Disease Ecology of Rickettsial Species: A Data Science Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Analysis
3. Results
3.1. Outbreaks of Human Rickettsial Diseases
3.2. Emerging Rickettsial Diseases
3.3. Rickettsial Diversity in Space and Among Reservoirs, Vectors and Humans
3.4. Network Analysis of Rickettsial Species Among Reservoirs, Vectors and Humans
3.4.1. Carrier Modularity
3.4.2. Carrier Centrality
3.4.3. Influence of Carriers’ Phylogeny on the Structure of Unipartite Networks
4. Discussion
4.1. New Approaches for the Study of Rickettsial Diseases
4.2. Factors of Emergence
4.2.1. Vector and Reservoirs Carriers
4.2.2. Domestic and Commensal Mammal Carriers
4.2.3. Climate Change
4.2.4. Land Use Change
4.3. Implications for Public Health
4.4. Current Limitations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perlman, S.J.; Hunter, M.S.; Zchori-Fein, E. The emerging diversity of Rickettsia. Proc. Biol. Sci. 2006, 273, 2097–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, P.E.; Raoult, D. Current knowledge on phylogeny and taxonomy of Rickettsia spp. Ann. N. Y. Acad. Sci. 2009, 1166, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, S.; Phuklia, W.; Turner, G.D.H.; Rattanavong, S.; Chansamouth, V.; Dumler, S.J.; Ferguson, D.J.; Paris, D.H.; Newton, P.N. Neorickettsia sennetsu as a Neglected Cause of Fever in South-East Asia. PLoS Negl. Trop. Dis. 2015, 9, e0003908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eremeeva, M.E.; Dasch, G.A. Challenges posed by tick-borne rickettsiae: Eco-epidemiology and public health implications. Front. Public Health 2015, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Low, V.L.; Tan, T.K.; Khoo, J.J.; Lima, F.S.; Sazaly, A.B. An overview of rickettsiae in Southeast Asia: Vector-animal-human interface. Acta Trop. 2019, 202, 105282. [Google Scholar] [CrossRef] [PubMed]
- Satjanadumrong, J.; Robinson, M.T.; Hughes, T.; Blacksell, S.D. Distribution and ecological drivers of spotted fever group Rickettsia in Asia. Ecohealth 2019, 16, 611–626. [Google Scholar] [CrossRef] [Green Version]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.-E.; et al. Update on Tick-Borne Rickettsioses around the World: A Geographic Approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [Green Version]
- Tomassone, L.; Portillo, A.; Nováková, M.; De Sousa, R.; Oteo, J.A. Neglected aspects of tick-borne rickettsioses. Parasites Vectors 2018, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Bonell, A.; Lubell, Y.; Newton, P.N.; Crump, J.A.; Paris, D.H. Estimating the burden of scrub typhus: A systematic review. PLoS Negl. Trop. Dis. 2017, 11, e0005838. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Walker, D.H.; Jupiter, D.; Melby, P.C.; Arcari, C.M. A review of the global epidemiology of scrub typhus. PLoS Negl. Trop. Dis. 2017, 11, e0006062. [Google Scholar] [CrossRef] [Green Version]
- Luce-Fedrow, A.; Lehman, M.L.; Kelly, D.J.; Mullins, K.; Maina, A.N.; Stewart, R.L.; Ge, H.; John, H.S.; Jiang, J.; Richards, A.L. A Review of Scrub Typhus (Orientia tsutsugamushi and Related Organisms): Then, Now, and Tomorrow. Trop. Med. Infect. Dis. 2018, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Elliott, I.; Pearson, I.; Dahal, P.; Thomas, N.V.; Roberts, T.; Newton, P.N. Scrub typhus ecology: A systematic review of Orientia in vectors and hosts. Parasit Vectors 2019, 12, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eremeeva, M.E. Molecular epidemiology of rickettsial diseases in North America. Ticks Tick Borne Dis. 2012, 3, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-C.; Qian, Q.; Magalhaes, R.S.; Han, Z.-H.; Hu, W.; Haque, U.; Weppelmann, T.A.; Wang, Y.; Liu, Y.-X.; Li, X.-L.; et al. Spatiotemporal Dynamics of Scrub Typhus Transmission in Mainland China, 2006–2014. PLoS Negl. Trop. Dis. 2016, 10, e0004875. [Google Scholar] [CrossRef] [Green Version]
- Watt, G.; Parola, P. Scrub typhus and tropical rickettsioses. Curr. Opin. Infect. Dis. 2003, 16, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Morand, S.; Walther, B. Individualistic values are related to an increase in the outbreaks of infectious diseases and zoonotic diseases. Sci. Rep. 2018, 8, 3866. [Google Scholar] [CrossRef]
- Dallas, T.A.; Carlson, C.J.; Poisot, T. Testing predictability of disease outbreaks with a simple model of pathogen biogeography. R. Soc. Open. Sci. 2019, 6, 190883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G.; Patel, N.; Levy, M.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Swei, A.; Couper, L.I.; Coffey, L.L.; Kapan, D.; Bennett, S. Patterns, drivers, and challenges of vector-borne disease emergence. Vector Borne Zoonotic Dis. 2020, 20, 159–170. [Google Scholar] [CrossRef]
- Wardeh, M.; Risley, C.; McIntyre, M.K.; Setzkorn, C.; Baylis, M. Database of host-pathogen and related species interactions, and their global distribution. Sci. Data 2015, 2, 150049. [Google Scholar] [CrossRef] [Green Version]
- Pilosof, S.; Morand, S.; Krasnov, B.R.; Nunn, C.L. Potential parasite transmission in multi-host networks based on parasite sharing. PLoS ONE 2015, 10, e0117909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordes, F.; Morand, S.; Pilosof, S.; Claude, J.; Krasnov, B.; Cosson, J.F.; Chaval, Y.; Ribas, A.; Chaisiri, K.; Blasdell, K.; et al. Habitat fragmentation alters the properties of a host-parasite network: Rodents and their helminths in South-East Asia. J. Anim. Ecol. 2015, 84, 1253–1263. [Google Scholar] [CrossRef]
- Bordes, F.; Caron, A.; Blasdell, K.; de Garine Wichatitsky, M.; Morand, S. Forecasting potential emergence of zoonotic diseases in South-East Asia: Network analysis identifies key rodent hosts. J. Appl. Ecol. 2017, 54, 691–700. [Google Scholar] [CrossRef]
- Vito, M.; Muggeo, R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 2017, 59, 311–322. [Google Scholar] [CrossRef]
- R Development Core Team. The R Project for Statistical Computing, R Version 3.5.2. 2018. Available online: https://www.r-project.org (accessed on 3 March 2020).
- Morand, S.; McIntyre, K.M.; Baylis, M. Domesticated animals and human infectious diseases of zoonotic origins: Domestication time matters. Inf. Gen. Evol. 2014, 24, 76–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opsahl, T. Structure and Evolution of Weighted Networks; University of London (Queen Mary College): London, UK, 2009; pp. 104–122. [Google Scholar]
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R. Lefebvre, Étienne Fast unfolding of community hierarchies in large networks. J. Stat. Mech. 2008, 10, 10008. [Google Scholar] [CrossRef] [Green Version]
- Michonneau, F.; Brown, J.W.; Winter, D.J. rotl: An R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 2016, 7, 1476–1481. [Google Scholar] [CrossRef]
- Hinchliff, C.E.; Smith, S.A.; Allman, J.F.; Burleigh, J.G.; Chaudhary, R.; Coghill, L.M.; Crandall, K.A.; Deng, J.; Drew, B.T.; Gazis, R.; et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci. USA 2015, 112, 12764–12769. [Google Scholar] [CrossRef] [Green Version]
- Paradis, E.; Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2018, 35, 526–528. [Google Scholar] [CrossRef]
- Keck, F.; Rimet, F.; Bouchez, A.; Franc, A. phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 2016, 6, 2774–2780. [Google Scholar] [CrossRef] [PubMed]
- Revell, L.J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Hackathon, R. Phylobase: Base Package for Phylogenetic Structures and Comparative Data. R Package Version 0.8.8. 2020. Available online: https://CRAN.R-project.org/package=phylobase (accessed on 3 March 2020).
- Wells, K.; Morand, S.; Wardeh, M.; Baylis, M. Distinct spread of DNA and RNA viruses among mammals amid prominent role of domestic species. Global Ecol. Biogeogr. 2019, 29, 470–481. [Google Scholar] [CrossRef]
- Uribe, A.; Muskus, C.; Hidalgo, M.; Gil, J.; Osorio, L.; Rojas, C. Eco-epidemiological analysis of rickettsial seropositivity in rural areas of Colombia: A multilevel approach. PLoS Negl. Trop. Dis. 2017, 11, e0005892. [Google Scholar] [CrossRef] [Green Version]
- Parola, P.; Socolovschi, C.; Jeanjean, L.; Bitam, I.; Fournier, P.-E.; Sotto, A.; Labauge, P.; Raoult, D. Warmer Weather Linked to Tick Attack and Emergence of Severe Rickettsioses. PLoS Negl. Trop. Dis. 2008, 2, e338. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, K.M.; Setzkorn, C.; Hepworth, P.J.; Morand, S.; Morse, A.P.; Baylis, M. Systematic Assessment of the Climate Sensitivity of Important Human and Domestic Animals Pathogens in Europe. Sci. Rep. 2017, 7, 7134. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, K.M.; Hawkes, I.; Waret-Szkuta, A.; Morand, S.; Baylis, M. The H-Index as a quantitative indicator of the relative impact of human diseases. PLoS ONE 2011, 6, e19558. [Google Scholar] [CrossRef] [Green Version]
- Chaisiri, K.; Stekolnikov, A.A.; Makepeace, B.L.; Morand, S. A Revised checklist of chigger mites (Acari: Trombiculidae) from Thailand, with the description of three new species. J. Med. Entomol. 2016, 53, 321–342. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Huang, Y.; Luo, L.; Xiao, X.; Liu, L.; Yang, Z. Rapid Increase of Scrub Typhus: An Epidemiology and Spatial-Temporal Cluster Analysis in Guangzhou City, Southern China, 2006–2012. PLoS ONE 2014, 9, e101976. [Google Scholar] [CrossRef]
- Kweon, S.-S.; Choi, J.-S.; Lim, H.-S.; Kim, J.-R.; Kim, K.-Y.; Ryu, S.-Y.; Yoo, H.-S.; Park, O. Rapid Increase of Scrub Typhus, South Korea, 2001–2006. Emerg. Infect. Dis. 2009, 15, 1127–1129. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Chen, P.-C.; Lee, K.-F.; Wu, Y.-C.; Chiu, C.-H. Scrub Typhus Cases in a Teaching Hospital in Penghu, Taiwan, 2006–2010. Vector Borne Zoonotic Dis. 2013, 13, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-W.; Ha, N.-Y.; Ryu, B.; Bang, J.H.; Song, H.; Kim, Y.; Kim, G.; Oh, M.-D.; Cho, N.-H.; Lee, J.-K. Urbanization of Scrub Typhus Disease in South Korea. PLoS Negl. Trop. Dis. 2015, 9, 0003814. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, Z.; Dong, Z.; Wang, M. Meteorological factors and risk of scrub typhus in Guangzhou, southern China, 2006–2012. BMC Infect. Dis. 2014, 14, 139. [Google Scholar] [CrossRef] [Green Version]
- Murray, K.O.; Evert, N.; Mayes, B.; Fonken, E.; Erickson, T.; Garcia, M.N.; Sidwa, T. Typhus Group Rickettsiosis, Texas, USA, 2003–2013. Emerg. Infect. Dis. 2017, 23, 645–648. [Google Scholar] [CrossRef]
- Shah, H.A.; Huxley, P.; Elmes, J.; Murray, K.A. Agricultural land-uses consistently exacerbate infectious disease risks in Southeast Asia. Nat. Commun. 2019, 10, 4299. [Google Scholar] [CrossRef]
- Morand, S.; Lajaunie, C. Linking biodiversity with health and wellbeing: Consequences of scientific pluralism for ethics, values and responsibilities. Asian Bioeth. Rev. 2019, 11, 153–168. [Google Scholar] [CrossRef]
Year | Rickettsial Agents | Country | Likely Causes of Emergence |
---|---|---|---|
1920 | Rickettsia conorii | Europe, Africa | Climate and weather |
1930s | R. sibrica | Asia | ? (Unspecified) |
1946 | R. akari | US | Human demographics and behavior |
1946 | R. australis | Australia | ? (Unspecified) |
1948 | Orientia tsutsugamushi | Japan | War and famine |
1983 | R. typhi | US | International travel and commerce |
1984 | R. japonica | Japan | ? (Unspecified) |
1986 | Ehrlichia canis | US | Land use changes |
1990 | Anaplasma phagocytophilum | US | Land use changes |
1990 | E. chaffeensis | US | Land use changes |
1990 | R. honei | Thailand | International travel and commerce |
1991 | R. felis | US | ? |
1992 | R. africae | Zimbabwe | International travel and commerce |
1995 | R. prowazekii | Burundi | War and famine |
1996 | R. mongolotimonae | France | International travel and commerce |
1996 | R. slovaca | France | Land use changes |
1997 | R. helvetica | Sweden | Land use changes |
2002 | R. aeschlimannii | Africa | Agricultural industry changes |
2005 | R. monacensis | Europe | ? (Unspecified) |
2006 | R. kellyi | India | ? (Unspecified) |
2006 | R. massiliae | South America, Europe | Climate and weather |
2007 | Candidatus Neoehrlichia spp. | Europe | Human susceptibility to infection |
2008 | R. philipii | US | Human demographics and behavior |
2009 | R. conorii subsp. caspia | Europe | Land use changes |
2011 | E. muris-like agent | US | Human susceptibility to infection |
2011 | R. tamurae | Japan, Laos | ? (Unspecified) |
2012 | R. montanensis | US | ? (Unspecified) |
2012 | R. tarasevichiae | China, Russia | ? (Unspecified) |
2016 | R. indica | Japan | International travel and commerce |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morand, S.; Chaisiri, K.; Kritiyakan, A.; Kumlert, R. Disease Ecology of Rickettsial Species: A Data Science Approach. Trop. Med. Infect. Dis. 2020, 5, 64. https://doi.org/10.3390/tropicalmed5020064
Morand S, Chaisiri K, Kritiyakan A, Kumlert R. Disease Ecology of Rickettsial Species: A Data Science Approach. Tropical Medicine and Infectious Disease. 2020; 5(2):64. https://doi.org/10.3390/tropicalmed5020064
Chicago/Turabian StyleMorand, Serge, Kittipong Chaisiri, Anamika Kritiyakan, and Rawadee Kumlert. 2020. "Disease Ecology of Rickettsial Species: A Data Science Approach" Tropical Medicine and Infectious Disease 5, no. 2: 64. https://doi.org/10.3390/tropicalmed5020064
APA StyleMorand, S., Chaisiri, K., Kritiyakan, A., & Kumlert, R. (2020). Disease Ecology of Rickettsial Species: A Data Science Approach. Tropical Medicine and Infectious Disease, 5(2), 64. https://doi.org/10.3390/tropicalmed5020064