Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Dengue Fever Cases and Demographic Data
2.2.2. Environmental Data for San Juan and Yucatan State
2.2.3. Data Input and Organization
2.3. Artificial Neural Network Model Setup
2.3.1. Training and Validation
2.3.2. Thresholds to Identify and Predict Potential Dengue Fever Outbreaks
3. Results
3.1. Model Accuracy
3.2. Evaluation of ANNs Model Predictive Power Based on F-Measure and ROC Curve
3.3. Environmental Factors Relevant for Dengue Fever Outbreak Occurrences Predictions
4. Discussion
4.1. Most Relevant Environmental and Social Factors Influencing Dengue Fever Outbreak Occurrences
4.2. ANNs Model Performance on Predicting Dengue Fever in Mexico and Puerto Rico
4.3. Study Limitations and Future Work
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laureano-Rosario, A.E.; Garcia-Rejon, J.E.; Gomez-Carro, S.; Farfan-Ale, J.A.; Muller-Karger, F.E. Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature. Acta Trop. 2017, 172, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.E.A.; Quam, M.B.; Wilder-Smith, A. Epidemiology of dengue: Past, present and future prospects. Clin. Epidemiol. 2013, 5, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Shepard, D.S.; Coudeville, L.; Halasa, Y.A.; Zambrano, B.; Dayan, G.H. Economic impact of dengue illness in the Americas. Am. J. Trop. Med. Hyg. 2011, 84, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Cheong, W.H. Preferred Aedes aegypti larval habitats in urban areas. Bull. WHO 1967, 36, 586. [Google Scholar] [PubMed]
- Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [Google Scholar] [PubMed]
- Gratz, N.G. Emergency control of Aedes aegypti as a disease vector in urban areas. J. Am. Mosq. Control Assoc. 1991, 7, 353–365. [Google Scholar] [PubMed]
- Perez-Guerra, C.L.; Halasa, Y.A.; Rivera, R.; Peña, M.; Ramirez, V.; Cano, M.P.; Shepard, D.S. Economic cost of dengue public prevention activities in Puerto Rico. Dengue Bull. 2010, 34, 13–23. [Google Scholar]
- Dick, O.B.; San Martin, J.L.; Montoya, R.H.; del Diego, J.; Zambrano, B.; Dayan, G.H. The history of dengue outbreaks in the Americas. Am. J. Trop. Med. Hyg. 2012, 87, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Manrique-Saide, P.; Che-Mendoza, A.; Barrera-Perez, M.; Guillermo-May, G.; Herrera-Bojorquez, J.; Dzul-Manzanilla, F.; Gutierrez-Castro, C.; Lenhart, A.; Vazquez-Prokopec, G.; Sommerfeld, J.; et al. Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico. Emerg. Infect. Dis. 2015, 21, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Quijano, F.A.; Waldman, E.A. Factors associated with dengue mortality in Latin America and the Caribbean, 1995–2009: An ecological study. Am. J. Trop. Med. Hyg. 2012, 86, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Stramer, S.L.; Linnen, J.M.; Carrick, J.M.; Foster, G.A.; Krysztof, D.E.; Zou, S.M.; Dodd, R.Y.; Tirado-Marrero, L.M.; Hunsperger, E.; Santiago, G.A.; et al. Dengue viremia in blood donors identified by RNA and detection of dengue transfusion transmission during the 2007 dengue outbreak in Puerto Rico. Transfusion 2012, 52, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Dantes, H.G.; Farfan-Ale, J.A.; Sarti, E. Epidemiological trends of dengue disease in Mexico (2000–2011): A systematic literature search and analysis. PLoS Negl. Trop. Dis. 2014, 8, e3158. [Google Scholar] [CrossRef] [PubMed]
- De Salud, S. Panoramas Históricos Epidemiológicos de Dengue. Dirección General de Epidemiología: Secretaría de Salud, 2016. Available online: http://www.epidemiologia.salud.gob.mx/dgae/panodengue/historicos_dengue.html (accessed on 10 July 2017).
- Mendez-Lazaro, P.; Muller-Karger, F.E.; Otis, D.; McCarthy, M.J.; Pena-Orellana, M. Assessing climate variability effects on dengue incidence in San Juan, Puerto Rico. Int. J. Environ. Res. Public Health 2014, 11, 9409–9428. [Google Scholar] [CrossRef] [PubMed]
- Sharp, T.M.; Hunsperger, E.; Santiago, G.A.; Munoz-Jordan, J.L.; Santiago, L.M.; Rivera, A.; Rodríguez-Acosta, R.L.; Feliciano, L.G.; Margolis, H.S.; Tomashek, K.M. Virus-specific differences in rates of disease during the 2010 dengue epidemic in Puerto Rico. PLoS Negl. Trop. Dis. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, L.P.; Viler, D.; Souza-Santos, R.; Teixeira, M.G. Change in age pattern of persons with dengue, northeastern Brazil. Emerg. Infect. Dis. 2011, 17, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rivera, E.J.; Rigau-Perez, J.G. Dengue severity in the elderly in Puerto Rico. Rev. Panam. Salud Pública 2003, 13, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.G.; Kouri, G.; Bravo, J.; Valdes, L.; Vazquez, S.; Halstead, S.B. Effect of age on outcome of secondary dengue 2 infections. Int. J. Infect. Dis. 2002, 6, 118–124. [Google Scholar] [CrossRef]
- Garcia-Rejon, J.E.; Lorono-Pino, M.A.; Farfan-Ale, J.A.; Flores-Flores, L.F.; Lopez-Uribe, M.P.; Najera-Vazquez, M.D.; Nuñez-Ayala, G.; Beaty, B.J.; Eisen, L. Mosquito infestation and dengue virus infection in Aedes aegypti females in schools in Merida, Mexico. Am. J. Trop. Med. Hyg. 2011, 84, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Halasa, Y.A.; Shepard, D.S.; Zeng, W. Economic cost of dengue in Puerto Rico. Am. J. Trop. Med. Hyg. 2012, 86, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Hladish, T.J.; Pearson, C.A.B.; Chao, D.L.; Rojas, D.P.; Recchia, G.L.; Gomez-Dantes, H.; Halloran, M.E.; Pulliam, J.R.C.; Longini, I.M. Projected impact of dengue vaccination in Yucatan, Mexico. PLoS Negl. Trop. Dis. 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Deming, R.; Manrique-Saide, P.; Barreiro, A.M.; Cardena, E.U.K.; Che-Mendoza, A.; Jones, B.; Liebman, K.; Vizcaino, L.; Vazquez-Prokopec, G.; Lenhart, A. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites Vectors 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J. The global threat of emergent/re-emergent vector-borne diseases. In Vector Biology, Ecology and Control; Springer: Dordrecht, The Netherlands, 2010; pp. 39–62. [Google Scholar]
- Dobson, A. Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology 2009, 90, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, W.J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 2010, 213, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Racloz, V.; Ramsey, R.; Tong, S.L.; Hu, W.B. Surveillance of dengue fever virus: A review of epidemiological models and early warning systems. PLoS Negl. Trop. Dis. 2012, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, L.C.D.; Castilho, C.A.R.; Braga, C.; de Souza, W.V.; Regis, L.; Monteiro, A.M.V. Modeling the dynamic transmission of dengue fever: Investigating disease persistence. PLoS Negl. Trop. Dis. 2011, 5. [Google Scholar] [CrossRef] [PubMed]
- Parham, P.E.; Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 2010, 118, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Husin, N.A.; Salim, N.; Ahmad, A.R. Modeling of dengue outbreak prediction in Malaysia: A comparison of neural network and nonlinear regression model. In Proceedings of the International Symposium on Information Technology, Kuala Lumpur, Malaysia, 26–28 August 2008; Volumes 1–4, pp. 1796–1799. [Google Scholar]
- Wu, Y.; Lee, G.; Fu, X.J.; Hung, T. Detect climatic factors contributing to dengue outbreak based on wavelet, support vector machines and genetic algorithm. In Proceedings of the World Congress on Engineering 2008, London, UK, 2–4 July 2008; Volume 1, pp. 303–307. [Google Scholar]
- Rachata, N.; Charoenkwan, P.; Yooyativong, T.; Chamnongthai, K.; Lursinsap, C.; Higuchi, K. Automatic prediction system of dengue haemorrhagic-fever outbreak risk by using entropy and artificial neural network. In Proceedings of the International Symposium on Communications and Information Technologies, Vientiane, Laos, 21–23 October 2008. [Google Scholar]
- Aburas, H.M.; Cetiner, B.G.; Sari, M. Dengue confirmed-cases prediction: A neural network model. Expert Syst. Appl. 2010, 37, 4256–4260. [Google Scholar] [CrossRef]
- Hwang, S.; Clarite, D.S.; Elijorde, F.I.; Gerardo, B.D.; Byun, Y. A web-based analysis for dengue tracking and prediction using artificial neural network. In Advanced Science and Technology Letters; Science & Engineering Research Support Society: Sandy Bay, TAS, Australia, 2016; Volume 122, pp. 160–164. [Google Scholar]
- Nishanthi, P.; Perera, A.; Wijekoon, H. Prediction of dengue outbreaks in Sri Lanka using artificial neural networks. Int. J. Comput. Appl. 2014, 101, 1–5. [Google Scholar]
- Lee, K.Y.; Chung, N.; Hwang, S. Application of an artificial neural network (ANN) model for predicting mosquito abundances in urban areas. Ecol. Inform. 2016, 36, 172–180. [Google Scholar] [CrossRef]
- Focks, D.A.; Barrera, R. (Eds.) Dengue Transmission Dynamics: Assessment and Implications for Control. Special Programme for Research and Training in Tropical Diseases; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Halstead, S.B. Pathogenesis of dengue—Challenges to molecular biology. Science 1988, 239, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P. Yellow fever and dengue—The interactions of virus, vector and host in the re-emergence of epidemic disease. Semin. Virol. 1994, 5, 133–145. [Google Scholar] [CrossRef]
- Almeida, M.C.D.; Caiaffa, W.T.; Assuncao, R.M.; Proietti, F.A. Spatial vulnerability to dengue in a Brazilian urban area during a 7-year surveillance. J. Urban Health Bull. N. Y. Acad. Med. 2007, 84, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J.; Hall, M.H.; Hall, C.A.S.; Heisler, G.M.; Stehman, S.V.; Anselmi-Molina, C. The relationship between land cover and the urban heat island in northeastern Puerto Rico. Int. J. Climatol. 2011, 31, 1222–1239. [Google Scholar] [CrossRef]
- Herrera Silveira, J.A. Spatial heterogeneity and seasonal patterns in a tropical coastal lagoon. J. Coast. Res. 1994, 10, 738–746. [Google Scholar]
- Gonzalez, F.U.T.; Ilveira, J.; Aguirre-Macedo, M.L. Water quality variability and eutrophic trends in karstic tropical coastal lagoons of the Yucatan Peninsula. Estuar. Coast. Shelf Sci. 2008, 76, 418–430. [Google Scholar] [CrossRef]
- Colon-Gonzalez, F.J.; Lake, I.R.; Bentham, G. Climate variability and dengue fever in warm and humid Mexico. Am. J. Trop. Med. Hyg. 2011, 84, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Thai, K.T.D.; Nishiura, H.; Hoang, P.L.; Tran, N.T.T.; Phan, G.T.; Le, H.Q.; Tran, B.Q.; van Nguyen, N.; de Vries, P.J. Age-specificity of clinical dengue during primary and secondary infections. PLoS Negl. Trop. Dis. 2011, 5, e1180. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.N.; Balmaseda, A.; Perez, L.; Tellez, Y.; Saborio, S.I.; Mercado, J.C.; Videa, E.; Rodriguez, Y.; Pérez, M.A.; Cuadra, R.; et al. Differences in dengue severity in infants, children, and adults in a 3-year hospital-based study in Nicaragua. Am. J. Trop. Med. Hyg. 2005, 73, 1063–1070. [Google Scholar] [PubMed]
- Rigau-Perez, J.G.; Vorndam, A.V.; Clark, G.G. The dengue and dengue hemorrhagic fever epidemic in Puerto Rico, 1994–1995. Am. J. Trop. Med. Hyg. 2001, 64, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.; Chen, A.S.; Keedwell, E.; Djordjevic, S.; Savic, D. Urban flood prediction in real-time from weather radar and rainfall data using artificial neural networks. In Proceedings of the Weather Radar and Hydrology International Symposium, Exeter, UK, 18–21 April 2011. [Google Scholar]
- Duncan, A.; Chen, A.S.; Keedwell, E.; Djordjevic, S.; Savic, D. RAPIDS: Early warning system for urban flooding and water quality hazards. In Proceedings of the Machine Learning in Water Systems Symposium: Part of AISB Annual Convention 2013, Exeter, UK, 3–5 April 2013. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Duncan, A.P. The Analysis and Application of Artificial Neural Networks for Early Warning Systems in Hydrology and the Environment. Ph.D. Thesis, University of Exeter, Exeter, UK, 2014. [Google Scholar]
- Cawley, G.C.; Talbot, N.L.C. Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers. Pattern Recognit. 2003, 36, 2585–2592. [Google Scholar] [CrossRef]
- Stidson, R.T.; Gray, C.A.; McPhail, C.D. Development and use of modelling techniques for real-time bathing water quality predictions. Water Environ. J. 2012, 26, 7–18. [Google Scholar] [CrossRef]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Pearson Education Inc.: New Delhi, India, 1999. [Google Scholar]
- Duncan, A.; Tyrrell, D.; Smart, N.; Keedwell, E.; Djordjevic, S.; Savic, D. Comparison of machine learning classifier models for bathing water quality exceedances in UK. In Proceedings of the 35th IAHR World Congress, Chengdu, China, 8–13 September 2013. [Google Scholar]
- Teklehaimanot, H.D.; Schwartz, J.; Teklehaimanot, A.; Lipsitch, M. Alert threshold algorithms and malaria epidemic detection. Emerg. Infect. Dis. 2004, 10, 1220–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Althouse, B.M.; Yng Ng, Y.; Cummings, D.A. Prediction of dengue incidence using search query surveillance. PLoS Negl. Trp. Dis. 2011, 5, e1258. [Google Scholar] [CrossRef] [PubMed]
- Ocampo, C.B.; Mina, N.J.; Carabali, M.; Alexander, N.; Osorio, L. Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia. Acta Trop. 2014, 132, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Brady, O.J.; Johansson, M.A.; Guerra, C.A.; Bhatt, S.; Golding, N.; Pigott, D.M.; Delatte, H.; Grech, M.G.; Leisnham, P.T.; de Freitas, R.M.; et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites Vectors 2013, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.A.; Dominici, F.; Glass, G.E. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl. Trop. Dis. 2009, 3. [Google Scholar] [CrossRef] [PubMed]
- Colon-Gonzalez, F.J.; Fezzi, C.; Lake, I.R.; Hunter, P.R. The effects of weather and climate change on dengue. PLoS Negl. Trop. Dis. 2013, 7, e2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten Bosch, Q.A.; Singh, B.K.; Hassan, M.R.A.; Chadee, D.D.; Michael, E. The role of serotype interactions and seasonality in dengue model selection and control: Insights from a pattern matching approach. PLoS Negl. Trop. Dis. 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Johansson, M.A. The incubation periods of dengue viruses. PLoS ONE 2012, 7, e50972. [Google Scholar] [CrossRef] [PubMed]
- Eisen, L.; Garcia-Rejon, J.E.; Gomez-Carro, S.; Vazquez, M.D.N.; Keefe, T.J.; Beaty, B.J.; Loroño-Pino, M.A. Temporal correlations between mosquito-based dengue virus surveillance measures or indoor mosquito abundance and dengue case numbers in Merida City, Mexico. J. Med. Entomol. 2014, 51, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Guabiraba, R.; Ryffel, B. Dengue virus infection: Current concepts in immune mechanisms and lessons from murine models. Immunology 2014, 141, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Liu-Helmersson, J.; Stenlund, H.; Wilder-Smith, A.; Rocklov, J. Vectorial capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLoS ONE 2014, 9, e89783. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J.; Clark, G.G. Dengue/dengue hemorrhagic fever—The emergences of a global health problem. Emerg. Infect. Dis. 1995, 1, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Rothman, A.L. Dengue: Defining protective versus pathologic immunity. J. Clin. Investig. 2004, 113, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Paaijmans, K.P.; Cator, L.J.; Thomas, M.B. Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity. PLoS ONE 2013, 8, e55777. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.B.; Clements, A.; Williams, G.; Tong, S.L. Dengue fever and El Niño/southern oscillation in Queensland, Australia: A time series predictive model. Occup. Environ. Med. 2010, 67, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.A.; Cummings, D.A.T.; Glass, G.E. Multiyear climate variability and dengue-El Niño southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: A longitudinal data analysis. PLoS Med. 2009, 6, e1000168. [Google Scholar] [CrossRef] [PubMed]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Ramadona, A.L.; Lazuardi, L.; Hii, Y.L.; Holmner, A.; Kusnanto, H.; Rocklov, J. Prediction of dengue outbreaks based on disease surveillance and meteorological data. PLoS ONE 2016, 11, e0152688. [Google Scholar] [CrossRef] [PubMed]
- Amancio, F.F.; Ferraz, M.L.; Almeida, M.C.D.; Pessanha, J.E.M.; Iani, F.C.M.; Fraga, G.L.; Lambertucci, J.R.; Carneiro, M. Dengue virus serotype 4 in a highly susceptible population in southeast Brazil. J. Infect. Public Health 2014, 7, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Briseno-Garcia, B.; Gomez-Dantes, H.; ArgottRamirez, E.; Montesano, R.; Vazquez-Martinez, A.L.; Ibanez-Bernal, S.; Madrigal-Ayala, G.; Ruíz-Matus, C.; Flisser, A.; Tapia-Conyer, R. Potential risk for dengue hemorrhagic fever: The isolation of serotype dengue-3 in Mexico. Emerg. Infect. Dis. 1996, 2, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Pichardo, M.; Rosales-Jiménez, C.; Núñez-León, A.; Rivera-Osorio, P.; Cruz-Hernández, S.D.L.; Ruiz-López, A.; González–Mateos, S.; López–Martínez, I.; Rodríguez–Martínez, J.C.; López–Gatell, H.; et al. Serotipos de dengue en México durante 2009 y 2010. Bol. Médico Hosp. Infant. Mex. 2011, 68, 103–110. [Google Scholar]
- Gomez-Carro, S.; Méndez-Domínguez, N.; Mendez-Galván, J. Dengue seropositivity in a randomly selected sample from Yucatan analyzed in the context of dengue cases reported between 1996 and 2006. J. Epidemiol. Res. 2016, 3, 23. [Google Scholar] [CrossRef]
- Garcia-Rejon, J.; Lorono-Pino, M.A.; Farfan-Ale, J.A.; Flores-Flores, L.; Rosado-Paredes, E.D.; Rivero-Cardenas, N.; Najera-Vazquez, R.; Gomez-Carro, S.; Lira-Zumbardo, V.; Gonzalez-Martinez, P.; et al. Dengue virus-infected Aedes aegypti in the home environment. Am. J. Trop. Med. Hyg. 2008, 79, 940–950. [Google Scholar] [PubMed]
- Badurdeen, S.; Valladares, D.B.; Farrar, J.; Gozzer, E.; Kroeger, A.; Kuswara, N.; Ranzinger, S.R.; Tinh, H.T.; Leite, P.; Mahendradhata, Y.; et al. Sharing experiences: towards an evidence-based model of dengue surveillance and outbreak response in Latin America and Asia. BMC Public Health 2013, 13. [Google Scholar] [CrossRef] [PubMed]
- Runge-Ranzinger, S.; McCall, P.J.; Kroeger, A.; Horstick, O. Dengue disease surveillance: An updated systematic literature review. Trop. Med. Int. Health 2014, 19, 1116–1160. [Google Scholar] [CrossRef] [PubMed]
- Martinez Torres, E. Dengue. Estud. Avançados 2008, 22, 33–52. [Google Scholar] [CrossRef]
- Guzman, M.G.; Brathwaite, O.; Enria, D.; Hunsperger, E.; Kouri, G.; Montoya, R.; San Martín, J.L. Dengue in the American Region: An update. J. Clin. Virol. 2013, 27, 1–13. [Google Scholar] [CrossRef]
- Guzman, M.G.; Kouri, G. Dengue: An update. Lancet Infect. Dis. 2002, 2, 33–42. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laureano-Rosario, A.E.; Duncan, A.P.; Mendez-Lazaro, P.A.; Garcia-Rejon, J.E.; Gomez-Carro, S.; Farfan-Ale, J.; Savic, D.A.; Muller-Karger, F.E. Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico. Trop. Med. Infect. Dis. 2018, 3, 5. https://doi.org/10.3390/tropicalmed3010005
Laureano-Rosario AE, Duncan AP, Mendez-Lazaro PA, Garcia-Rejon JE, Gomez-Carro S, Farfan-Ale J, Savic DA, Muller-Karger FE. Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico. Tropical Medicine and Infectious Disease. 2018; 3(1):5. https://doi.org/10.3390/tropicalmed3010005
Chicago/Turabian StyleLaureano-Rosario, Abdiel E., Andrew P. Duncan, Pablo A. Mendez-Lazaro, Julian E. Garcia-Rejon, Salvador Gomez-Carro, Jose Farfan-Ale, Dragan A. Savic, and Frank E. Muller-Karger. 2018. "Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico" Tropical Medicine and Infectious Disease 3, no. 1: 5. https://doi.org/10.3390/tropicalmed3010005
APA StyleLaureano-Rosario, A. E., Duncan, A. P., Mendez-Lazaro, P. A., Garcia-Rejon, J. E., Gomez-Carro, S., Farfan-Ale, J., Savic, D. A., & Muller-Karger, F. E. (2018). Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico. Tropical Medicine and Infectious Disease, 3(1), 5. https://doi.org/10.3390/tropicalmed3010005