Blood Culture Testing Outcomes among Non-Malarial Febrile Children at Antimicrobial Resistance Surveillance Sites in Uganda, 2017–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.2.1. General Setting
2.2.2. Specific Setting
2.3. Study Population
2.4. Study Variables and Data Collection
2.5. Data Analysis
3. Results
3.1. Demographic and Clinical Characteristics of Participants
3.2. Specimen Collection and Transportation
3.3. Blood Culture
3.4. Pathogen Identification
3.5. Antimicrobial Susceptibility Testing
- (1)
- none of the recommended antimicrobial agents were tested (28%),
- (2)
- some of the recommended antimicrobial agents were tested (22%), and
- (3)
- incorrect pathogen–antimicrobial agent combination was used (10%).
3.6. Results Delivery and AMR Data Submission
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Pathogen | Antimicrobial Class | Antimicrobial Agents Used for AST ‡ |
---|---|---|
S. pneumoniae | Penicillins | Penicillin G |
Sulfonamides and trimethoprim | Co-trimoxazole | |
Third-generation cephalosporins | Ceftriaxone | |
Staphylococcus aureus | Penicillinase-stable beta-lactams | Cefoxitin b and Oxacillin a |
Escherichia coli | Sulfonamides and trimethoprim | Co-trimoxazole |
Fluoroquinolones | Ciprofloxacin | |
Third-generation cephalosporins | Ceftriaxone and ceftazidime | |
Fourth-generation cephalosporins | Cefepime | |
Carbapenems | Meropenem | |
Polymyxins | Colistin c | |
Penicillins | Ampicillin | |
Klebsiella species | Sulfonamides and trimethoprim | Co-trimoxazole |
Fluoroquinolones | Ciprofloxacin | |
Third-generation cephalosporins | Ceftriaxone and ceftazidime | |
Fourth-generation cephalosporins | Cefepime | |
Carbapenems | Meropenem | |
Polymyxins | Colistin c | |
Acinetobacter species | Tetracyclines | Tigecycline |
Aminoglycosides | Gentamicin and Amikacin | |
Carbapenems * | Meropenem | |
Polymyxins | Colistin c | |
Pseudomonous Aeruginosa | Carbapenems | Meropenem |
Salmonella spp. | Fluoroquinolones | Ciprofloxacin |
Third-generation cephalosporins | Ceftriaxone and ceftazidime | |
Carbapenems * | Meropenem |
References
- Goodman, C.W.; Brett, A.S. Gabapentin and Pregabalin for Pain—Is Increased Prescribing a Cause for Concern? N. Engl. J. Med. 2017, 377, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Aung, A.K.; Skinner, M.J.; Lee, F.J.; Cheng, A.C. Changing epidemiology of bloodstream infection pathogens over time in adult non-specialty patients at an Australian tertiary hospital. Commun. Dis. Intell. Q. Rep. 2012, 36, E333–E341. [Google Scholar]
- Kern, W.V.; Rieg, S. Burden of bacterial bloodstream infection—A brief update on epidemiology and significance of multidrug-resistant pathogens. Clin. Microbiol. Infect. 2020, 26, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Tumuhamye, J.; Sommerfelt, H.; Bwanga, F.; Ndeezi, G.; Mukunya, D.; Napyo, A.; Nankabirwa, V.; Tumwine, J.K. Neonatal sepsis at Mulago national referral hospital in Uganda: Etiology, antimicrobial resistance, associated factors and case fatality risk. PLoS ONE 2020, 15, e0237085. [Google Scholar] [CrossRef]
- Cohen, J.; Vincent, J.L.; Adhikari, N.K.J.; Machado, F.R.; Angus, D.C.; Calandra, T.; Jaton, K.; Giulieri, S.; Delaloye, J.; Opal, S.; et al. Sepsis: A roadmap for future research. Lancet Infect. Dis. 2015, 15, 581–614. [Google Scholar] [CrossRef]
- Shrestha, P.; Dahal, P.; Ogbonnaa-Njoku, C.; Das, D.; Stepniewska, K.; Thomas, N.V.; Hopkins, H.; Crump, J.A.; Bell, D.; Newton, P.N.; et al. Non-malarial febrile illness: A systematic review of published aetiological studies and case reports from Southern Asia and South-eastern Asia, 1980–2015. BMC Med. 2020, 18, 1–17. [Google Scholar] [CrossRef]
- Sears, D.; Mpimbaza, A.; Kigozi, R.; Sserwanga, A.; Chang, M.A.; Kapella, B.K.; Yoon, S.; Kamya, M.R.; Dorsey, G.; Ruel, T. Quality of inpatient pediatric case management for four leading causes of child mortality at six government-run Ugandan hospitals. PLoS ONE 2015, 10, e0127192. [Google Scholar] [CrossRef]
- Reddy, E.A.; Shaw, A.V.; Crump, J.A. Community-acquired bloodstream infections in Africa: A systematic review and meta-analysis. Lancet Infect. Dis. 2010, 10, 417–432. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Global Antimicrobial Resistance Surveillance System; WHO: Geneva, Switzerland, 2015; Volume 36. [Google Scholar]
- Towns, M.L.; Jarvis, W.R.; Hsueh, P.R. Guidelines on Blood Cultures. J. Microbiol. Immunol. Infect. 2010, 43, 347–349. [Google Scholar] [CrossRef] [Green Version]
- Plebani, M. Appropriateness in programs for continuous quality improvement in clinical laboratories. Clin. Chim. Acta 2003, 333, 131–139. [Google Scholar] [CrossRef]
- Lamorde, M.; Mpimbaza, A.; Walwema, R.; Kamya, M.; Kapisi, J.; Kajumbula, H.; Sserwanga, A.; Namuganga, J.F.; Kusemererwa, A.; Tasimwa, H.; et al. A Cross-Cutting Approach to Surveillance and Laboratory Capacity as a Platform to Improve Health Security in Uganda. Health Secur. 2018, 16, S76–S86. [Google Scholar] [CrossRef] [Green Version]
- Kajumbula, H.; Fujita, A.W.; Mbabazi, O.; Najjuka, C.; Izale, C.; Akampurira, A.; Aisu, S.; Lamorde, M.; Walwema, R.; Bahr, N.C.; et al. Antimicrobial drug resistance in blood culture isolates at a tertiary hospital, Uganda. Emerg. Infect. Dis. 2018, 24, 174–175. [Google Scholar] [CrossRef] [Green Version]
- Buehler, S.S.; Madison, B.; Snyder, S.R.; Derzon, J.H.; Cornish, N.E.; Saubolle, M.A.; Weissfeld, A.S.; Weinstein, M.P.; Liebow, E.B.; Wolk, D.M. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: A laboratory medicine best practices systematic review and meta-analysis. Clin. Microbiol. Rev. 2015, 29, 59–103. [Google Scholar] [CrossRef] [Green Version]
- Kemigisha, E.; Nanjebe, D.; Ii, Y.B.; Langendorf, C.; Aberrane, S.; Nyehangane, D.; Nackers, F.; Mueller, Y.; Charrel, R.; Murphy, R.A.; et al. Antimicrobial treatment practices among Ugandan children with suspicion of central nervous system infection. PLoS ONE 2018, 13, e0205316. [Google Scholar] [CrossRef] [Green Version]
- Chukwuemeka, I.; Samuel, Y. Quality assurance in blood culture: A retrospective study of blood culture contamination rate in a tertiary hospital in Nigeria. Niger. Med. J. 2014, 55, 201. [Google Scholar] [CrossRef] [Green Version]
- Bard, J.D.; TeKippe, E.M.E. Diagnosis of bloodstream infections in children. J. Clin. Microbiol. 2016, 54, 1418–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, R.; Shrestha, U.; Gautam, S.C.; Thorson, S.; Shrestha, K.; Yadav, B.K.; Kelly, D.F.; Adhikari, N.; Pollard, A.J.; Murdoch, D.R. Bloodstream Infection among Children Presenting to a General Hospital Outpatient Clinic in Urban Nepal. PLoS ONE 2012, 7, e47531. [Google Scholar] [CrossRef] [Green Version]
- Uganda Bureau of Statistics National Mid Year Population Projections by Single Age, 2015–2050; UBOS: Kampala, Uganda, 2015.
- National Population Council. State of Uganda Population Report 2019; NPC: Kampala, Uganda, 2019.
- Buetti, N.; Atkinson, A.; Kottanattu, L.; Bielicki, J.; Marschall, J.; Kronenberg, A.; Auckenthaler, R.; Cherkaoui, A.; Dolina, M.; Dubuis, O.; et al. Patterns and trends of pediatric bloodstream infections: A 7-year surveillance study. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Biondi, E.A.; Mischler, M.; Jerardi, K.E.; Statile, A.M.; French, J.; Evans, R.; Lee, V.; Chen, C.; Asche, C.; Ren, J.; et al. Blood culture time to positivity in febrile infants with bacteremia. JAMA Pediatr. 2014, 168, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Kalonji, L.M.; Post, A.; Phoba, M.F.; Falay, D.; Ngbonda, D.; Muyembe, J.J.; Bertrand, S.; Ceyssens, P.J.; Mattheus, W.; Verhaegen, J.; et al. Invasive salmonella infections at multiple surveillance sites in the Democratic Republic of the Congo, 2011–2014. Clin. Infect. Dis. 2015, 61, S346–S353. [Google Scholar] [CrossRef] [Green Version]
- Baron, E.J.; Weinstein, M.P.; Dunne, W.M.; Yagupsky, P.; Welch, D.F.; Wilson, D.M. Cumitech 1C, Blood Cultures IV; ASM Press: Washington, DC, USA, 2005. [Google Scholar]
- Scheer, C.S.; Fuchs, C.; Gründling, M.; Vollmer, M.; Bast, J.; Bohnert, J.A.; Zimmermann, K.; Hahnenkamp, K.; Rehberg, S.; Kuhn, S.O. Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: A prospective clinical cohort study. Clin. Microbiol. Infect. 2019, 25, 326–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukonzo, J.K.; Namuwenge, P.M.; Okure, G.; Mwesige, B.; Namusisi, O.K.; Mukanga, D. Over-the-counter suboptimal dispensing of antibiotics in Uganda. J. Multidiscip. Healthc. 2013, 6, 303–310. [Google Scholar] [PubMed] [Green Version]
- Harris, A.M.; Bramley, A.M.; Jain, S.; Arnold, S.R.; Ampofo, K.; Self, W.H.; Williams, D.J.; Anderson, E.J.; Grijalva, C.G.; McCullers, J.A.; et al. Influence of antibiotics on the detection of bacteria by culture-based and culture-independent diagnostic tests in patients hospitalized with community-acquired pneumonia. Open Forum Infect. Dis. 2017, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parajuli, N.P.; Parajuli, H.; Pandit, R.; Shakya, J.; Khanal, P.R. Evaluating the trends of bloodstream infections among pediatric and adult patients at a teaching hospital of Kathmandu, Nepal: Role of drug resistant pathogens. Can. J. Infect. Dis. Med. Microbiol. 2017, 2017. [Google Scholar] [CrossRef]
- Buys, H.; Muloiwa, R.; Bamford, C.; Eley, B. Klebsiella pneumoniae bloodstream infections at a South African children’s hospital 2006-2011, a cross-sectional study. BMC Infect. Dis. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharmapalan, D.; Shet, A.; Yewale, V.; Sharland, M. High reported rates of antimicrobial resistance in Indian neonatal and pediatric blood stream infections. J. Pediatric Infect. Dis. Soc. 2017, 6, e62–e68. [Google Scholar] [CrossRef] [Green Version]
- Dailey, P.J.; Osborn, J.; Ashley, E.A.; Baron, E.J.; Dance, D.A.B.; Fusco, D.; Fanello, C.; Manabe, Y.C.; Mokomane, M.; Newton, P.N.; et al. Defining system requirements for simplified blood culture to enable widespread use in resource-limited settings. Diagnostics 2019, 9, 10. [Google Scholar] [CrossRef] [Green Version]
Category of Data | Variable Description | |
---|---|---|
1. | Specimen collection and transportation |
|
2. | Blood culture parameters |
|
3. | Pathogen identification |
|
4. | AST result parameters |
|
5. | Reporting of results and transmission parameters |
|
Characteristic | Jinja n (%) | Arua n (%) | Mbarara n (%) | Kabale n (%) | Mbale n (%) | Total n (%) |
---|---|---|---|---|---|---|
Age in months ^ | ||||||
<1 ¥ | 66 (8.7) | 32 (27.6) | 8 (25.0) | 6 (20.0) | 7 (36.8) | 119 (12.4) |
1 to 48 | 622 (81.6) | 81 (69.8) | 24 (75.0) | 14 (46.7) | 12 (63.2) | 753 (78.5) |
49–59 | 74 (9.7) | 1 (0.9) | 0 (0.0) | 9 (30.0) | 0 (0.0) | 84 (8.8) |
Not recorded | 0 (0.0) | 2 (1.7) | 0 (0.0) | 1 (3.3) | 0 (0.0) | 3 (0.3) |
Sex ^ | ||||||
Male | 307 (40.3) | 52 (44.8) | 21 (65.6) | 18 (60.0) | 9 (47.4) | 407 (42.4) |
Female | 455 (59.7) | 64 (55.2) | 11 (34.4) | 12 (40.0) | 10 (52.6) | 552 (57.6) |
Initial antibiotic exposure | ||||||
Yes | 0 (0.0) | 44 (37.9) | 0 (0.0) | 0 (0.0) | 9 (47.4) | 53 (5.5) |
No * | 0 (0.0) | 59 (50.9) | 1 (3.1) | 0 (0.0) | 8 (42.1) | 68 (0.7) |
Not recorded Ω | 762 (100.0) | 13 (11.2) | 31 (96.9) | 30 (100.0) | 2 (10.5) | 838 (87.3) |
Total N (%) | 762 (79.5) | 116 (12.1) | 32 (3.3) | 30 (3.1) | 19 (2.0) | 959 |
Pathogen | Jinja n | Arua n | Mbarara n | Kabaale n | Mbale n | Total n |
---|---|---|---|---|---|---|
AMR Priority Pathogens | ||||||
Gram-Negative | ||||||
Escherichia coli | 2 | 1 | 2 | 1 | 1 | 7 |
Klebsiella spp. | 2 | 0 | 0 | 0 | 0 | 2 |
Salmonella spp. | 0 | 4 | 0 | 0 | 0 | 4 |
Gram-positive | ||||||
Staphylococcus aureus | 7 | 0 | 6 | 4 | 3 | 20 |
Streptococcus pneumoniae | 2 | 0 | 1 | 1 | 0 | 4 |
Non-AMR priority pathogens | ||||||
Staphylococcus epidermidis | 1 | 0 | 0 | 0 | 0 | 1 |
Pseudomonas spp. | 1 | 0 | 0 | 0 | 0 | 1 |
Candida spp. | 2 | 0 | 0 | 0 | 0 | 2 |
Coagulase-Negative Staphylococcus | 3 | 0 | 0 | 0 | 0 | 3 |
Diagnosic yield π (%) | 20/762 (2.6) | 5/116 (4.3) | 9/32 (28.1) | 6/30 (20.0) | 4/19 (21.0) | 44/959 (4.6%) |
Antibiotic | Gram-Negative Bacteria | Gram-Positive Bacteria | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
E coli, n = 3 | Klebsiella spp., n = 1 | Salmonella spp., n = 4 | S aureus, n = 15 | S pneumoniae, n = 3 | ||||||
Tested | Resistant | Tested | Resistant | Tested | Resistant | Tested | Resistant | Tested | Resistant | |
AMP | 3 | 3 | 1 | 1 | 0 | NR | 0 | NR | 0 | NR |
FEP | 1 | 0 | 0 | NR | 0 | NR | 1 | 0 | 0 | NR |
FOX | 0 | NR | 0 | NR | 0 | NR | 0 | NR | 0 | NR |
CRO | 2 | 1 | 0 | NR | 4 | 0 | 0 | NR | 0 | NR |
CTX | 1 | 1 | 0 | NR | 0 | NR | 1 | 0 | 1 | 0 |
CAZ | 1 | 1 | 0 | NR | 0 | NR | 1 | 1 | 0 | NR |
CIP | 3 | 1 | 1 | 1 | 4 | 4 | 8 | 1 | 0 | NR |
COL | 0 | NR | 0 | NR | 0 | NR | 1 | 0 | 0 | NR |
GEN | 1 | 1 | 1 | 1 | 4 | 0 | 3 | 0 | 0 | NR |
AMK | 2 | 2 | 0 | NR | 0 | NR | 6 | 0 | 1 | 0 |
MEM | 0 | NR | 0 | NR | 4 | 0 | 2 | 2 | 1 | 0 |
OXA | 0 | NR | 0 | NR | 0 | NR | 3 | 0 | 0 | NR |
PEN | 0 | NR | 0 | NR | 0 | NR | 2 | 2 | 0 | NR |
SXT | 0 | NR | 1 | 1 | 4 | 1 | 5 | 3 | 0 | NR |
Not recommended and not tested | ||||||||||
Not recommended but tested in at least one | ||||||||||
Recommended and all the isolates were tested | ||||||||||
Recommended but not all the isolates were tested | ||||||||||
Recommended but none were tested |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisame, R.; Najjemba, R.; van Griensven, J.; Kitutu, F.E.; Takarinda, K.; Thekkur, P.; Delamou, A.; Walwema, R.; Kakooza, F.; Mugerwa, I.; et al. Blood Culture Testing Outcomes among Non-Malarial Febrile Children at Antimicrobial Resistance Surveillance Sites in Uganda, 2017–2018. Trop. Med. Infect. Dis. 2021, 6, 71. https://doi.org/10.3390/tropicalmed6020071
Kisame R, Najjemba R, van Griensven J, Kitutu FE, Takarinda K, Thekkur P, Delamou A, Walwema R, Kakooza F, Mugerwa I, et al. Blood Culture Testing Outcomes among Non-Malarial Febrile Children at Antimicrobial Resistance Surveillance Sites in Uganda, 2017–2018. Tropical Medicine and Infectious Disease. 2021; 6(2):71. https://doi.org/10.3390/tropicalmed6020071
Chicago/Turabian StyleKisame, Rogers, Robinah Najjemba, Johan van Griensven, Freddy Eric Kitutu, Kudakwashe Takarinda, Pruthu Thekkur, Alexandre Delamou, Richard Walwema, Francis Kakooza, Ibrahim Mugerwa, and et al. 2021. "Blood Culture Testing Outcomes among Non-Malarial Febrile Children at Antimicrobial Resistance Surveillance Sites in Uganda, 2017–2018" Tropical Medicine and Infectious Disease 6, no. 2: 71. https://doi.org/10.3390/tropicalmed6020071
APA StyleKisame, R., Najjemba, R., van Griensven, J., Kitutu, F. E., Takarinda, K., Thekkur, P., Delamou, A., Walwema, R., Kakooza, F., Mugerwa, I., Sekamatte, M., Robert, K., Katairo, T., Opollo, M. S., Otita, M., & Lamorde, M. (2021). Blood Culture Testing Outcomes among Non-Malarial Febrile Children at Antimicrobial Resistance Surveillance Sites in Uganda, 2017–2018. Tropical Medicine and Infectious Disease, 6(2), 71. https://doi.org/10.3390/tropicalmed6020071