Comparison of Lethal and Nonlethal Mouse Models of Orientia tsutsugamushi Infection Reveals T-Cell Population-Associated Cytokine Signatures Correlated with Lethality and Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice and Orientia tsutsugamushi Infections
2.2. O. tsutsugamushi qPCR Assay
2.3. ELISAs
2.4. Flow Cytometry
2.5. Statistical Analysis
3. Results
3.1. Clinical Observation and Morbidity/Mortality in Differentially Challenged Mice
3.2. Determination of Antibody Titer in O. tsutsugamushi-Infected Mice
3.3. Bacterial Trafficking of O. tsutsugamushi in Lethal and Nonlethal Models of O. tsutsugamushi Infection
3.4. Multifunctional Cytokine Analysis of O. tsutsugamushi-Specific CD4+ and CD8+ T Cells
3.5. CD4+ and CD8+ T-Cell Cytokine Signatures of Lethality or Non-Lethality (Protection)
3.6. Cytokine Signature Correlation to Bacterial Load
4. Discussion
Author Contributions
Funding
Institutional Animal Care and Use Committee (IACUC) Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Chattopadhyay, S.; Richards, A.L. Scrub typhus vaccines: Past history and recent developments. Hum. Vaccines 2007, 3, 73–80. [Google Scholar] [CrossRef]
- Cho, N.-H.; Seong, S.-Y.; Huh, M.-S.; Han, T.-H.; Koh, Y.-S.; Choi, M.-S.; Kim, I.-S. Expression of chemokine genes in murine macrophages infected with Orientia tsutsugamushi. Infect. Immun. 2000, 68, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Murata, M.; Sudo, K.; Suzuki, K.; Aoyama, Y.; Nogami, S.; Tanaka, H.; Kawamura Jr, A. Proliferating sites of Rickettsia tsutsugamushi in mice by different routes of inoculation evidenced with immunofluorescence. JPN J. Exp. Med. 1985, 55, 193. [Google Scholar] [PubMed]
- Rikihisa, Y.; Ito, S. Entry of Rickettsia tsutsugamushi into polymorphonuclear leukocytes. Infect. Immun. 1982, 38, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Izzard, L.; Fuller, A.; Blacksell, S.D.; Paris, D.H.; Richards, A.L.; Aukkanit, N.; Nguyen, C.; Jiang, J.; Fenwick, S.; Day, N.P. Isolation of a novel Orientia species (O. chuto sp. nov.) from a patient infected in Dubai. J. Clin. Microbiol. 2010, 48, 4404–4409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, Y.; Choi, J.-H.; Ha, N.-Y.; Kim, I.-S.; Cho, N.-H.; Choi, M.-S. Active escape of Orientia tsutsugamushi from cellular autophagy. Infect. Immun. 2013, 81, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-H.; Cheong, T.-C.; Ha, N.-Y.; Ko, Y.; Cho, C.-H.; Jeon, J.-H.; So, I.; Kim, I.-K.; Choi, M.-S.; Kim, I.-S. Orientia tsutsugamushi subverts dendritic cell functions by escaping from autophagy and impairing their migration. PLoS Negl. Trop. Dis. 2013, 7, e1981. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.-E.; Hong, H.-J.; Dearth, A.; Kobayashi, K.S.; Koh, Y.-S. Intracellular invasion of Orientia tsutsugamushi activates inflammasome in ASC-dependent manner. PLoS ONE 2012, 7, e39042. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Kim, M.-K.; Kang, J.-S. Involvement of lipid rafts in the budding-like exit of Orientia tsutsugamushi. Microb. Pathog. 2013, 63, 37–43. [Google Scholar] [CrossRef]
- Tantibhedhyangkul, W.; Ben Amara, A.; Textoris, J.; Gorvel, L.; Ghigo, E.; Capo, C.; Mege, J.-L. Orientia tsutsugamushi, the causative agent of scrub typhus, induces an inflammatory program in human macrophages. Microb. Pathog. 2013, 55, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, G.; Chouriyagune, C.; Ruangweerayud, R.; Watcharapichat, P.; Phulsuksombati, D.; Jongsakul, K.; Teja-Isavadharm, P.; Bhodhidatta, D.; Corcoran, K.D.; Dasch, G.A. Scrub typhus infections poorly responsive to antibiotics in northern Thailand. Lancet 1996, 348, 86–89. [Google Scholar] [CrossRef]
- Ericsson, C.D.; Jensenius, M.; Fournier, P.-E.; Raoult, D. Rickettsioses and the international traveler. Clin. Infect. Dis. 2004, 39, 1493–1499. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Kawamura, S.; Oyama, T. Immunological studies of experimental tsutsugamushi disease in congenitally athymic (nude) mice. Am. J. Trop. Med. Hyg. 1985, 34, 568. [Google Scholar] [CrossRef]
- Jerrells, T.R.; Osterman, J.V. Development of specific and cross-reactive lymphocyte proliferative responses during chronic immunizing infections with Rickettsia tsutsugamushi. Infect. Immun. 1983, 40, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirai, A.; Catanzaro, P.; Eisenberg, G.; Osterman, J. Host defenses in experimental scrub typhus: Effect of chloramphenicol. Infect. Immun. 1977, 18, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Jerrells, T.R.; Osterman, J.V. Host defenses in experimental scrub typhus: Delayed-type hypersensitivity responses of inbred mice. Infect. Immun. 1982, 35, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seong, S.-Y.; Huh, M.-S.; Jang, W.-J.; Park, S.-G.; Kim, J.-G.; Woo, S.-G.; Choi, M.-S.; Kim, I.-S.; Chang, W.-H. Induction of homologous immune response to Rickettsia tsutsugamushi Boryong with a partial 56-kilodalton recombinant antigen fused with the maltose-binding protein MBP-Bor56. Infect. Immun. 1997, 65, 1541–1545. [Google Scholar] [CrossRef] [Green Version]
- Catanzaro, P.J.; Shirai, A.; Agniel, L.D.; Osterman, J.V. Host defenses in experimental scrub typhus: Role of spleen and peritoneal exudate lymphocytes in cellular immunity. Infect. Immun. 1977, 18, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Jerrells, T.; Osterman, J. Parameters of cellular immunity in acute and chronic Rickettsia tsutsugamushi infections of inbred mice. In Host Defenses to Intracellular Pathogens; Springer: Berlin/Heidelberg, Germany, 1983; pp. 355–360. [Google Scholar]
- Nacy, C.; Osterman, J. Host defenses in experimental scrub typhus: Role of normal and activated macrophages. Infect. Immun. 1979, 26, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Nacy, C.A.; Meltzer, M.S. Macrophages in resistance to rickettsial infection: Macrophage activation in vitro for killing of Rickettsia tsutsugamushi. J. Immunol. 1979, 123, 2544–2549. [Google Scholar] [PubMed]
- Nacy, C.A.; Groves, M.G. Macrophages in resistance to rickettsial infections: Early host defense mechanisms in experimental scrub typhus. Infect. Immun. 1981, 31, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- Van Peenen, P.; Ho, C.; Bourgeois, A. Indirect immunofluorescence antibodies in natural and acquired Rickettsia tsutsugamushi infections of Philippine rodents. Infect. Immun. 1977, 15, 813–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, B.A. Effect of immune serum on infectivity of Rickettsia tsutsugamushi. Infect. Immun. 1983, 42, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenberg, G.; Osterman, J.V. Experimental scrub typhus immunogens: Gamma-irradiated and formalinized rickettsiae. Infect. Immun. 1977, 15, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, D.H.; Shelite, T.R.; Day, N.P.; Walker, D.H. Neglected Life-Threatening Disease. Am. J. Trop. Med. Hyg 2013, 89, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Valbuena, G.; Walker, D.H. Approaches to vaccines against Orientia tsutsugamushi. Front. Cell. Infect. Microbiol. 2013, 2. [Google Scholar] [CrossRef] [Green Version]
- Paris, D.H.; Phetsouvanh, R.; Tanganuchitcharnchai, A.; Jones, M.; Jenjaroen, K.; Vongsouvath, M.; Ferguson, D.P.; Blacksell, S.D.; Newton, P.N.; Day, N.P. Orientia tsutsugamushi in human scrub typhus eschars shows tropism for dendritic cells and monocytes rather than endothelium. PLoS Negl. Trop. Dis. 2012, 6, e1466. [Google Scholar] [CrossRef]
- Kelly, D.J.; Fuerst, P.A.; Ching, W.-M.; Richards, A.L. Scrub typhus: The geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clin. Infect. Dis. 2009, 48, S203–S230. [Google Scholar] [CrossRef] [Green Version]
- Groves, M.G.; Osterman, J.V. Host defenses in experimental scrub typhus: Genetics of natural resistance to infection. Infect. Immun. 1978, 19, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Shelite, T.R.; Saito, T.B.; Mendell, N.L.; Gong, B.; Xu, G.; Soong, L.; Valbuena, G.; Bouyer, D.H.; Walker, D.H. A hematogenously disseminated Orientia tsutsugamsushi-infected murine model of scrub typhus. PLoS Negl. Trop. Dis. 2014, 8, e2966. [Google Scholar] [CrossRef] [Green Version]
- Mendell, N.L.; Bouyer, D.H.; Walker, D.H. Murine models of scrub typhus associated with host control of Orientia tsutsugamushi infection. PLoS Negl. Trop. Dis. 2017, 11, e0005453. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Mendell, N.L.; Liang, Y.; Shelite, T.R.; Goez-Rivillas, Y.; Soong, L.; Bouyer, D.H.; Walker, D.H. CD8+ T cells provide immune protection against murine disseminated endotheliotropic Orientia tsutsugamushi infection. PLoS Negl. Trop. Dis. 2017, 11, e0005763. [Google Scholar]
- Sunyakumthorn, P.; Paris, D.H.; Chan, T.-C.; Jones, M.; Luce-Fedrow, A.; Chattopadhyay, S.; Jiang, J.; Anantatat, T.; Turner, G.D.; Day, N.P. An intradermal inoculation model of scrub typhus in Swiss CD-1 mice demonstrates more rapid dissemination of virulent strains of Orientia tsutsugamushi. PLoS ONE 2013, 8, e54570. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chan, T.-C.; Temenak, J.J.; Dasch, G.A.; Ching, W.-M.; Richards, A.L. Development of a quantitative real-time polymerase chain reaction assay specific for Orientia tsutsugamushi. Am. J. Trop. Med. Hyg. 2004, 70, 351–356. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Jiang, J.; Chan, T.-C.; Manetz, T.S.; Chao, C.-C.; Ching, W.-M.; Richards, A.L. Scrub typhus vaccine candidate Kp r56 induces humoral and cellular immune responses in cynomolgus monkeys. Infect. Immun. 2005, 73, 5039–5047. [Google Scholar] [CrossRef] [Green Version]
- Soong, L.; Mendell, N.L.; Olano, J.P.; Rockx-Brouwer, D.; Xu, G.; Goez-Rivillas, Y.; Drom, C.; Shelite, T.R.; Valbuena, G.; Walker, D.H. An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection. PLoS Negl. Trop. Dis. 2016, 10, e0004884. [Google Scholar] [CrossRef]
- Kim, D.-M.; Kim, S.W.; Choi, S.-H.; Yun, N.R. Clinical and laboratory findings associated with severe scrub typhus. BMC Infect. Dis. 2010, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Wangrangsimakul, T.; Phuklia, W.; Newton, P.N.; Richards, A.L.; Day, N.P. Scrub typhus and the misconception of doxycycline resistance. Clin. Infect. Dis. 2020, 70, 2444–2449. [Google Scholar] [CrossRef]
- Shirai, A.; Wisseman Jr, C.L. Serologic classification of scrub typhus isolates from Pakistan. Am. J. Trop. Med. Hyg. 1975, 24, 145–153. [Google Scholar] [CrossRef]
- Varghese, G.M.; Janardhanan, J.; Mahajan, S.K.; Tariang, D.; Trowbridge, P.; Prakash, J.A.; David, T.; Sathendra, S.; Abraham, O. Molecular epidemiology and genetic diversity of Orientia tsutsugamushi from patients with scrub typhus in 3 regions of India. Emerg. Infect. Dis. 2015, 21, 64–69. [Google Scholar] [CrossRef]
- Ojha, H.; Rayamajhi, S.J. Aftershocks of scrub typhus in Nepal. Lancet Glob. Health 2016, 4, e687. [Google Scholar] [CrossRef] [Green Version]
- Shishido, A. Identification and serological classification of causative agent of scrub typhus in Japan. Jpn. J. Med. Sci. Biol. 1962, 15, 308–321. [Google Scholar]
- Urakami, H.; Tamura, A.; Tarasevich, I.V.; Kadosaka, T.; Shubin, F.N. Decreased prevalence of Orientia tsutsugamushi in trombiculid mites and wild rodents in the Primorye region, Far East Russia. Microbiol. Immunol. 1999, 43, 975–978. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Wang, P.; Tseng, S.; Ko, C.; Teng, H. Epidemiology of scrub typhus in eastern Taiwan, 2000–2004. JPN J. Infect. Dis. 2006, 59, 235. [Google Scholar] [PubMed]
- Zhang, S.; Song, H.; Liu, Y.; Li, Q.; Wang, Y.; Wu, J.; Wan, J.; Li, G.; Yu, C.; Li, X. Scrub typhus in previously unrecognized areas of endemicity in China. J. Clin. Microbiol. 2010, 48, 1241–1244. [Google Scholar] [CrossRef] [Green Version]
- Kweon, S.-S.; Choi, J.-S.; Lim, H.-S.; Kim, J.-R.; Kim, K.-Y.; Ryu, S.-Y.; Yoo, H.-S.; Park, O. Rapid increase of scrub typhus, South Korea, 2001–2006. Emerg. Infect. Dis. 2009, 15, 1127–1129. [Google Scholar] [CrossRef]
- Richards, A.L.; Soeatmadji, D.W.; Widodo, M.A.; Sardjono, T.W.; Yanuwiadi, B.; Hernowati, T.E.; Baskoro, A.D.; Hakim, L.; Soendoro, M.; Rahardjo, E. Seroepidemiologic evidence for murine and scrub typhus in Malang, Indonesia. Am. J. Trop. Med. Hyg. 1997, 57, 91–95. [Google Scholar] [CrossRef]
- Cross, J.H.; Basaca-Sevilla, V. Seroepidemiology of scrub typhus and murine typhus in the Philippines. Phil. J. Microbiol. Infect. Dis. 1981, 10, 25–34. [Google Scholar]
- Ruang-areerate, T.; Jeamwattanalert, P.; Rodkvamtook, W.; Richards, A.L.; Sunyakumthorn, P.; Gaywee, J. Genotype diversity and distribution of Orientia tsutsugamushi causing scrub typhus in Thailand. J. Clin. Microbiol. 2011, 49, 2584–2589. [Google Scholar] [CrossRef] [Green Version]
- Faa, A.G.; McBride, W.J.; Garstone, G.; Thompson, R.E.; Holt, P. Scrub typhus in the Torres Strait islands of north Queensland, Australia. Emerg. Infect. Dis. 2003, 9, 480–482. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.H. Scrub Typhus—Scientific Neglect, Ever-Widening Impact. N. Engl. J. Med. 2016, 375, 913–915. [Google Scholar] [CrossRef]
- Weitzel, T.; Dittrich, S.; López, J.; Phuklia, W.; Martinez-Valdebenito, C.; Velásquez, K.; Blacksell, S.D.; Paris, D.H.; Abarca, K. Endemic Scrub Typhus in South America. N. Engl. J. Med. 2016, 375, 954–961. [Google Scholar] [CrossRef]
- Kocher, C.; Jiang, J.; Morrison, A.C.; Castillo, R.; Leguia, M.; Loyola, S.; Ampuero, J.S.; Cespedes, M.; Halsey, E.S.; Bausch, D.G. Serologic evidence of scrub typhus in the Peruvian Amazon. Emerg. Infect. Dis. 2017, 23, 1389. [Google Scholar] [CrossRef] [PubMed]
- Balcells, M.E.; Rabagliati, R.; García, P.; Poggi, H.; Oddó, D.; Concha, M.; Abarca, K.; Jiang, J.; Kelly, D.J.; Richards, A.L. Endemic scrub typhus-like illness, Chile. Emerg. Infect. Dis. 2011, 17. [Google Scholar] [CrossRef] [PubMed]
- Thiga, J.W.; Mutai, B.K.; Eyako, W.K. High seroprevalence of antibodies against spotted fever and scrub typhus bacteria in patients with febrile Illness, Kenya. Emerg. Infect. Dis. 2015, 21, 688. [Google Scholar] [CrossRef] [PubMed]
- Maina, A.N.; Farris, C.M.; Odhiambo, A.; Jiang, J.; Laktabai, J.; Armstrong, J.; Holland, T.; Richards, A.L.; O’Meara, W.P. Q fever, scrub typhus, and rickettsial diseases in children, Kenya, 2011–2012. Emerg. Infect. Dis. 2016, 22, 883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, K.C.; Jiang, J.; Maina, A.; Dueger, E.; Zayed, A.; Ahmed, A.A.; Pimentel, G.; Richards, A.L. Evidence of Rickettsia and Orientia infections among abattoir workers in Djibouti. Am. J. Trop. Med. Hyg. 2016, 95, 462–465. [Google Scholar] [CrossRef]
- Masakhwe, C.; Linsuwanon, P.; Kimita, G.; Mutai, B.; Leepitakrat, S.; Yalwala, S.; Abuom, D.; Auysawasi, N.; Gilbreath, T.; Wanja, E. Identification and characterization of Orientia chuto in trombiculid chigger mites collected from wild rodents in Kenya. J. Clin. Microbiol. 2018, 56, e01118–e01124. [Google Scholar] [CrossRef] [Green Version]
- Abarca, K.; Martínez-Valdebenito, C.; Angulo, J.; Jiang, J.; Farris, C.M.; Richards, A.L.; Acosta-Jamett, G.; Weitzel, T. Molecular description of a novel Orientia species causing scrub typhus in Chile. Emerg. Infect. Dis. 2020, 26, 2148. [Google Scholar] [CrossRef]
- Xu, G.; Chattopadhyay, S.; Jiang, J.; CHAN, T.C.; CHAO, C.C.; CHING, W.M.; Richards, A.L. Short-and Long-Term Immune Responses of CD-1 Outbred Mice to the Scrub Typhus DNA Vaccine Candidate: p47Kp. Ann. N. Y. Acad. Sci. 2005, 1063, 266–269. [Google Scholar] [CrossRef]
- Hauptmann, M.; Kolbaum, J.; Lilla, S.; Wozniak, D.; Gharaibeh, M.; Fleischer, B.; Keller, C.A. Protective and Pathogenic Roles of CD8+ T Lymphocytes in Murine Orientia tsutsugamushi Infection. PLoS Negl. Trop. Dis. 2016, 10, e0004991. [Google Scholar] [CrossRef]
- Keller, C.A.; Hauptmann, M.; Kolbaum, J.; Gharaibeh, M.; Neumann, M.; Glatzel, M.; Fleischer, B. Dissemination of Orientia tsutsugamushi and inflammatory responses in a murine model of scrub typhus. PLoS Negl. Trop. Dis. 2014, 8, e3064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suter-Riniker, F.; Berger, A.; Mayor, D.; Bittel, P.; Iseli, P.; Bodmer, T. Clinical significance of interleukin-2/gamma interferon ratios in Mycobacterium tuberculosis-specific T-cell signatures. Clin. Vaccine Immunol. 2011, 18, 1395–1396. [Google Scholar] [CrossRef] [PubMed]
- Sauzullo, I.; Scrivo, R.; Mengoni, F.; Ermocida, A.; Coppola, M.; Valesini, G.; Vullo, V.; Mastroianni, C. Multi-functional flow cytometry analysis of CD4+ T cells as an immune biomarker for latent tuberculosis status in patients treated with tumour necrosis factor (TNF) antagonists. Clin. Exp. Immunol. 2014, 176, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, J.; Liang, J.; Zhang, Y.; Teng, X.; Yuan, X.; Fan, X. Protection against Mycobacterium tuberculosis infection offered by a new multistage subunit vaccine correlates with increased number of IFN-γ+ IL-2+ CD4+ and IFN-γ+ CD8+ T cells. PLoS ONE 2015, 10, e0122560. [Google Scholar] [CrossRef]
- Caccamo, N.; Guggino, G.; Joosten, S.A.; Gelsomino, G.; Di Carlo, P.; Titone, L.; Galati, D.; Bocchino, M.; Matarese, A.; Salerno, A. Multifunctional CD4+ T cells correlate with active Mycobacterium tuberculosis infection. Eur. J. Immunol. 2010, 40, 2211–2220. [Google Scholar] [CrossRef]
- Eneslätt, K.; Normark, M.; Björk, R.; Rietz, C.; Zingmark, C.; Wolfraim, L.A.; Stöven, S.; Sjöstedt, A. Signatures of T cells as correlates of immunity to Francisella tularensis. PLoS ONE 2012, 7, e32367. [Google Scholar] [CrossRef]
- Maybeno, M.; Redeker, A.; Welten, S.P.; Peters, B.; Loughhead, S.M.; Schoenberger, S.P.; Sette, A.; Arens, R. Polyfunctional CD4+ T cell responses to immunodominant epitopes correlate with disease activity of virulent Salmonella. PLoS ONE 2012, 7, e43481. [Google Scholar] [CrossRef] [Green Version]
- Macedo, A.B.; Sánchez-Arcila, J.C.; Schubach, A.d.O.; Mendonça, S.; Marins-Dos-Santos, A.; de Fatima Madeira, M.; Gagini, T.; Pimentel, M.; De Luca, P. Multifunctional CD4+ T cells in patients with American cutaneous leishmaniasis. Clin. Exp. Immunol. 2012, 167, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Darrah, P.A.; Patel, D.T.; De Luca, P.M.; Lindsay, R.W.; Davey, D.F.; Flynn, B.J.; Hoff, S.T.; Andersen, P.; Reed, S.G.; Morris, S.L. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 2007, 13, 843–850. [Google Scholar] [CrossRef]
- Käser, T.; Pasternak, J.; Delgado-Ortega, M.; Hamonic, G.; Lai, K.; Erickson, J.; Walker, S.; Dillon, J.; Gerdts, V.; Meurens, F. Chlamydia suis and Chlamydia trachomatis induce multifunctional CD4 T cells in pigs. Vaccine 2017, 35, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Schub, D.; Janssen, E.; Leyking, S.; Sester, U.; Assmann, G.; Hennes, P.; Smola, S.; Vogt, T.; Rohrer, T.; Sester, M. Altered Phenotype and Functionality of Varicella Zoster Virus–Specific Cellular Immunity in Individuals With Active Infection. J. Infect. Dis. 2015, 211, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Mattila, J.T.; Diedrich, C.R.; Lin, P.L.; Phuah, J.; Flynn, J.L. Simian immunodeficiency virus-induced changes in T cell cytokine responses in cynomolgus macaques with latent Mycobacterium tuberculosis infection are associated with timing of reactivation. J. Immunol. 2011, 186, 3527–3537. [Google Scholar] [CrossRef] [Green Version]
- Perdomo-Celis, F.; Salvato, M.S.; Medina-Moreno, S.; Zapata, J.C. T-cell response to viral hemorrhagic fevers. Vaccines 2019, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, J.S.; Adetifa, I.M.; Hill, P.C.; Adegbola, R.A.; Ota, M.O. Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur. J. Immunol. 2009, 39, 723–729. [Google Scholar] [CrossRef]
- Casey, R.; Blumenkrantz, D.; Millington, K.; Montamat-Sicotte, D.; Kon, O.M.; Wickremasinghe, M.; Bremang, S.; Magtoto, M.; Sridhar, S.; Connell, D. Enumeration of functional T-cell subsets by fluorescence-immunospot defines signatures of pathogen burden in tuberculosis. PLoS ONE 2010, 5, e15619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millington, K.A.; Innes, J.A.; Hackforth, S.; Hinks, T.S.; Deeks, J.J.; Dosanjh, D.P.; Guyot-Revol, V.; Gunatheesan, R.; Klenerman, P.; Lalvani, A. Dynamic relationship between IFN-γ and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J. Immunol. 2007, 178, 5217–5226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seder, R.A.; Darrah, P.A.; Roederer, M. T-cell quality in memory and protection: Implications for vaccine design. Nat. Rev. Immunol. 2008, 8, 247–258. [Google Scholar] [CrossRef]
- Lindenstrøm, T.; Agger, E.M.; Korsholm, K.S.; Darrah, P.A.; Aagaard, C.; Seder, R.A.; Rosenkrands, I.; Andersen, P. Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J. Immunol. 2009, 182, 8047–8055. [Google Scholar] [CrossRef]
- Jia, Q.; Bowen, R.; Sahakian, J.; Dillon, B.J.; Horwitz, M.A. A heterologous prime-boost vaccination strategy comprising the Francisella tularensis live vaccine strain capB mutant and recombinant attenuated Listeria monocytogenes expressing F. tularensis IglC induces potent protective immunity in mice against virulent F. tularensis aerosol challenge. Infect. Immun. 2013, 81, 1550–1561. [Google Scholar]
- Soong, L.; Wang, H.; Shelite, T.R.; Liang, Y.; Mendell, N.L.; Sun, J.; Gong, B.; Valbuena, G.A.; Bouyer, D.H.; Walker, D.H. Strong type 1, but impaired type 2, immune responses contribute to Orientia tsutsugamushi-induced pathology in mice. PLoS Negl. Trop. Dis. 2014, 8, e3191. [Google Scholar] [CrossRef]
- Valbuena, G.; Bradford, W.; Walker, D.H. Expression analysis of the T-cell-targeting chemokines CXCL9 and CXCL10 in mice and humans with endothelial infections caused by rickettsiae of the spotted fever group. Am. J. Pathol. 2003, 163, 1357–1369. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.A.; Holmes, B.J.; Sun, J.C.; Bevan, M.J. Developing and maintaining protective CD8+ memory T cells. Immunol. Rev. 2006, 211, 146–153. [Google Scholar] [CrossRef]
- Astrup, E.; Janardhanan, J.; Otterdal, K.; Ueland, T.; Prakash, J.A.; Lekva, T.; Strand, Ø.A.; Abraham, O.; Thomas, K.; Damås, J.K. Cytokine network in scrub typhus: High levels of interleukin-8 are associated with disease severity and mortality. PLoS Negl. Trop. Dis. 2014, 8, e2648. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.R.; Lee, Y.S.; Lee, S.S. Kinetics of inflammatory cytokines in patients with scrub typhus receiving doxycycline treatment. J. Infect. 2008, 56, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.-S.; Yun, J.-H.; Seong, S.-Y.; Choi, M.-S.; Kim, I.-S. Chemokine and cytokine production during Orientia tsutsugamushi infection in mice. Microb. Pathog. 2004, 36, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, C.; Moll, H.; Solbach, W.; Röllinghoff, M. Tumor necrosis factor-α in combination with interferon-γ, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. Eur. J. Immunol. 1990, 20, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Bekker, L.-G.; Freeman, S.; Murray, P.J.; Ryffel, B.; Kaplan, G. TNF-α controls intracellular mycobacterial growth by both inducible nitric oxide synthase-dependent and inducible nitric oxide synthase-independent pathways. J. Immunol. 2001, 166, 6728–6734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, B.R.; Flynn, J.; McDonough, K.; Kress, Y.; Chan, J. Experimental approaches to mechanisms of protection and pathogenesis in M. tuberculosis infection. Immunobiology 1994, 191, 526–536. [Google Scholar] [CrossRef]
- Nüssler, A.; Drapier, J.C.; Rénia, L.; Pied, S.; Miltgen, F.; Gentilini, M.; Mazier, D. L-Arginine-dependent destruction of intrahepatic malaria parasites in response to tumor necrosis factor and/or interleukin 6 stimulation. Eur. J. Immunol. 1991, 21, 227–230. [Google Scholar] [CrossRef]
- Mastroeni, P.; Villarreal-Ramos, B.; Hormaeche, C.E. Role of T cells, TNFα and IFNγ in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro− salmonella vaccines. Microb. Pathog. 1992, 13, 477–491. [Google Scholar] [CrossRef]
- Lumsden, J.M.; Schwenk, R.J.; Rein, L.E.; Moris, P.; Janssens, M.; Ofori-Anyinam, O.; Cohen, J.; Kester, K.E.; Heppner, D.G.; Krzych, U. Protective immunity induced with the RTS, S/AS vaccine is associated with IL-2 and TNF-α producing effector and central memory CD4+ T cells. PLoS ONE 2011, 6, e20775. [Google Scholar] [CrossRef] [Green Version]
- Mearns, H.; Geldenhuys, H.D.; Kagina, B.M.; Musvosvi, M.; Little, F.; Ratangee, F.; Mahomed, H.; Hanekom, W.A.; Hoff, S.T.; Ruhwald, M. H1: IC31 vaccination is safe and induces long-lived TNF-α+ IL-2+ CD4 T cell responses in M. tuberculosis infected and uninfected adolescents: A randomized trial. Vaccine 2017, 35, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, J.S.; Young, J.M.; Peterson, K.L.; Sanneh, B.; Whittle, H.C.; Rowland-Jones, S.L.; Adegbola, R.A.; Jaye, A.; Ota, M.O. Polyfunctional CD4+ and CD8+ T cell responses to tuberculosis Antigens in HIV-1–infected patients before and after anti-retroviral treatment. J. Immunol. 2010, 184, 6537–6544. [Google Scholar] [CrossRef] [Green Version]
- Day, C.L.; Mkhwanazi, N.; Reddy, S.; Mncube, Z.; van der Stok, M.; Klenerman, P.; Walker, B.D. Detection of polyfunctional Mycobacterium tuberculosis–specific T cells and association with viral load in HIV-1–infected persons. J. Infect. Dis. 2008, 197, 990–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dooms, H.; Kahn, E.; Knoechel, B.; Abbas, A.K. IL-2 induces a competitive survival advantage in T lymphocytes. J. Immunol. 2004, 172, 5973–5979. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Huston, G.; Duso, D.; Lepak, N.; Roman, E.; Swain, S.L. CD4+ T cell effectors can become memory cells with high efficiency and without further division. Nat. Immunol. 2001, 2, 705–710. [Google Scholar] [CrossRef]
- Batista, F.D.; Harwood, N.E. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 2009, 9, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Huaman, M.C.; Mullen, G.E.; Long, C.A.; Mahanty, S. Plasmodium falciparum apical membrane antigen 1 vaccine elicits multifunctional CD4 cytokine-producing and memory T cells. Vaccine 2009, 27, 5239–5246. [Google Scholar] [CrossRef] [Green Version]
- Kester, K.E.; Cummings, J.F.; Ofori-Anyinam, O.; Ockenhouse, C.F.; Krzych, U.; Moris, P.; Schwenk, R.; Nielsen, R.A.; Debebe, Z.; Pinelis, E. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS, S/AS01B and RTS, S/AS02A in malaria-naive adults: Safety, efficacy, and immunologic associates of protection. J. Infect. Dis. 2009, 200, 337–346. [Google Scholar] [CrossRef]
- Litjens, N.H.; Huisman, M.; Hijdra, D.; Lambrecht, B.M.; Stittelaar, K.J.; Betjes, M.G. IL-2 producing memory CD4+ T lymphocytes are closely associated with the generation of IgG-secreting plasma cells. J. Immunol. 2008, 181, 3665–3673. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.C. T cell-dependent B cell activation. Annu. Rev. Immunol. 1993, 11, 331–360. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, H.; Takada, N.; Nakamura, T.; Ueda, T. Increased levels of macrophage colony-stimulating factor, gamma interferon, and tumor necrosis factor alpha in sera of patients with Orientia tsutsugamushi infection. J. Clin. Microbiol. 1997, 35, 3320–3322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
10 dpi | 21 dpi | |||
---|---|---|---|---|
Karp ID | Woods ID | Karp ID | Woods ID | |
Enlarged spleen | 5/5 | 7/7 | 5/5 | 7/7 |
Fluid in peritoneum | 1/5 | 1/7 | 2/5 | |
Pale liver | ||||
Pale kidney | 5/5 | |||
Pale heart | ||||
Enlarged stomach | ||||
Enlarged liver | 5/5 | |||
Enlarged lungs | 5/5 |
10 dpi | 14 dpi | 21 dpi | |||
---|---|---|---|---|---|
Karp IP | Woods IP | Karp IP | Karp IP | Woods IP | |
Enlarged spleen | 5/5 | 5/7 | 3/3 | 7/8 | |
Fluid in peritoneum | 5/5 | 1/7 | 3/3 | 1/1 | |
Pale liver | 5/5 | 3/3 | |||
Pale kidney | 1/5 | 1/1 | |||
Pale heart | 1/5 | ||||
Enlarged stomach | 3/3 | 1/8 | |||
Enlarged liver | 1/1 | ||||
Enlarged lungs | 1/1 |
Karp IP vs Karp ID | IFN | IL2 | TNF | IFN-IL2 | IFN-TNF | IL2-TNF | IL2-TNF-IFN |
10d vs 14d | * | ||||||
10d vs 21d | * | * | |||||
14d vs 21d | * | ||||||
Karp IP vs Woods IP | IFN | IL2 | TNF | IFN-IL2 | IFN-TNF | IL2-TNF | IL2-TNF-IFN |
10d vs 10d | * | * | |||||
10d vs 21d | # | * | # | * | |||
14d vs 21d | # | * | # | * | |||
Karp IP vs Woods ID | IFN | IL2 | TNF | IFN-IL2 | IFN-TNF | IL2-TNF | IL2-TNF-IFN |
10d vs 10d | * | * | |||||
10d vs 21d | # | * | # | * | |||
14d vs 21d | # | * | # | * |
Karp IP vs Karp ID | IFN | IL2 | TNF | IFN-IL2 | IFN-TNF | IL2-TNF | IL2-TNF-IFN |
10d vs 14d | |||||||
10d vs 21d | |||||||
14d vs 21d | |||||||
Karp IP vs Woods IP | IFN | IL2 | TNF | IFN-IL2 | IFN-TNF | IL2-TNF | IL2-TNF-IFN |
10d vs 10d | |||||||
10d vs 21d | # | ||||||
14d vs 21d | * | ||||||
Karp IP vs Woods ID | IFN | IL2 | TNF | IFN-IL2 | IFN-TNF | IL2-TNF | IL2-TNF-IFN |
10d vs 10d | |||||||
10d vs 21d | # | ||||||
14d vs 21d | * | # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luce-Fedrow, A.; Chattopadhyay, S.; Chan, T.-C.; Pearson, G.; Patton, J.B.; Richards, A.L. Comparison of Lethal and Nonlethal Mouse Models of Orientia tsutsugamushi Infection Reveals T-Cell Population-Associated Cytokine Signatures Correlated with Lethality and Protection. Trop. Med. Infect. Dis. 2021, 6, 121. https://doi.org/10.3390/tropicalmed6030121
Luce-Fedrow A, Chattopadhyay S, Chan T-C, Pearson G, Patton JB, Richards AL. Comparison of Lethal and Nonlethal Mouse Models of Orientia tsutsugamushi Infection Reveals T-Cell Population-Associated Cytokine Signatures Correlated with Lethality and Protection. Tropical Medicine and Infectious Disease. 2021; 6(3):121. https://doi.org/10.3390/tropicalmed6030121
Chicago/Turabian StyleLuce-Fedrow, Alison, Suchismita Chattopadhyay, Teik-Chye Chan, Gregory Pearson, John B. Patton, and Allen L. Richards. 2021. "Comparison of Lethal and Nonlethal Mouse Models of Orientia tsutsugamushi Infection Reveals T-Cell Population-Associated Cytokine Signatures Correlated with Lethality and Protection" Tropical Medicine and Infectious Disease 6, no. 3: 121. https://doi.org/10.3390/tropicalmed6030121
APA StyleLuce-Fedrow, A., Chattopadhyay, S., Chan, T. -C., Pearson, G., Patton, J. B., & Richards, A. L. (2021). Comparison of Lethal and Nonlethal Mouse Models of Orientia tsutsugamushi Infection Reveals T-Cell Population-Associated Cytokine Signatures Correlated with Lethality and Protection. Tropical Medicine and Infectious Disease, 6(3), 121. https://doi.org/10.3390/tropicalmed6030121