Utility of VIDAS® Dengue Diagnostic Assays to Differentiate Primary and Secondary Dengue Infection: A Cross-Sectional Study in a Military Hospital from Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Study Design and Definitions
2.3. Statistical Analyses
3. Results
3.1. Patients’ Characteristics
3.2. Diagnostic Performance of VIDAS® Assays in Relation to Time Elapsed from Symptom Onset to Diagnosis
3.3. Utility of VIDAS® Assays as Predictors of Dengue with Warning Signs
3.4. Utility of VIDAS® Assays as Predictors of Confirmed Secondary Dengue Virus Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The Global Distribution and Burden of Dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.K.; Wong, W.F.; Vignesh, R.; Chattopadhyay, I.; Velu, V.; Tan, H.Y.; Zhang, Y.; Larsson, M.; Shankar, E.M. Dengue Infection—Recent Advances in Disease Pathogenesis in the Era of COVID-19. Front. Immunol. 2022, 13, 889196. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.B.; Yang, Z.S.; Lin, C.Y.; Hsu, M.C.; Urbina, A.N.; Assavalapsakul, W.; Wang, W.H.; Chen, Y.H.; Wang, S.F. Dengue Overview: An Updated Systemic Review. J. Infect. Public Health 2023, 16, 1625–1642. [Google Scholar] [CrossRef]
- Rajapakse, S.; Rodrigo, C.; Rajapakse, A. Treatment of Dengue Fever. Infect. Drug Resist. 2012, 5, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, J.E.; Coronel-Ruiz, C. Dengue Disease Diagnosis: A Puzzle to Be Solved. Rev. Fac. Med. 2014, 62, 617–629. [Google Scholar] [CrossRef]
- Raafat, N.; Blacksell, S.D.; Maude, R.J. A Review of Dengue Diagnostics and Implications for Surveillance and Control. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Blessmann, J.; Winkelmann, Y.; Keoviengkhone, L.; Sopraseuth, V.; Kann, S.; Hansen, J.; El Halas, H.; Emmerich, P.; Schmidt-Chanasit, J.; Schmitz, H.; et al. Assessment of Diagnostic and Analytic Performance of the SD Bioline Dengue Duo Test for Dengue Virus (DENV) Infections in an Endemic Area (Savannakhet Province, Lao People’s Democratic Republic). PLoS ONE 2020, 15, e0230337. [Google Scholar] [CrossRef]
- Somlor, S.; Brossault, L.; Grandadam, M. Diagnostics Evaluation of VIDAS® Diagnostic Assay Prototypes Detecting Dengue Virus NS1 Antigen and Anti-Dengue Virus IgM and IgG Antibodies. Diagnostics 2021, 11, 1228. [Google Scholar] [CrossRef]
- Dussart, P.; Labeau, B.; Lagathu, G.; Louis, P.; Nunes, M.R.T.; Rodrigues, S.G.; Storck-Herrmann, C.; Cesaire, R.; Morvan, J.; Flamand, M.; et al. Evaluation of an Enzyme Immunoassay for Detection of Dengue Virus NS1 Antigen in Human Serum. Clin. Vaccine Immunol. 2006, 13, 1185–1189. [Google Scholar] [CrossRef]
- Pan American Health Organization. Guidelines for the Clinical Diagnosis and Treatment of Dengue, Chikungunya, and Zika; Pan American Health Organization: Washington, DC, USA, 2022. [Google Scholar]
- Paz-Bailey, G.; Adams, L.E.; Deen, J.; Anderson, K.B.; Katzelnick, L.C. Dengue. Lancet 2024, 403, 667–682. [Google Scholar] [CrossRef]
- Guzman, M.G.; Gubler, D.J.; Izquierdo, A.; Martinez, E.; Halstead, S.B. Dengue Infection. Nat. Rev. Dis. Primers 2016, 2, 16055. [Google Scholar] [CrossRef] [PubMed]
- Peeling, R.W.; Artsob, H.; Pelegrino, J.L.; Buchy, P.; Cardosa, M.J.; Devi, S.; Enria, D.A.; Farrar, J.; Gubler, D.J.; Guzman, M.G.; et al. Evaluation of Diagnostic Tests: Dengue. Nat. Rev. Microbiol. 2010, 8, S30–S38. [Google Scholar] [CrossRef]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; et al. Dengue Viremia Titer, Antibody Response Pattern, and Virus Serotype Correlate with Disease Severity. J. Infect. Dis. 2000, 181, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.W.; Russell, B.J.; Lanciotti, R.S. Serotype-Specific Detection of Dengue Viruses in a Fourplex Real-Time Reverse Transcriptase PCR Assay. J. Clin. Microbiol. 2005, 43, 4977–4983. [Google Scholar] [CrossRef]
- Roy, S.K.; Bhattacharjee, S. Dengue Virus: Epidemiology, Biology, and Disease Aetiology. Can. J. Microbiol. 2021, 67, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Versiani, A.F.; Kaboré, A.; Brossault, L.; Dromenq, L.; dos Santos, T.M.I.L.; Milhim, B.H.G.A.; Estofolete, C.F.; Cissé, A.; Sorgho, P.A.; Senot, F.; et al. Performance of VIDAS® Diagnostic Tests for the Automated Detection of Dengue Virus NS1 Antigen and of Anti-Dengue Virus IgM and IgG Antibodies: A Multicentre, International Study. Diagnostics 2023, 13, 1137. [Google Scholar] [CrossRef] [PubMed]
- Combe, M.; Lacoux, X.; Martinez, J.; Méjan, O.; Luciani, F.; Daniel, S. Expression, Refolding and Bio-Structural Analysis of a Tetravalent Recombinant Dengue Envelope Domain III Protein for Serological Diagnosis. Protein Expr. Purif. 2017, 133, 57–65. [Google Scholar] [CrossRef]
- Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; et al. Structure of Dengue Virus: Implications for Flavivirus Organization, Maturation, and Fusion. Cell 2002, 108, 717–725. [Google Scholar] [CrossRef]
- Zaitseva, E.; Yang, S.T.; Melikov, K.; Pourmal, S.; Chernomordik, L.V. Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids. PLoS Pathog. 2010, 6, e1001131. [Google Scholar] [CrossRef]
- Puerta-Guardo, H.; Glasner, D.R.; Harris, E. Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog. 2016, 12, e1005738. [Google Scholar] [CrossRef]
- Jitoboam, K.; Phaonakrop, N.; Libsittikul, S.; Thepparit, C.; Roytrakul, S.; Smith, D.R. Actin Interacts with Dengue Virus 2 and 4 Envelope Proteins. PLoS ONE 2016, 11, e0151951. [Google Scholar] [CrossRef]
- Tan, B.E.K.; Beard, M.R.; Eyre, N.S. Identification of Key Residues in Dengue Virus NS1 Protein That Are Essential for Its Secretion. Viruses 2023, 15, 1102. [Google Scholar] [CrossRef]
- Raut, R.; Corbett, K.S.; Tennekoon, R.N.; Premawansa, S.; Wijewickrama, A.; Premawansa, G.; Mieczkowski, P.; Rückert, C.; Ebel, G.D.; De Silva, A.D.; et al. Dengue Type 1 Viruses Circulating in Humans Are Highly Infectious and Poorly Neutralized by Human Antibodies. Proc. Natl. Acad. Sci. USA 2019, 116, 227–232. [Google Scholar] [CrossRef]
- Aynekulu Mersha, D.G.; van der Sterren, I.; van Leeuwen, L.P.M.; Langerak, T.; Hakim, M.S.; Martina, B.; van Lelyveld, S.F.L.; van Gorp, E.C.M. The Role of Antibody-Dependent Enhancement in Dengue Vaccination. Trop. Dis. Travel Med. Vaccines 2024, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Teo, A.; Tan, H.D.; Loy, T.; Chia, P.Y.; Chua, C.L.L. Understanding Antibody-Dependent Enhancement in Dengue: Are Afucosylated IgG1s a Concern? PLoS Pathog. 2023, 19, e1011223. [Google Scholar] [CrossRef]
- Hunsperger, E.A.; Yoksan, S.; Buchy, P.; Nguyen, V.C.; Sekaran, S.D.; Enria, D.A.; Pelegrino, J.L.; Vázquez, S.; Artsob, H.; Drebot, M.; et al. Evaluation of Commercially Available Anti-Dengue Virus Immunoglobulin M Tests. Emerg. Infect. Dis. 2009, 15, 436–440. [Google Scholar] [CrossRef]
- Mata, V.E.; De Andrade, C.A.F.; Passos, S.R.L.; Hökerberg, Y.H.M.; Fukuoka, L.V.B.; Da Silva, S.A. Rapid Immunochromatographic Tests for the Diagnosis of Dengue: A Systematic Review and Meta-Analysis. Cad. Saúde Pública 2020, 36, e00225618. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.G.; Jaenisch, T.; Gaczkowski, R.; Hang, V.T.T.; Sekaran, S.D.; Kroeger, A.; Vazquez, S.; Ruiz, D.; Martinez, E.; Mercado, J.C.; et al. Multi-Country Evaluation of the Sensitivity and Specificity of Two Commercially-Available NS1 ELISA Assays for Dengue Diagnosis. PLoS Negl. Trop. Dis. 2010, 4, e811. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization. Technical Note Algorithm for Laboratory Confirmation of Dengue Cases; Pan American Health Organization: Washington, DC, USA, 2023. [Google Scholar]
- Tricou, V.; Minh, N.N.; Farrar, J.; Tran, H.T.; Simmons, C.P. Kinetics of Viremia and NS1 Antigenemia Are Shaped by Immune Status and Virus Serotype in Adults with Dengue. PLoS Negl. Trop. Dis. 2011, 5, e1309. [Google Scholar] [CrossRef]
Category | Patient’s Number | Men N (%) | Women N (%) | Statistical Parameter | Day to Diagnosis | Age | NS1 * | IgM * | IgG * | IgG/IgM Ratio |
---|---|---|---|---|---|---|---|---|---|---|
Confirmed primary dengue infection | 77 | 45 (58.44) | 32 (41.56) | M | 4.93 | 37.74 | 80.67 | 13.88 | 1.45 | 0.083 |
SD | 2.01 | 18.7 | 24.85 | 22.81 | 5.12 | 0.197 | ||||
Min | 1 | 18 | 9 | 0 | 0 | 0 | ||||
Me | 5 | 32 | 92 | 2 | 0 | 0 | ||||
Max | 9 | 92 | 119 | 127 | 39 | 1 | ||||
Probable primary dengue infection | 1 | 1 (100) | 0 (0) | M | 6 | 32 | 0 | 131 | 73 | 0.557 |
SD | - | - | - | - | - | - | ||||
Min | - | - | - | - | - | - | ||||
Me | - | - | - | - | - | - | ||||
Max | - | - | - | - | - | - | ||||
Confirmed secondary dengue infection | 70 | 44 (62.86) | 26 (37.14) | M | 5.05 | 40.08 | 54.5 | 1.54 | 30.5 | 17.65 |
SD | 1.72 | 17.7 | 38.3 | 2.71 | 29.01 | 16.9 | ||||
Min | 1 | 18 | 1 | 0 | 1 | 1.22 | ||||
Me | 5 | 39 | 57 | 0 | 15.5 | 12 | ||||
Max | 10 | 84 | 118 | 13 | 82 | 75 | ||||
Possible secondary dengue infection | 42 | 33 (78.57) | 9 (21.43) | M | 6.11 | 31.71 | 0 | 5.78 | 57.07 | 18.89 |
SD | 1.5 | 11.43 | - | 10.31 | 20.5 | 14.6 | ||||
Min | 3 | 17 | - | 0 | 6 | 1.4 | ||||
Me | 6 | 32.5 | - | 2 | 59.5 | 17.33 | ||||
Max | 9 | 75 | - | 49 | 82 | 54 |
Category | IgM p-Value | IgG p-Value | IgG/IgM Ratio p-Value |
---|---|---|---|
Primary dengue infection without warning signs | 0.18 | 0.66 | 0.80 |
Primary dengue infection with warning signs | |||
Secondary dengue infection without warning signs | 0.6 | 0.026 | 0.0690 |
Secondary dengue infection with warning signs |
Category | IgM p-Value | IgG p-value | IgG/IgM Ratio p-Value |
---|---|---|---|
Possible secondary dengue infection | 0.00112 | 0.0000058 | 0.560 |
Confirmed secondary dengue infection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto-Torres, A.E.; Medina-Lozano, L.J.; Ramírez-Ávila, J.D.; Faccini-Martínez, Á.A. Utility of VIDAS® Dengue Diagnostic Assays to Differentiate Primary and Secondary Dengue Infection: A Cross-Sectional Study in a Military Hospital from Colombia. Trop. Med. Infect. Dis. 2025, 10, 40. https://doi.org/10.3390/tropicalmed10020040
Prieto-Torres AE, Medina-Lozano LJ, Ramírez-Ávila JD, Faccini-Martínez ÁA. Utility of VIDAS® Dengue Diagnostic Assays to Differentiate Primary and Secondary Dengue Infection: A Cross-Sectional Study in a Military Hospital from Colombia. Tropical Medicine and Infectious Disease. 2025; 10(2):40. https://doi.org/10.3390/tropicalmed10020040
Chicago/Turabian StylePrieto-Torres, Andrés E., Leidy J. Medina-Lozano, Juan David Ramírez-Ávila, and Álvaro A. Faccini-Martínez. 2025. "Utility of VIDAS® Dengue Diagnostic Assays to Differentiate Primary and Secondary Dengue Infection: A Cross-Sectional Study in a Military Hospital from Colombia" Tropical Medicine and Infectious Disease 10, no. 2: 40. https://doi.org/10.3390/tropicalmed10020040
APA StylePrieto-Torres, A. E., Medina-Lozano, L. J., Ramírez-Ávila, J. D., & Faccini-Martínez, Á. A. (2025). Utility of VIDAS® Dengue Diagnostic Assays to Differentiate Primary and Secondary Dengue Infection: A Cross-Sectional Study in a Military Hospital from Colombia. Tropical Medicine and Infectious Disease, 10(2), 40. https://doi.org/10.3390/tropicalmed10020040