.A.; et al. Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in Campylobacter jejuni in Calves. Antibiotics 2022, 11, 531. [Google Scholar] [CrossRef]
- UK-VARSS. Veterinary Antibiotic Resistance and Sales. Surveillance Report. (UK-VARSS 2022); Veterinary Medicines Directorate: New Haw, UK, 2023.
- Ruiz, J. Transferable Mechanisms of Quinolone Resistance from 1998 Onward. Clin. Microbiol. Rev. 2019, 32, e00007-19. [Google Scholar] [CrossRef] [PubMed]
- Parkhill, J.; Wren, B.W.; Mungall, K.; Ketley, J.M.; Churcher, C.; Basham, D.; Chillingworth, T.; Davies, R.M.; Feltwell, T.; Holroyd, S.; et al. The Genome Sequence of the Food-Borne Pathogen Campylobacter jejuni Reveals Hypervariable Sequences. Nature 2000, 403, 665–668. [Google Scholar] [CrossRef]
- Park, M.; Kim, J.; Feinstein, J.; Lang, K.S.; Ryu, S.; Jeon, B. Development of Fluoroquinolone Resistance through Antibiotic Tolerance in Campylobacter jejuni. Microbiol. Spectr. 2022, 10, e01667-22. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Sahin, O.; Lin, J.; Michel, L.O.; Zhang, Q. In Vivo Selection of Campylobacter Isolates with High Levels of Fluoroquinolone Resistance Associated with gyrA Mutations and the Function of the CmeABC Efflux Pump. Antimicrob. Agents Chemother. 2003, 47, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Payot, S.; Bolla, J.-M.; Corcoran, D.; Fanning, S.; Mégraud, F.; Zhang, Q. Mechanisms of Fluoroquinolone and Macrolide Resistance in Campylobacter spp. Microbes Infect. 2006, 8, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, N.; Rojas, J.; Pollett, S.; Meza, R.; Patiño, L.; Leiva, M.; Camiña, M.; Bernal, M.; Reynolds, N.D.; Maves, R.; et al. Validation of the T86I Mutation in the gyrA Gene as a Highly Reliable Real Time PCR Target to Detect Fluoroquinolone-Resistant Campylobacter jejuni. BMC Infect. Dis. 2020, 20, 518. [Google Scholar] [CrossRef] [PubMed]
- Dias, T.S.; Costa, G.A.; de Almeida Figueira, A.; dos Santos Machado, L.; da Cunha, N.C.; do Nascimento, E.R.; de Almeida Pereira, V.L.; de Aquino, M.H.C. Molecular Markers Associated with Antimicrobial Resistance and Genotypes of Campylobacter jejuni and Campylobacter coli Isolated from Broiler and Swine Flocks in Southeast Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2022, 88, 101866. [Google Scholar] [CrossRef]
- Dai, L.; Wu, Z.; Sahin, O.; Zhao, S.; Yu, E.W.; Zhang, Q. Mutation-Based Mechanism and Evolution of the Potent Multidrug Efflux Pump RE-CmeABC in Campylobacter. Proc. Natl. Acad. Sci. USA 2024, 121, e2415823121. [Google Scholar] [CrossRef]
- Sharifi, S.; Bakhshi, B.; Najar-peerayeh, S. Significant Contribution of the CmeABC Efflux Pump in High-Level Resistance to Ciprofloxacin and Tetracycline in Campylobacter jejuni and Campylobacter coli Clinical Isolates. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Garcia, Í.R.; de Oliveira Garcia, F.A.; Pereira, P.S.; Coutinho, H.D.M.; Siyadatpanah, A.; Norouzi, R.; Wilairatana, P.; de Lourdes Pereira, M.; Nissapatorn, V.; Tintino, S.R.; et al. Microbial Resistance: The Role of Efflux Pump Superfamilies and Their Respective Substrates. Life Sci. 2022, 295, 120391. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.L.; Levy, S.B. The History of the Tetracyclines. Ann. N. Y. Acad. Sci. 2011, 1241, 17–32. [Google Scholar] [CrossRef]
- LaPlante, K.L.; Dhand, A.; Wright, K.; Lauterio, M. Re-Establishing the Utility of Tetracycline-Class Antibiotics for Current Challenges with Antibiotic Resistance. Ann. Med. 2022, 54, 1686–1700. [Google Scholar] [CrossRef] [PubMed]
- Sheykhsaran, E.; Baghi, H.B.; Soroush, M.H.; Ghotaslou, R. An Overview of Tetracyclines and Related Resistance Mechanisms. Rev. Res. Med. Microbiol. 2019, 30, 69–75. [Google Scholar] [CrossRef]
- Tang, M.; Zhou, Q.; Zhang, X.; Zhou, S.; Zhang, J.; Tang, X.; Lu, J.; Gao, Y. Antibiotic Resistance Profiles and Molecular Mechanisms of Campylobacter From Chicken and Pig in China. Front. Microbiol. 2020, 11, 592496. [Google Scholar] [CrossRef]
- Roberts, M.C. Update on Acquired Tetracycline Resistance Genes. FEMS Microbiol. Lett. 2005, 245, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.E.; Garner, R.S.; Allan, B.J. Characterization of Tetracycline Resistance Plasmids from Campylobacter jejuni and Campylobacter coli. Antimicrob. Agents Chemother. 1983, 24, 930–935. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Pearson, B.M.; Friis, L.M.; Guerry, P.; Wells, J.M. Nucleotide Sequences and Comparison of Two Large Conjugative Plasmids from Different Campylobacter Species. Microbiology 2004, 150, 3507–3517. [Google Scholar] [CrossRef] [PubMed]
- Marasini, D.; Karki, A.B.; Buchheim, M.A.; Fakhr, M.K. Phylogenetic Relatedness Among Plasmids Harbored by Campylobacter jejuni and Campylobacter coli Isolated From Retail Meats. Front. Microbiol. 2018, 9, 2167. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.E. Plasmid-Mediated Tetracycline Resistance in Campylobacter Jejuni: Expression in Escherichia Coli and Identification of Homology with Streptococcal Class M Determinant. J. Bacteriol. 1986, 165, 1037–1039. [Google Scholar] [CrossRef]
- Sahin, O.; Plummer, P.J.; Jordan, D.M.; Sulaj, K.; Pereira, S.; Robbe-Austerman, S.; Wang, L.; Yaeger, M.J.; Hoffman, L.J.; Zhang, Q. Emergence of a Tetracycline-Resistant Campylobacter jejuni Clone Associated with Outbreaks of Ovine Abortion in the United States. J. Clin. Microbiol. 2008, 46, 1663–1671. [Google Scholar] [CrossRef]
- Warburton, P.J.; Amodeo, N.; Roberts, A.P. Mosaic Tetracycline Resistance Genes Encoding Ribosomal Protection Proteins. J. Antimicrob. Chemother. 2016, 71, 3333–3339. [Google Scholar] [CrossRef]
- Gibreel, A.; Wetsch, N.M.; Taylor, D.E. Contribution of the CmeABC Efflux Pump to Macrolide and Tetracycline Resistance in Campylobacter jejuni. Antimicrob. Agents Chemother. 2007, 51, 3212–3216. [Google Scholar] [CrossRef]
- Vieira, A.; Ramesh, A.; Seddon, A.M.; Karlyshev, A.V. CmeABC Multidrug Efflux Pump Contributes to Antibiotic Resistance and Promotes Campylobacter jejuni Survival and Multiplication in Acanthamoeba Polyphaga. Appl. Environ. Microbiol. 2017, 83, e01600-17. [Google Scholar] [CrossRef]
- Nor Amdan, N.A.; Shahrulzamri, N.A.; Hashim, R.; Mohamad Jamil, N. Understanding the Evolution of Macrolides Resistance: A Mini Review. J. Glob. Antimicrob. Resist. 2024, 38, 368–375. [Google Scholar] [CrossRef]
- Dinos, G.P. The Macrolide Antibiotic Renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Wang, Y.; Zhang, Q.; Zhang, M.; Deng, F.; Shen, Z.; Wu, C.; Wang, S.; Zhang, J.; Shen, J. Report of Ribosomal RNA Methylase Gene Erm(B) in Multidrug-Resistant Campylobacter coli. J. Antimicrob. Chemother. 2014, 69, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Deng, F.; Shen, Z.; Wu, C.; Zhang, J.; Zhang, Q.; Shen, J. Emergence of Multidrug-Resistant Campylobacter Species Isolates with a Horizontally Acquired rRNA Methylase. Antimicrob. Agents Chemother. 2014, 58, 5405–5412. [Google Scholar] [CrossRef]
- Fouts, D.E.; Mongodin, E.F.; Mandrell, R.E.; Miller, W.G.; Rasko, D.A.; Ravel, J.; Brinkac, L.M.; DeBoy, R.T.; Parker, C.T.; Daugherty, S.C.; et al. Major Structural Differences and Novel Potential Virulence Mechanisms from the Genomes of Multiple Campylobacter Species. PLoS Biol. 2005, 3, e15. [Google Scholar] [CrossRef]
- Gibreel, A.; Tracz, D.M.; Nonaka, L.; Ngo, T.M.; Connell, S.R.; Taylor, D.E. Incidence of Antibiotic Resistance in Campylobacter jejuni Isolated in Alberta, Canada, from 1999 to 2002, with Special Reference to Tet(O)-Mediated Tetracycline Resistance. Antimicrob. Agents Chemother. 2004, 48, 3442–3450. [Google Scholar] [CrossRef]
- Corcoran, D.; Quinn, T.; Cotter, L.; Fanning, S. An Investigation of the Molecular Mechanisms Contributing to High-Level Erythromycin Resistance in Campylobacter. Int. J. Antimicrob. Agents 2006, 27, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yan, M.; Sahin, O.; Pereira, S.; Chang, Y.-J.; Zhang, Q. Effect of Macrolide Usage on Emergence of Erythromycin-Resistant Campylobacter Isolates in Chickens. Antimicrob. Agents Chemother. 2007, 51, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Mamelli, L.; Prouzet-Mauléon, V.; Pagès, J.-M.; Mégraud, F.; Bolla, J.-M. Molecular Basis of Macrolide Resistance in Campylobacter: Role of Efflux Pumps and Target Mutations. J. Antimicrob. Chemother. 2005, 56, 491–497. [Google Scholar] [CrossRef]
- Jana, S.; Deb, J.K. Molecular Understanding of Aminoglycoside Action and Resistance. Appl. Microbiol. Biotechnol. 2006, 70, 140–150. [Google Scholar] [CrossRef]
- Jospe-Kaufman, M.; Siomin, L.; Fridman, M. The Relationship between the Structure and Toxicity of Aminoglycoside Antibiotics. Bioorganic Med. Chem. Lett. 2020, 30, 127218. [Google Scholar] [CrossRef] [PubMed]
- Coleman, S.R.; Blimkie, T.; Falsafi, R.; Hancock, R.E.W. Multidrug Adaptive Resistance of Pseudomonas Aeruginosa Swarming Cells. Antimicrob. Agents Chemother. 2020, 64, e01999-19. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside Modifying Enzymes. Drug Resist. Updates 2010, 13, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Arakawa, Y. 16S Ribosomal RNA Methylation: Emerging Resistance Mechanism against Aminoglycosides. Clin. Infect. Dis. 2007, 45, 88–94. [Google Scholar] [CrossRef]
- Vakulenko, S.B.; Mobashery, S. Versatility of Aminoglycosides and Prospects for Their Future. Clin. Microbiol. Rev. 2003, 16, 430–450. [Google Scholar] [CrossRef]
- Fabre, A.; Oleastro, M.; Nunes, A.; Santos, A.; Sifré, E.; Ducournau, A.; Bénéjat, L.; Buissonnière, A.; Floch, P.; Mégraud, F.; et al. Whole-Genome Sequence Analysis of Multidrug-Resistant Campylobacter Isolates: A Focus on Aminoglycoside Resistance Determinants. J. Clin. Microbiol. 2018, 56, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Gilbert, T.; O’Hara, P. Nucleotide Sequence of a Novel Kanamycin Resistance Gene, aphA-7, from Campylobacter jejuni and Comparison to Other Kanamycin Phosphotransferase Genes. Plasmid 1989, 22, 52–58. [Google Scholar] [CrossRef]
- von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial Resistance: Risk Associated with Antibiotic Overuse and Initiatives to Reduce the Problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.G.; Cissell, R.; Liamthong, S. Antibiotic Resistance in Bacteria Associated with Food Animals: A United States Perspective of Livestock Production. Foodborne Pathog. Dis. 2007, 4, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Martak, D.; Henriot, C.P.; Hocquet, D. Environment, Animals, and Food as Reservoirs of Antibiotic-Resistant Bacteria for Humans: One Health or More? Infect. Dis. Now. 2024, 54, 104895. [Google Scholar] [CrossRef] [PubMed]
- Hakeem, M.J.; Lu, X. Survival and Control of Campylobacter in Poultry Production Environment. Front. Cell. Infect. Microbiol. 2021, 10, 615049. [Google Scholar] [CrossRef]
- Bundurus, I.A.; Balta, I.; Pet, I.; Stef, L.; Popescu, C.A.; McCleery, D.; Lemon, J.; Callaway, T.; Douglas, A.; Corcionivoschi, N. Mechanistic Concepts Involved in Biofilm Associated Processes of Campylobacter jejuni: Persistence and Inhibition in Poultry Environments. Poult. Sci. 2024, 103, 104328. [Google Scholar] [CrossRef] [PubMed]
- Jeon, B.; Muraoka, W.T.; Zhang, Q. Advances in Campylobacter Biology and Implications for Biotechnological Applications. Microb. Biotechnol. 2010, 3, 242–258. [Google Scholar] [CrossRef]
- Portes, A.B.; Panzenhagen, P.; Pereira dos Santos, A.M.; Junior, C.A.C. Antibiotic Resistance in Campylobacter: A Systematic Review of South American Isolates. Antibiotics 2023, 12, 548. [Google Scholar] [CrossRef] [PubMed]
- Loewe, L.; Hill, W.G. The Population Genetics of Mutations: Good, Bad and Indifferent. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1153–1167. [Google Scholar] [CrossRef]
- Bloomfield, S.J.; Midwinter, A.C.; Biggs, P.J.; French, N.P.; Marshall, J.C.; Hayman, D.T.S.; Carter, P.E.; Mather, A.E.; Fayaz, A.; Thornley, C.; et al. Genomic Adaptations of Campylobacter jejuni to Long-Term Human Colonization. Gut Pathog. 2021, 13, 72. [Google Scholar] [CrossRef]
- Melo, R.T.; Mendonça, E.P.; Monteiro, G.P.; Siqueira, M.C.; Pereira, C.B.; Peres, P.A.B.M.; Fernandez, H.; Rossi, D.A. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms. Front. Microbiol. 2017, 8, 1332. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- van Gerwe, T.J.W.M. Poultry Meat as a Source of Human Campylobacteriosis. Tijdschr. Diergeneeskd. 2012, 137, 172–176. [Google Scholar] [PubMed]
- Youssef, D.M.; Wieland, B.; Knight, G.M.; Lines, J.; Naylor, N.R. The Effectiveness of Biosecurity Interventions in Reducing the Transmission of Bacteria from Livestock to Humans at the Farm Level: A Systematic Literature Review. Zoonoses Public Health 2021, 68, 549–562. [Google Scholar] [CrossRef]
- Poly, F.; Noll, A.J.; Riddle, M.S.; Porter, C.K. Update on Campylobacter Vaccine Development. Hum. Vaccin. Immunother. 2018, 15, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Dittoe, D.K.; Pavilidis, H.O.; Chaney, W.E.; Yang, Y.; Ricke, S.C. Current Perspectives and Potential of Probiotics to Limit Foodborne Campylobacter in Poultry. Front. Microbiol. 2020, 11, 583429. [Google Scholar] [CrossRef]
- Shao, L.; Li, T.; Yang, S.; Ma, L.; Cai, B.; Jia, Q.; Jiang, H.; Bai, T.; Li, Y. The Prebiotic Effects of Fructooligosaccharides Enhance the Growth Characteristics of Staphylococcus Epidermidis and Enhance the Inhibition of Staphylococcus Aureus Biofilm Formation. Int. J. Cosmet. Sci. 2024. [Google Scholar] [CrossRef]
- Jo, S.J.; Kwon, J.; Kim, S.G.; Lee, S.-J. The Biotechnological Application of Bacteriophages: What to Do and Where to Go in the Middle of the Post-Antibiotic Era. Microorganisms 2023, 11, 2311. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Marmion, M.; Ferone, M.; Wall, P.; Scannell, A.G.M. On Farm Interventions to Minimise Campylobacter spp. Contamination in Chicken. Br. Poult. Sci. 2021, 62, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Psifidi, A.; Kranis, A.; Rothwell, L.M.; Bremner, A.; Russell, K.; Robledo, D.; Bush, S.J.; Fife, M.; Hocking, P.M.; Banos, G.; et al. Genetic Control of Campylobacter Colonisation in Broiler Chickens: Genomic and Transcriptomic Characterisation. bioRxiv 2020. [Google Scholar]
- de Castro Burbarelli, M.F.; do Valle Polycarpo, G.; Deliberali Lelis, K.; Granghelli, C.A.; Carão de Pinho, A.C.; Ribeiro Almeida Queiroz, S.; Fernandes, A.M.; Moro de Souza, R.L.; Gaglianone Moro, M.E.; de Andrade Bordin, R.; et al. Cleaning and Disinfection Programs against Campylobacter Jejuni for Broiler Chickens: Productive Performance, Microbiological Assessment and Characterization. Poult. Sci. 2017, 96, 3188–3198. [Google Scholar] [CrossRef]
- Alter, T.; Reich, F. Management Strategies for Prevention of Campylobacter Infections Through the Poultry Food Chain: A European Perspective. In Fighting Campylobacter Infections: Towards a One Health Approach; Backert, S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 79–102. ISBN 978-3-030-65481-8. [Google Scholar]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2017. EFSA J. 2018, 16, e05500. [CrossRef]
- Varga, M.J.; Rodrigues, C.; Jolley, K.; Bratcher, H.B.; Maclennan, J.; Harrison, O.; Colles, F.; Cody, A.; Bray, J.; Maiden, M. Microbial Genomic Data Analysis for Infectious Diseases. In Proceedings of the NATO IST-178 Big Data Challenges: Situation Awareness and Decision Support Workshop, Budapest, Hungary, 15–16 October 2019. [Google Scholar]
- Lin, J. Novel Approaches for Campylobacter Control in Poultry. Foodborne Pathog. Dis. 2009, 6, 755–765. [Google Scholar] [CrossRef]
- Ikhimiukor, O.O.; Odih, E.E.; Donado-Godoy, P.; Okeke, I.N. A Bottom-up View of Antimicrobial Resistance Transmission in Developing Countries. Nat. Microbiol. 2022, 7, 757–765. [Google Scholar] [CrossRef] [PubMed]
- French, N.P.; Thomas, K.M.; Amani, N.B.; Benschop, J.; Bigogo, G.M.; Cleaveland, S.; Fayaz, A.; Hugho, E.A.; Karimuribo, E.D.; Kasagama, E.; et al. Population Structure and Antimicrobial Resistance in Campylobacter jejuni and C. coli Isolated from Humans with Diarrhea and from Poultry, East Africa. Emerg. Infect. Dis. 2024, 30, 2079–2089. [Google Scholar] [CrossRef]
Genes or Mutation Conferring Resistance | Class of Antibiotic, Antibiotic | References |
---|---|---|
blaOXA-61-like, blaOXA-184-like, blaOXA-576-like G57T promoter mutation upstream of the blaOXA-61-like A69 deletion in the promoter upstream of the blaOXA-61-like | Beta-lactams, penicillin | [40,43,44] |
23S rRNA gene mutation A2074→C, A2074→G, A2075→G | Macrolides, erythromycin | [21,45,46,47,48,49] |
tet(O)-like tet(O/M/O) mosaic gene tet(O/32/O) mosaic gene | Tetracycline, tetracycline | [50,51] |
gyrA gene mutations leading to the following changes: D90N, A70T, T86K, P104S and T86I | Fluoroquinolones, ciprofloxacin | [36,52,53,54] |
aac(3), aac(6’)-Ib (3-N-aminoglycoside acetyltransferase genes) aph(2″)-Ig, aph(2″)-If (aminoglycoside phosphotransferase) sat-4 (streptothricin acetyltransferase) ant6, ant2, antA, antB (adenylyltransferase) | Aminoglycosides, gentamicin, amikacin, kanamycin, netilmicin, spectinomycin | [55,56,57,58,59,60,61,62] |
lnu(AN2) (Lincosamide nucleotidyltransferase) | Lincosamides, clindamycin | [44] |
cat (chloramphenicol acetyltransferase) | Chloramphenicol, chloramphenicol | [44,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukari, Z.; Emmanuel, T.; Woodward, J.; Ferguson, R.; Ezughara, M.; Darga, N.; Lopes, B.S. The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies. Trop. Med. Infect. Dis. 2025, 10, 25. https://doi.org/10.3390/tropicalmed10010025
Bukari Z, Emmanuel T, Woodward J, Ferguson R, Ezughara M, Darga N, Lopes BS. The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies. Tropical Medicine and Infectious Disease. 2025; 10(1):25. https://doi.org/10.3390/tropicalmed10010025
Chicago/Turabian StyleBukari, Zubeiru, Toyin Emmanuel, Jude Woodward, Richard Ferguson, Martha Ezughara, Nikhil Darga, and Bruno Silvester Lopes. 2025. "The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies" Tropical Medicine and Infectious Disease 10, no. 1: 25. https://doi.org/10.3390/tropicalmed10010025
APA StyleBukari, Z., Emmanuel, T., Woodward, J., Ferguson, R., Ezughara, M., Darga, N., & Lopes, B. S. (2025). The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies. Tropical Medicine and Infectious Disease, 10(1), 25. https://doi.org/10.3390/tropicalmed10010025