Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished?
Abstract
:1. Chagas, the Disease
2. The Years before the 2005 Publication, a Brief Description of Latin America’s (LA) Participation in the Sequencing of the Trypanosoma cruzi Genome
3. A Brief Description of the Initial Findings in the CLB Genome
4. What is New and What is Challenging
5. Clonal or Not Clonal, is That the Question?
6. Final Considerations
Funding
Conflicts of Interest
References
- WHO. Chagas Disease (American Trypanosomiasis); WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/health-topics/chagas-disease#tab=tab_1 (accessed on 27 June 2020).
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas Disease: From Discovery to a Worldwide Health Problem. Front. Public Health 2019, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- De Noya, B.A.; Colmenares, C.; Díaz-Bello, Z.; Ruiz-Guevara, R.; Medina, K.; Muñoz-Calderón, A.; Mauriello, L.; Cabrerad, E.; Montiel, L.; Losada, S.; et al. Orally-transmitted Chagas disease: Epidemiological, clinical, serological and molecular outcomes of a school microepidemic in Chichiriviche de la Costa, Venezuela. Parasite Epidemiol. Control 2016, 2405–6731. [Google Scholar] [CrossRef] [Green Version]
- Zingales, B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis, and drug sensitivity. Acta Trop. 2018, 184, 38–52. [Google Scholar] [CrossRef]
- Ramirez, J.D.; Llewellyn, M.S. Reproductive clonality in protozoan pathogens—Truth or artefact? Mol. Ecol. 2014, 23, 4195–4202. [Google Scholar] [CrossRef]
- International Human Genome Consortium Initial. Sequencing and Analysis of the Human Genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angier, N. Great 15′year Project to decipher Genes stirs opposition. The New York Times. Science Times, 15 June 1990. [Google Scholar]
- The human Genome. Deciphering the Blueprint of Heredity; Cooper, N.G., Ed.; University Science Books: Mill Valley, CA, USA, 1994; ISBN 0-935702-29-6. [Google Scholar]
- Latham, L. The failure of the genome. The Guardian, 17 April 2011. [Google Scholar]
- Ramsey, J.M.; Schofield, C.J. Control of Chagas disease vectors. Salud Publica Mex. 2003, 45, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; Gocayne, J.D.; et al. The sequence of human genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [Green Version]
- Degrave, W.; Levin, M.J.; Franco da Silveira, J.; Morel, C.M. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative. Mem. Inst. Oswaldo Cruz 1997, 92, 859–862. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.J.; Reinach, F.C.; Arruda, P.; Abreu, F.A.; Acencio, M.; Alvarenga, R.; Alves, L.M.; Araya, J.E.; Baia, G.S.; Baptista, C.S.; et al. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis The genome sequence of the plant pathogen Xylella fastidiosa. Nature 2000, 406, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, I.; Lorenzi, H.; Santos, M.R.; Brandariz, S.; Requena, J.M.; Schijman, A.; Vázquez, M.; Silveira, J.F.; Ben-Dov, C.; Medrano, S.; et al. Towards the Physical Map of the Trypanosoma cruzi Nuclear Genome: Construction of YAC and BAC Libraries of the Reference Clone T. cruzi CL-Brener. Mem. Inst. Oswaldo Cruz 1997, 92, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Morel, C.M.; Acharya, T.; Broun, D.; Dangi, A.; Elias, C.; Ganguly, N.K.; Gardner, C.A.; Gupta, R.K.; Haycock, J.; Heher, A.D.; et al. Health Innovation Networks to Help Developing Countries Address Neglected Diseases. Science 2005, 309, 401–404. [Google Scholar] [CrossRef] [Green Version]
- The Trypanosoma cruzi Genome Consortium. The Trypanosoma cruzi Genome Initiative. Parasitol. Today 1997, 1, 16–21. [Google Scholar] [CrossRef]
- Cano, M.I.; Gruber, A.; Vazquez, M.; Cortés, A.; Levin, M.J.; González, A.; Degrave, W.; Rondinelli, E.; Zingales, B.; Ramirez, J.L.; et al. Molecular karyotype of clone CL Brener chosen for the Trypanosoma cruzi Genome Project. Mol. Biochem. Parasitol. 1995, 71, 273–278. [Google Scholar] [CrossRef]
- Henriksson, J.; Aslund, L.; Petersson, U. Karyotype variability in Trypanosoma cruzi. Parasitol. Today 1996, 12, 108–114. [Google Scholar] [CrossRef]
- Santos, M.R.; Lorenzi, H.; Porcile, P.; Carmo, M.S.; Schijman, A.; Brandão, A.; Araya, J.E.; Gomes, H.B.; Chiurillo, M.A.; Ramirez, J.L.; et al. Physical mapping of a 670-kb region of chromosomes XVI and XVII from the human protozoan parasite Trypanosoma cruzi encompassing the genes for two Immunodominant antigens. Genome Res. 1999, 9, 1268–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bringaud, F.; Biteau, N.; Melville, S.E.; Hez, S.; El-Sayed, N.M. A New, Expressed Multigene Family Containing a Hot Spot for Insertion of Retroelements are associated with Polymorphic Subtelomeric Regions of Trypanosoma brucei. Eukaryot Cell 2002, 1, 137–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivares, M.; Thomas, M.C.; Lopez-Barajas, A.; Requena, J.M.; Garcia-Perez, J.L.; Angel, S. Genome clustering of the Trypanosoma cruzi nonlong Terminal L1Tc retrotransposon with defined intersperse repeated DNA elements. Electrophoresis 2000, 21, 2973–2982. [Google Scholar] [CrossRef]
- Chiurillo, M.A.; Santos, M.R.M.; Da Silveira, J.F.; Ramírez, J.L. An improved general approach for cloning and characterizing telomeres: The protozoan parasite Trypanosoma cruzi as model organism. Gene 1999, 294, 197–204. [Google Scholar] [CrossRef]
- El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, N.H.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; et al. The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease. Science 2005, 309, 409–415. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, N.M.; Myler, P.J.; Blandin, G.; Berriman, M.; Crabtree, J.; Aggarwal, G.; Caler, E.; Renauld, H.; Worthey, E.A.; Hertz-Fowleret, C.; et al. Comparative genomics of trypanosomatid parasitic protozoa. Science 2005, 309, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Olivares, M.; López, M.C.; García-Pérez, J.L.; Briones, P.; Pulgar, M.; Thomas, M.C. The endonuclease NL1Tc encoded by the LINE L1Tc from Trypanosoma cruzi protects parasites from daunorubicin DNA damage. Biochim. Biophys. Acta 2003, 1626, 25–32. [Google Scholar] [CrossRef]
- Kim, D.; Chiurillo, M.A.; El-Sayed, N.; Jones, K.; Santos, M.R.; Porcile, P.E.; Andersson, B.; Myler, P.; da Silveira, J.F.; Ramírez, J.L. Telomere and subtelomere of Trypanosoma cruzi chromosomes are enriched in (pseudo)genes of retrotransposon hot spot and trans-sialidase-like gene families: The origins of T. cruzi telomeres. Gene 2005, 346, 53–161. [Google Scholar] [CrossRef]
- Atwood, J.A., III; Weatherly, D.B.; Minning, T.A.; Bundy, B.; Cavola, C.; Opperdoes, F.R.; Orlando, R.; Tarleton, R.L. The Trypanosoma cruzi Proteome. Science 2005, 309, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.B.; Robichaux, J.L.; Chavali, K.; Manque, P.A.; Lee, V.; Lara, A.M.; Manque, P.A.; Lee, V.; Lara, M.A.; Papin, J.A.; et al. Proteomic and network analysis characterize stage-specific metabolism in Trypanosoma cruzi. BMC Syst. Biol. 2009, 3, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrea, A.; Diambra, L. Systems Biology Approach to Model the Life Cycle of Trypanosoma cruzi. PLoS ONE 2016, 11, e0146947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis-Cunha, J.L.; Baptista, R.P.; Rodriguez-Luiz, G.F.; Coquiero-dos-santos, A.; Valdivia, H.O.; Cardoso, M.S.; D’Ávila, D.A.; Dias, F.; Fujiwara, R.T.; Galvão, L.; et al. Whole genome sequencing of Trypanosoma cruzi field Isolates reveal extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genom. 2018, 19, 816. [Google Scholar] [CrossRef] [Green Version]
- Falconer, E.; Hills, M.; Naumann, U.; Poon, S.; Chavez, E.A.; Sanders, A.D.; Zhao, Y.; Hirst, M.; Lansdorp, P.M. DNA template strand sequencing of single cells maps genomic rearrangements at high resolution. Nat. Methods 2012, 9, 1107–1112. [Google Scholar] [CrossRef]
- Sanders, A.D.; Falconer, E.; Hills, M.; Spierings, D.C.J.; Lansdor, P.M. Single-cell template strand sequencing by Strand-seq the characterization of individual homologs. Nat. Prot. 2017, 712, 1151–1176. [Google Scholar] [CrossRef]
- Weatherly, D.B.; Boehlke, C.; Tarleton, R.L. Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genom. 2009, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- Frazen, O.; Ochaya, S.; Sherwood, E.; Lewis, M.D.; Llewellyn, M.S.; Miles, M.A.; Anderson, B. Shotgun Sequencing Analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener. PLoS Negl. Trop. Dis. 2011, 5, e984. [Google Scholar] [CrossRef] [Green Version]
- Callejas-Hernandez, F.; Rastrojo, A.; Poveda, C.; Girones, N.; Fresno, M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci. Rep. 2018, 8, 14631. [Google Scholar] [CrossRef] [PubMed]
- Berna, L.; Rodriguez, M.; Chiribao, M.L.; Parodi-Talice, A.; Pita, S.; Rijo, G.; Alvarez-Valin, F.; Robello, C. Expanding an expanded Genome long-read sequencing of Trypanosoma cruzi genome. Microb. Genom. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Talavera-Lopez, C.; Messenger, L.A.; Lewis, M.D.; Yeo, M.; Reis-Cunha, J.L.; Bartholomeu, D.C.; Calzada, J.E.; Saldaña, A.; Ramírez, J.D.; Guhl, F. Repeat-driven generation of antigenic diversity in a major human pathogen, Trypanosoma cruzi. bioRxiv 2018. [Google Scholar] [CrossRef] [Green Version]
- Bradwell, K.R.; Koparde, V.N.; Matveyev, A.V.; Serrano, M.G.; Alves, J.; Parikh, H.; Huang, B.; Lee, V.; Espinosa-Alvarez, O.; Ortiz, P.A.; et al. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. BMC Genom. 2018, 19, 770. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.S.F.; Salazar-Sánchez, R.; Castillo-Neyra, R.; Borrini-Mayorí, K.; Chipana-Ramos, C.; Vargas-Maquera, M.; Ancca-Juarez, J.; Náquira-Velarde, C.; Levy, M.Z.; Brisson, D. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl. Trop. Dis. 2019, 13, e0007392. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.; Llewellyn, M.S.; Yeo, M.; Acosta, N.; Gaunt, M.W.; Miles, M.A. Recent, Independent and Anthropogenic Origins of Trypanosoma cruzi Hybrids. PLos Negl. Trop. Dis. 2011, 5, e1363. [Google Scholar] [CrossRef] [Green Version]
- Messenger, L.A.; Miles, M.A. Evidence and importance of genetic exchange among field populations of Trypanosoma cruzi. Acta Trop. 2015, 151, 150–155. [Google Scholar] [CrossRef]
- Schwabl, P.; Imamura, H.; Van den Broeck, F.; Costales, J.A.; Maiguashca-Sánchez, J.; Miles, M.A.; Andersson, B.; Grijalva, M.J.; Llewellyn, M.S. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat. Commun. 2019, 10, 3972. [Google Scholar] [CrossRef] [Green Version]
- Minning, D.; Weatherly, B.; Flibotte, S.; Tarleton, R.L. Widespread, focal copy Number variations (CNV)and whole chromosome aneuploidies in Trypanosoma cruzi Strains revealed by array comparative genomic hybridization. BMC Genom. 2011, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- De Pablos, L.M.; Osuna, A. Multigene Families in Trypanosoma cruzi and Their Role in Infectivity. Infect. Immun. 2012, 7, 2258–2264. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, M.S.; Reis-Cunha, J.L.; Bartholomeu, D.C. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection. Front. Immunol. 2016, 6, 659. [Google Scholar] [CrossRef]
- Sheltzer, J.M.; Blank, H.M.; Pfau, S.J.; Tange, Y.; George, B.M.; Humpton, T.J.; Brito, I.L.; Hiraoka, Y.; Niwa, O.; Amon, A. Aneuploidy drives genomic instability in yeast. Science 2011, 333, 1026–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polakova, S.; Blume, C.; Zárate, J.A.; Mentel, M.; Jørck-Ramberg, D.; Stenderup, J.; Piskur, J. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. PNAS 2009, 106, 2688–2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis-Cunha, J.L.; Rodrigues-Luiz, G.F.; Valdivia, H.O.; Baptista, R.P.; Mendes, T.A.; de Morais, G.L.; Macedo, A.M.; Bern, C.; Gilman, R.H. Chromosomal copy Number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genom. 2015, 16, 499. [Google Scholar] [CrossRef] [Green Version]
- Briones, M.R.; Egima, C.M.; Eichinger, D.; Schenkman, S. Trans-sialidase genes expressed in mammalian forms of Trypanosoma cruzi evolved from ancestor genes expressed in insect forms of the parasite. J. Mol. Evol. 1995, 41, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Chiurillo, M.A.; Cortez, D.R.; Lima, F.M.; Cortez, C.; Ramírez, J.L.; Martins, A.G.; Serrano, M.G.; Teixeira, M.M.; da Silveira, J.F. The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members. Infect. Genet. Evol. 2016, 37, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Frasch, A.C. Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol. Today 2000, 16, 282–286. [Google Scholar] [CrossRef]
- Yoshida, N. Trypanosoma cruzi infection by oral route, how the interplay between parasite and host components modulate infectivity. Parasitol. Int. 2008, 57, 105–109. [Google Scholar] [CrossRef]
- Freitas, L.M.; dos Santos, S.L.; Rodrigues-Luiz, G.F.; Mendes, T.A.; Rodrigues, T.S.; Gazzinelli, R.T.; Teixeira, S.M.; Fujiwara, R.T.; Bartholomeu, D.C. Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS ONE 2011, 6, e25914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, F.Y.; Clemente, T.M.; Macedo, S.; Cortez, C.; Yoshida, N. Host cell invasion and oral infection by Trypanosoma cruzi strains of genetic groups TcI and TcIV from chagasic patients. Parasites Vectors 2016, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Azuaje, F.; Ramirez, J.L.; Da Silveira, J.F. In silico, biologically inspired modelling of genomic variation generation in surface proteins of Trypanosoma cruzi. Kinetoplastid Biol. Dis. 2007, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Reynaud, C.A.; Anquez, V.; Grimal, H.; Weill, J.C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 1987, 48, 379–388. [Google Scholar] [CrossRef]
- Thon, G.; Baltz, T.; Eisen, H. Antigenic diversity by the recombination of pseudogenes. Genes Dev. 1989, 3, 1247–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, C.L.; Kelly, J.M. Trypanosoma cruzi: Mucin pseudogenes organized in a tandem array. Exp. Parasitol. 2001, 97, 173–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.Z.; Zheng, L.L.; Qu, L.H.; Ayala, F.J.; Lun, Z.R. Pseudogenes are not pseudo any more. RNA Biol. 2012, 9, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macías, F.; Afonso-Lehmann, R.; López, M.C.; Gómez, I.; Thomas, M.C. Biology of Trypanosoma cruzi Retrotransposons: From an Enzymatic to a Structural Point of View. Curr. Genom. 2018, 19, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Chiurillo, M.A.; Moraes Barros, R.R.; Souza, R.T.; Marini, M.M.; Antonio, C.R.; Cortez, D.R.; Curto, M.Á.; Lorenzi, H.A.; Schijman, A.G.; Ramirez, J.L.; et al. Subtelomeric I-SceI-Mediated Double-Strand Breaks Are Repaired by Homologous Recombination in Trypanosoma cruzi. Front. Microbiol. 2016, 7, 2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes Barros, R.R.; Marini, M.M.; Antônio, C.R.; Cortez, D.R.; Miyake, A.M.; Lima, F.M.; Ruiz, J.C.; Bartholomeu, D.C.; Chiurillo, M.A.; Ramirez, J.L.; et al. Anatomy and evolution of telomeric and subtelomeric regions in the human protozoan parasite Trypanosoma cruzi. BMC Genom. 2012, 13, 229. [Google Scholar] [CrossRef] [Green Version]
- Chiurillo, M.A.; Antonio, C.R.; Mendes Marini, M.; Torres de Souza, R.; Da Silveira, J.F. Chromosomes ends and the telomere biology in Trypanosomatids. Front. Parasitol. 2017, 1, 104–133. [Google Scholar] [CrossRef]
- Ramirez, J.L. An Evolutionary View of Trypanosoma cruzi Telomeres. Front. Cell. Infect. Microbiol. 2020, 9, 439. [Google Scholar] [CrossRef]
- Xing, J.; Wan, G.; Belancio, V.P.; Cordaux, R.; Deininger, P.L.; Batzer, M.A. Emergence of primate genes by retrotransposon mediated sequence transduction. PNAS 2006, 103, 17608–17613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messenger, L.A.; Llewellyn, M.S.; Bhattacharyya, T.; Franzén, O.; Lewis, M.D.; Ramírez, J.D.; Carrasco, H.J.; Andersson, B.; Miles, M.A. Multiple mitochondrial Introgression events and heteroplasmy in Trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing. PLoS Negl. Trop. Dis. 2012, 6, e1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusman, F.; Floridia-Yapur, N.; Ragone, P.G.; Diosque, P.; Tomasini, N. Evidence of hybridization, mitochondrial introgression and biparental inheritance of the kDNA minicircles in Trypanosoma cruzi I. PLoS Negl. Trop. Dis. 2020, 14, e0007770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaunt, M.; Yeo, M.; Frame, I.; Stothard, J.R.; Carrasco, H.J.; Taylor, M.C.; Mena, S.S.; Veazey, P.; Miles, G.A.; Acosta, N. Mechanism of genetic exchange in American trypanosomes. Nature 2003, 421, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Tybairenc, M.; Kjellberg, F.; Ayala, F.J. A clonal theory of parasitic protozoa: The population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. PNAS 1990, 87, 2414–2418. [Google Scholar] [CrossRef] [Green Version]
- Tibayrenc, M.; Ayala, F.J. Genomics and High-Resolution Typing Confirm Predominant Clonal Evolution Down to a Microevolutionary Scale in Trypanosoma cruzi. Pathogens 2020, 9, 356. [Google Scholar] [CrossRef]
- Seco-Hidalgo, V.; De Pablos, L.M.; Osuna, A. Transcriptional and phenotypical heterogeneity of Trypanosoma cruzi cell populations. Open Biol. 2015, 5, 150190. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Calderón, A.; Díaz-Bello, Z.; Ramírez, J.L.; Noya, O.; de Noya, B.A. Nifurtimox response of Trypanosoma cruzi isolates from an outbreak of Chagas disease in Caracas, Venezuela. J. Vector Borne Dis. 2019, 57. [Google Scholar] [CrossRef]
- Muller, H.J. Some aspects of sex. Am. Nat. 1932, 703, 118–138. [Google Scholar] [CrossRef]
- Garcia, J.B.; Rocha, J.P.; Costa-Silva, H.M.; Alves, C.L.; Machado, C.R.; Cruz, A.K. Leishmania major and Trypanosoma cruzi present distinct DNA damage responses. Mol. Biochem. Parasitol. 2016, 207, 23–32. [Google Scholar] [CrossRef]
- Donelson, J. The promise of T. cruzi genomics. Nature 2010, 465, S16–S17. [Google Scholar]
- Bartholomeu, D.C.; Buck, G.A.; Teixeira, S.M.R.; El-Sayed, N.M.A. Genetics of Trypanosoma cruzi Nuclear Genome. In American Trypanosomiasis Chagas Disease Chagas Disease One Hundred Years of Research; Telleria, J., Tybayrenc, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 433–448. ISBN 9780128010693. [Google Scholar]
- Menezes, C.; Carneiro Costa, G.; Gollob, K.J.; Dutra, W.O. Clinical aspects of Chagas disease and implications for novel therapies. Drug Dev. Res. 2011, 72, 471–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares Medeiros, L.C.; South, L.; Peng, D.; Bustamante, J.M.; Wang, W.; Bunkofske, M.; Perumal, N.; Sanchez-Valdez, F.; Tarleton, R.L. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. mBio 2017, 8, e01788-17. [Google Scholar] [CrossRef] [Green Version]
- Lander, N.; Li, Z.H.; Niyogi, S.; Docampo, R. CRISPR/Cas9-Induced Disruption of Paraflagellar Rod Protein 1 and 2 Genes in Trypanosoma cruzi Reveals Their Role in Flagellar Attachment. mBio 2015, 6, e01012-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez, J.L. Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished? Trop. Med. Infect. Dis. 2020, 5, 129. https://doi.org/10.3390/tropicalmed5030129
Ramirez JL. Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished? Tropical Medicine and Infectious Disease. 2020; 5(3):129. https://doi.org/10.3390/tropicalmed5030129
Chicago/Turabian StyleRamirez, Jose Luis. 2020. "Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished?" Tropical Medicine and Infectious Disease 5, no. 3: 129. https://doi.org/10.3390/tropicalmed5030129
APA StyleRamirez, J. L. (2020). Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished? Tropical Medicine and Infectious Disease, 5(3), 129. https://doi.org/10.3390/tropicalmed5030129