Using Google Trends to Examine the Spatio-Temporal Incidence and Behavioral Patterns of Dengue Disease: A Case Study in Metropolitan Manila, Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Population Demographics
2.2. Data Sources
2.3. Data Processing and Analysis
3. Results
3.1. Association of Google Dengue Trends (GDT) and Dengue Incidence (DI)
3.2. Spatial Pattern of GDT and Related Queries for Dengue
3.3. Rising and Breakout Search Queries
4. Discussion
4.1. Pattern of GDT and Dengue Incidence
4.2. Search Query Behavior towards Dengue
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Western Pacific Region. Available online: http://www.wpro.who.int/mediacentre/factsheets/fs_09032012_Dengue/en/ (accessed on 15 June 2012).
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khampapongpane, B.; Lewis, H.C.; Ketmayoon, P.; Phonekeo, D.; Virasack, S.; Khamsing, A.; Phengxay, M.; Sisouk, T.; Vongphrachanh, P.; Bryant, J.E. National dengue surveillance in the Lao People’s Democratic Republic, 2006–2012: Epidemiological and laboratory findings. Western Pac. Surveill. Response J. 2014, 5, 7–13. [Google Scholar] [PubMed]
- Limkittikul, K.; Brett, J.; L’azou, M. Epidemiological trends of dengue disease in Thailand (2000–2011): A systematic literature review. PLoS Negl. Trop. Dis. 2014, 8, e3241. [Google Scholar] [CrossRef] [PubMed]
- Pulmanausahakul, R.; Roytrakul, S.; Auewarakul, P.; Smith, D.R. Chikungunya in Southeast Asia: understanding the emergence and finding solutions. Int. J. Infect. Dis. 2011, 15, e671–e676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasayama, M.; Benjathummarak, S.; Kawashita, N.; Rukmanee, P.; Sangmukdanun, S.; Masrinoul, P.; Pitaksajjakule, P.; Puiprom, O.; Wuthisen, P.; Kurosu, T.; et al. Chikungunya virus was isolated in Thailand, 2010. Virus Genes 2014, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Vongpunsawad, S.; Intharasongkroh, D.; Thongmee, T.; Poovorawan, Y. Seroprevalence of antibodies to dengue and chikungunya viruses in Thailand. PLoS ONE 2017, 12, e0180560. [Google Scholar] [CrossRef] [PubMed]
- Vythilingam, I.; Sam, J.I.; Chan, Y.F.; Khaw, L.T.; Sulaiman, W.Y. New paradigms for virus detection, surveillance and control of Zika virus vectors in the settings of Southeast Asia. Front. Microbiol. 2016, 7, 1452. [Google Scholar] [CrossRef] [PubMed]
- Edillo, F.E.; Halasa, Y.A.; Largo, F.M.; Erasmo, J.N.; Amoin, N.B.; Alera, M.T.; Yoon, I.K.; Alcantara, A.C.; Shepard, D.S. Economic cost and burden of dengue in the Philippines. Am. J. Trop. Med. Hyg. 2015, 92, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, N. Current DF/DHF Prevention and Control Programme in the Philippines. Available online: http://apps.who.int/iris/bitstream/handle/10665/148536/dbv21p41.pdf;jsessionid=F48006C0929F452BF857F7F60907FAD1?sequence=1 (accessed on 10 December 2016).
- Bravo, L.; Roque, V.G.; Brett, J.; Dizon, R.; L’Azou, M. Epidemiology of dengue disease in the Philippines (2000–2011): A systematic literature review. PLoS Negl. Trop. Dis. 2014, 8, e3027. [Google Scholar] [CrossRef] [PubMed]
- Yih, W.K.; Teates, K.S.; Abrams, A.; Kleinman, K.; Kulldorff, M.; Pinner, R.; Harmon, R.; Wang, S.; Platt, R. Telephone triage service data for detection of influenza-like illness. PLoS ONE 2009, 4, e5260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, D.; Metzger, K.; Heffernan, R.; Balter, S.; Weiss, D.; Mostashari, F. Monitoring over-the-counter medication sales for early detection of disease outbreaks—New York City. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 41–46. [Google Scholar]
- Besculides, M.; Heffernan, R.; Mostashari, F.; Weiss, D. Evaluation of school absenteeism data for early outbreak detection, New York City. BMC Public Health 2005, 5, 105. [Google Scholar] [CrossRef] [PubMed]
- Eysenbach, G. Infodemiology: Tracking flu-related searches on the web for syndromic surveillance. AMIA Annu. Symp. Proc. 2006, 2006, 244–248. [Google Scholar]
- Chan, E.H.; Sahai, V.; Conrad, C.; Brownstein, J.S. Using web search query data to monitor dengue epidemics: A new model for neglected tropical disease surveillance. PLoS Negl. Trop. Dis. 2011, 5, e1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Althouse, B.M.; Ng, Y.Y.; Cummings, D.A. Prediction of dengue incidence using search query surveillance. PLoS Negl. Trop. Dis. 2011, 5, e125. [Google Scholar] [CrossRef] [PubMed]
- Chunara, R.; Andrews, J.R.; Brownstein, J.S. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am. J. Trop. Med. Hyg. 2012, 86, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Madoff, L.C.; Fisman, D.N.; Kass-Hout, T. A new approach to monitoring dengue activity. PLoS Negl. Trop. Dis. 2011, 5, e1215. [Google Scholar] [CrossRef] [PubMed]
- Hagg, E.; Dahinten, V.S.; Currie, L.M. The emerging use of social media for health-related purposes in low and middle-income countries: A scoping review. Int. J. Med. Inform. 2018, 115, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The use of google trends in health care research: A systematic review. PLoS ONE 2014, 9, e109583. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting influenza epidemics using search engine query data. Nature 2009, 457, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.B.; Karaca-Mandic, P.; Weaver, L.; Seabury, S.A. Predicting new diagnoses of HIV infection using internet search engine data. Clin. Infect. Dis. 2013, 56, 1352–1353. [Google Scholar] [CrossRef] [PubMed]
- Samaras, L.; Garcia-Barriocanal, E.; Sicilia, M.A. Syndromic surveillance models using Web data: The case of scarlet fever in the UK. Inform. Health Soc. Care 2012, 37, 106–124. [Google Scholar] [CrossRef] [PubMed]
- Ocampo, A.J.; Chunara, R.; Brownstein, J.S. Using search queries for malaria surveillance. Thailand Malar. J. 2013, 12, 390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alicino, C.; Bragazzi, N.L.; Faccio, V.; Amicizia, D.; Panatto, D.; Gasparini, R.; Icardi, G.; Orsi, A. Assessing Ebola-related web search behaviour: insights and implications from an analytical study of Google Trends-based query volumes. Infect. Dis. Poverty 2015, 4, 54. [Google Scholar] [CrossRef] [PubMed]
- Gluskin, R.T.; Johansson, M.A.; Santillana, M.; Brownstein, J.S. Evaluation of Internet-based dengue query data: Google Dengue Trends. PLoS Negl. Trop. Dis. 2014, 8, e2713. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.A.; Castro, J.S.; Reintjes, R.; Torres, J.R. Google dengue trends: An indicator of epidemic behavior: The Venezuelan Case. Int. J. Med. Inform. 2017, 104, 26–30. [Google Scholar] [CrossRef] [PubMed]
- McGough, S.F.; Brownstein, J.S.; Hawkins, J.B.; Santillana, M. Forecasting Zika incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data. PLoS Negl. Trop. Dis. 2017, 11, e0005295. [Google Scholar] [CrossRef] [PubMed]
- Fung, I.C.; Fu, K.W.; Ying, Y.; Schaible, B.; Hao, Y.; Chan, C.H.; Tse, Z.T.H. Chinese social media reaction to the MERS-CoV and avian influenza A(H7N9) outbreaks. Infect. Dis. Poverty 2013, 2, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristoufek, L. Can Google Trends search queries contribute to risk diversification? Sci. Rep. 2013, 3, 2713. [Google Scholar] [CrossRef] [PubMed]
- El-Metwally, A.A. Google Search Trend of dengue fever in developing countries in 2013–2014: An internet-based analysis. J. Health Inform. Dev. Ctries 2015, 9, 1–13. [Google Scholar]
- Philippine Statistics Authority. Population and Housing. Available online: http://psa.gov.ph/ (accessed on 12 June 2016).
- Philippine GIS Data Clearinghouse. National Capital Region. Available online: www.philgis.org (accessed on 8 November 2015).
- Pananos, A.D.; Bury, T.M.; Wang, C.; Schonfeld, J.; Mohanty, S.P.; Nyhan, B.; Salathé, M.; Bauch, C.T. Critical dynamics in population vaccinating behavior. Proc. Natl. Acad. Sci. USA 2017, 114, 13762–13767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risteski, D.; Davcev, D. Can we use daily Internet search query data to improve predicting power of EGARCH models for financial time series volatility. In Proceedings of the International Conference on Computer Science and Information Systems (ICSIS’2014), Dubai, UAE, 17–18 October 2014. [Google Scholar]
- Development Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 19 August 2018).
- Environmental Systems Research Institute (ESRI). ArcGIS Desktop Help 10.2 Geostatistical Analyst. Available online: http://resources.arcgis.com/en/help/main/10.2/index.html (accessed on 30 August 2018).
- Green, C.D. Images of the disciplining of psychology, 1890–1940. Qual. Res. Psychol. 2018, 15, 179–187. [Google Scholar] [CrossRef]
- Sanz, C.; Zamberlan, F.; Erowid, E.; Erowid, F.; Tagliazucchi, E. The experience elicited by hallucinogens presents the highest similarity to dreaming within a large database of psychoactive substance reports. Front. Neurosci. 2018, 12, 1–7. [Google Scholar]
- Department of Health (n.d.). Your Health during Typhoons or Heavy Rains. Available online: http://www.doh.gov.ph/node/7266 (accessed on 27 May 2018).
- Crisostomo, S. DOH Confirms Chikungunya Outbreak in 10 Municipalities. Available online: https://www.philstar.com/nation/2013/07/13/964738/doh-confirms-chikungunya-outbreak-10-municipalities (accessed on 20 May 2018).
- Ripberger, J.T. Capturing curiosity: Using internet search trends to measure public attentiveness. Policy Stud. J. 2011, 39, 239–259. [Google Scholar] [CrossRef]
- Sutton, C.D.; Carvalho, B. What’s trending now? An analysis of trends in internet searches for labor epidurals. Int. J. Obstet. Anesth. 2017, 30, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Google (n.d.). Find Related Searches. Available online: https://support.google.com/trends/answer/4355000?hl=en (accessed on 10 April 2018).
- Serato, A.; Michael, V. Afflicted with Dengue. Available online: https://www.pep.ph/news/39982/michael-v-afflicted-with-dengue (accessed on 12 May 2018).
- Carneiro, H.A.; Mylonakis, E. Google trends: A web-based tool for real-time surveillance of disease outbreaks. Clin. Infect. Dis. 2009, 49, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, T.; Yang, Z.; Huang, X.; Milinovich, G.J.; Lu, Y.; Tong, S. Using Baidu search index to predict Dengue outbreak in China. Sci. Rep. 2016, 6, 38040. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, T.M.; Viacrusis, K.M.; Hernandez, L.F.; Ho, H.T.; Amalin, D.M.; Watanabe, K. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines. BMC Infect. Dis. 2018, 18, 183. [Google Scholar] [CrossRef] [PubMed]
- Lazer, D.; Kennedy, R.; King, G.; Vespignani, A. The parable of Google Flu: Traps in big data analysis. Science 2014, 343, 1203–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, P.; Romano, R.; Zhang, T.; Hecht, G.; Zigmond, D.; Stefansen, C. Google disease trends: An update. Nature 2013, 457, 1012–1014. [Google Scholar]
- Milinovich, G.J.; Williams, G.M.; Clements, A.C.; Hu, W. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect. Dis. 2014, 14, 160–168. [Google Scholar] [CrossRef]
- Butler, D. When Google got flu wrong. Nature 2013, 494, 155. [Google Scholar] [CrossRef] [PubMed]
- Hussain-Alkhateeb, L.; Kroeger, A.; Olliaro, P.; Rocklöv, J.; Sewe, M.O.; Tejeda, G.; Bowman, L. Early warning and response system (EWARS) for dengue outbreaks: Recent advancements towards widespread applications in critical settings. PLoS ONE 2018, 13, e0196811. [Google Scholar] [CrossRef] [PubMed]
- Atasoy, H. The effects of broadband internet expansion on labor market outcomes. ILR Rev. 2013, 66, 315–345. [Google Scholar] [CrossRef]
- Xiaoming, H.; Kay, C. Factors affecting internet development: An Asian survey. First Monday 2004, 9, 2. [Google Scholar] [CrossRef]
- We Are Social. Digital in 2018 in Southeast Asia. Available online: https://www.slideshare.net/wearesocial/digital-in-2018-in-southeast-asia-part-2-southeast-86866464 (accessed on 7 June 2018).
- Corley, E.A.; Scheufele, D.A. Outreach gone wrong? When we talk nano to the public, we are leaving behind key audiences. Scientist 2010, 24, 22. [Google Scholar]
- Tichenor, P.J.; Donohue, G.A.; Olien, C.N. Mass media flow and differential growth in knowledge. Public Opin. Q. 1970, 34, 159–170. [Google Scholar] [CrossRef]
- Brigo, F.; Igwe, S.C.; Ausserer, H.; Nardone, R.; Tezzon, F.; Bongiovanni, L.G.; Trinka, E. Why do people Google epilepsy? An infodemiological study of online behavior for epilepsy-related search terms. Epilepsy Behav. 2014, 31, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Seifter, A.; Schwarzwalder, A.; Geis, K.; Aucott, J. The utility of ‘Google Trends’ for epidemiological research: Lyme disease as an example. Geospat. Health 2010, 4, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Muse, K.; McManus, F.; Leung, C.; Meghreblian, B.; Williams, J.M.G. Cyberchondriasis: Fact or fiction? A preliminary examination of the relationship between health anxiety and searching for health information on the Internet. J. Anxiety Disord. 2012, 26, 189–196. [Google Scholar] [CrossRef] [PubMed]
- McCombs, M.E.; Shaw, D.L. The agenda-setting function of mass media. Public Opin. Q. 1972, 36, 176–187. [Google Scholar] [CrossRef]
- Endozo, P.; Aning, J.; Aurelio, J.M.; Yap, D. Dengue Cases up in Metro, 3 Regions. Available online: http://newsinfo.inquirer.net/43981/dengue-cases-up-in-metro-3-regions (accessed on 5 September 2018).
Dengue Values | Google Dengue Trend Values | |||
---|---|---|---|---|
Google Dengue Trend | Adjusted Google Dengue Trend | |||
r | lag week (R2) | r | lag week (R2) | |
Dengue Incidence | 0.405 | 1 (0.166) | 0.662 | 1 (0.465) |
Log (Dengue Incidence) | 0.394 | 1 (0.162) | 0.597 | 2 (0.385) |
Scaled Dengue Incidence | 0.747 | 1 (0.570) | 0.529 | 2 (0.305) |
Log (Scaled Dengue Incidence) | 0.576 | 1 (0.342) | 0.470 | 2 (0.245) |
Category. | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | Search Words |
---|---|---|---|---|---|---|---|
Dengue | 100 | 70 | 52 | 50 | 29 | 37 | what is dengue, ano ang dengue, causes of dengue, dengue virus, dengue hemorrhagic fever, dengue fever |
Signs and Symptoms | 84 | 100 | 100 | 100 | 100 | 100 | symptoms, dengue symptoms, dengue symptoms Philippines, symptoms of dengue, dengue fever symptoms, dengue signs, signs of dengue, sign of dengue, signs of dengue fever, dengue signs and symptoms, signs and symptoms of dengue, sign and symptoms of dengue, sintomas ng dengue, symptoms of dengue fever, dengue symptoms in children, dengue rashes, dengue rash, platelet count, platelet count dengue, pathophysiology of dengue |
Treatment and Prevention | 7 | 14 | 16 | 10 | 12 | dengue cure, dengue treatment, dengue fever treatment, how to prevent dengue, dengue prevention, ncp for dengue, dengue test, dengue ns1, tawa tawa dengue | |
Mosquito | 5 | 13 | 7 | 4 | 4 | dengue mosquito, mosquito | |
Other Diseases | 5 | 6 | 5 | leptospirosis, typhoid fever, measles, chikungunya |
Year | Search Query | % |
---|---|---|
2009 | symptoms of dengue | 90% |
2010 | dengue signs and symptoms | 300% |
signs of dengue | 170% | |
signs and symptoms of dengue | 170% | |
dengue treatment | 60% | |
2011 | dengue fever syndrome | B |
symtoms of dengue | B | |
mga sintomas ng dengue | B | |
symbianize | B | |
dengue symptoms in adults | B | |
dengue cases in the philippines | B | |
dengue symptoms in children | 500% | |
ncp for dengue | 250% | |
dengue test | 180% | |
mosquito | 170% | |
dengue rashes | 160% | |
dengue mosquito | 110% | |
symptoms | 100% | |
causes of dengue | 100% | |
sintomas ng dengue | 70% | |
dengue prevention | 70% | |
what is dengue | 60% | |
symptoms of dengue | 50% | |
signs of dengue | 40% | |
2012 | signs of pregnancy | B |
leptospirosis | 900% | |
normal platelet count | 400% | |
dengue rash | 200% | |
cause of dengue | 150% | |
dengue rashes | 110% | |
typhoid fever | 100% | |
dengue symptoms philippines | 100% | |
mga sintomas ng dengue | 90% | |
dengue cure | 80% | |
dengue prevention | 70% | |
dengue fever treatment | 50% | |
symptoms of dengue | 50% | |
symptoms of dengue in children | 50% | |
dengue signs and symptoms | 40% | |
2013 | michael v dengue | B |
chikungunya | 1550% | |
chikungunya symptoms | 700% | |
ano ang sintomas ng dengue | 130% | |
signs and symptoms of dengue | 120% | |
measles | 120% | |
signs of dengue fever | 110% | |
dengue fever stages | 100% | |
dengue ns1 | 90% | |
symtoms of dengue | 70% | |
sintomas ng dengue | 60% | |
sign of dengue | 60% | |
signs of dengue | 50% | |
2014 | cause of dengue | 350% |
symptoms of pregnancy | 120% | |
dengue ns1 | 60% | |
what is dengue | 50% | |
dengue in the philippines | 40% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, H.T.; Carvajal, T.M.; Bautista, J.R.; Capistrano, J.D.R.; Viacrusis, K.M.; Hernandez, L.F.T.; Watanabe, K. Using Google Trends to Examine the Spatio-Temporal Incidence and Behavioral Patterns of Dengue Disease: A Case Study in Metropolitan Manila, Philippines. Trop. Med. Infect. Dis. 2018, 3, 118. https://doi.org/10.3390/tropicalmed3040118
Ho HT, Carvajal TM, Bautista JR, Capistrano JDR, Viacrusis KM, Hernandez LFT, Watanabe K. Using Google Trends to Examine the Spatio-Temporal Incidence and Behavioral Patterns of Dengue Disease: A Case Study in Metropolitan Manila, Philippines. Tropical Medicine and Infectious Disease. 2018; 3(4):118. https://doi.org/10.3390/tropicalmed3040118
Chicago/Turabian StyleHo, Howell T., Thaddeus M. Carvajal, John Robert Bautista, Jayson Dale R. Capistrano, Katherine M. Viacrusis, Lara Fides T. Hernandez, and Kozo Watanabe. 2018. "Using Google Trends to Examine the Spatio-Temporal Incidence and Behavioral Patterns of Dengue Disease: A Case Study in Metropolitan Manila, Philippines" Tropical Medicine and Infectious Disease 3, no. 4: 118. https://doi.org/10.3390/tropicalmed3040118
APA StyleHo, H. T., Carvajal, T. M., Bautista, J. R., Capistrano, J. D. R., Viacrusis, K. M., Hernandez, L. F. T., & Watanabe, K. (2018). Using Google Trends to Examine the Spatio-Temporal Incidence and Behavioral Patterns of Dengue Disease: A Case Study in Metropolitan Manila, Philippines. Tropical Medicine and Infectious Disease, 3(4), 118. https://doi.org/10.3390/tropicalmed3040118