Combining Immunoassays to Identify Zika Virus Infection in Dengue-Endemic Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serum Samples
2.2. Production of ZIKV and DENV NS1
2.3. Indirect ELISA
2.4. ZIKV NS1 BOB ELISA
3. Results
3.1. Analysis of Convalescent Samples of DENV-Infected Patients
3.2. Analysis of Zika Infection Samples in the Convalescent Phase
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plourde, A.R.; Bloch, E.M. A Literature Review of Zika Virus. Emerg. Infect. Dis. 2016, 22, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Xie, X.; Barrett, A.D.; Garcia-Blanco, M.A.; Tesh, R.B.; Vasconcelos, P.F.; Vasilakis, N.; Weaver, S.C.; Shi, P.Y. Zika Virus: Diagnosis, Therapeutics, and Vaccine. ACS Infect. Dis. 2016, 2, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Ayres, C.F.J.; Guedes, D.R.D.; Paiva, M.H.S.; Morais-Sobral, M.C.; Krokovsky, L.; Machado, L.C.; Melo-Santos, M.A.V.; Crespo, M.; Oliveira, C.M.F.; Ribeiro, R.S.; et al. Zika virus detection, isolation and genome sequencing through Culicidae sampling during the epidemic in Vitória, Espírito Santo, Brazil. Parasites Vectors 2019, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.B.B.; da Silva, A.S.; Cunha, M.S.; Cabral, A.D.; de Oliveira, K.C.A.; Gaspari, E.; Prudencio, C.R. Zika virus serological diagnosis: Commercial tests and monoclonal antibodies as tools. J. Venom. Anim. Toxins Incl. Trop Dis. 2020, 26, e20200019. [Google Scholar] [CrossRef] [PubMed]
- Stettler, K.; Beltramello, M.; Espinosa, D.A.; Graham, V.; Cassotta, A.; Bianchi, S.; Vanzetta, F.; Minola, A.; Jaconi, S.; Mele, F.; et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 2016, 353, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Wikan, N.; Smith, D.R. Zika virus: History of a newly emerging arbovirus. Lancet Infect. Dis. 2016, 16, e119–e126. [Google Scholar] [CrossRef]
- Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Pond, W.L. Arthropod-Borne virus antibodies in sera from residents of South-East Asia. Trans. R. Soc. Trop. Med. Hyg. 1963, 57, 364–371. [Google Scholar] [CrossRef]
- Ho, Z.J.M.; Hapuarachchi, H.C.; Barkham, T.; Chow, A.; Ng, L.C.; Lee, J.M.V.; Leo, Y.S.; Prem, K.; Lim, Y.H.G.; de Sessions, P.F.; et al. Outbreak of Zika virus infection in Singapore: An epidemiological, entomological, virological, and clinical analysis. Lancet Infect. Dis. 2017, 17, 813–821. [Google Scholar] [CrossRef]
- Khongwichit, S.; Wikan, N.; Auewarakul, P.; Smith, D.R. Zika virus in Thailand. Microbes. Infect. 2018, 20, 670–675. [Google Scholar] [CrossRef]
- Song, B.-H.; Yun, S.-I.; Woolley, M.; Lee, Y.-M. Zika virus: History, epidemiology, transmission, and clinical presentation. J. Neuroimmunol. 2017, 308, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Phatihattakorn, C.; Wongsa, A.; Pongpan, K.; Anuwuthinawin, S.; Mungmanthong, S.; Wongprasert, M.; Tassaneetrithep, B. Seroprevalence of Zika virus in pregnant women from central Thailand. PLoS ONE 2021, 16, e0257205. [Google Scholar] [CrossRef]
- Herrada, C.A.; Kabir, M.A.; Altamirano, R.; Asghar, W. Advances in Diagnostic Methods for Zika Virus Infection. J. Med. Device. 2018, 12, 0408021–4080211. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Ortiz, D.A.; Yang, Y.; Wong, S.J.; Kramer, L.D.; Shi, P.Y.; Loeffelholz, M.J.; Ren, P. Evaluation of a Novel Reporter Virus Neutralization Test for Serological Diagnosis of Zika and Dengue Virus Infection. J. Clin. Microbiol. 2017, 55, 3028–3036. [Google Scholar] [CrossRef]
- Nurtop, E.; Villarroel, P.M.S.; Pastorino, B.; Ninove, L.; Drexler, J.F.; Roca, Y.; Gake, B.; Dubot-Peres, A.; Grard, G.; Peyrefitte, C.; et al. Combination of ELISA screening and seroneutralisation tests to expedite Zika virus seroprevalence studies. Virol. J. 2018, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, E.J.M.; Bonaparte, M.I.; Luo, P.; Vincent, T.S.; Hu, B.; George, J.K.; Áñez, G.; Noriega, F.; Zheng, L.; Huleatt, J.W. Use of a Blockade-of-Binding ELISA and Microneutralization Assay to Evaluate Zika Virus Serostatus in Dengue-Endemic Areas. Am. J. Trop. Med. Hyg. 2019, 101, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.Y.; Youn, H.H.; Brites, C.; Tsai, J.J.; Tyson, J.; Pedroso, C.; Drexler, J.F.; Stone, M.; Simmons, G.; Busch, M.P.; et al. Distinguishing Secondary Dengue Virus Infection from Zika Virus Infection with Previous Dengue by a Combination of 3 Simple Serological Tests. Clin. Infect. Dis. 2017, 65, 1829–1836. [Google Scholar] [CrossRef]
- Pereira, S.S.; Andreata-Santos, R.; Pereira, L.R.; Soares, C.P.; Félix, A.C.; de Andrade, P.; Durigon, E.L.; Romano, C.M.; Ferreira, L.C.S. NS1-based ELISA test efficiently detects dengue infections without cross-reactivity with Zika virus. Int. J. Infect. Dis. 2021, 112, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Balmaseda, A.; Stettler, K.; Medialdea-Carrera, R.; Collado, D.; Jin, X.; Zambrana, J.V.; Jaconi, S.; Cameroni, E.; Saborio, S.; Rovida, F.; et al. Antibody-based assay discriminates Zika virus infection from other flaviviruses. Proc. Natl. Acad. Sci. USA 2017, 114, 8384–8389. [Google Scholar] [CrossRef]
- Sabchareon, A.; Sirivichayakul, C.; Limkittikul, K.; Chanthavanich, P.; Suvannadabba, S.; Jiwariyavej, V.; Dulyachai, W.; Pengsaa, K.; Margolis, H.S.; Letson, G.W. Dengue infection in children in Ratchaburi, Thailand: A cohort study. I. Epidemiology of symptomatic acute dengue infection in children, 2006–2009. PLoS Negl. Trop. Dis. 2012, 6, e1732. [Google Scholar] [CrossRef] [Green Version]
- Sriburin, P.; Sittikul, P.; Kosoltanapiwat, N.; Sirinam, S.; Arunsodsai, W.; Sirivichayakul, C.; Limkittikul, K.; Chatchen, S. Incidence of Zika Virus Infection from a Dengue Epidemiological Study of Children in Ratchaburi Province, Thailand. Viruses 2021, 13, 1802. [Google Scholar] [CrossRef] [PubMed]
- Sirinam, S.; Chatchen, S.; Arunsodsai, W.; Guharat, S.; Limkittikul, K. Seroprevalence of Zika Virus in Amphawa District, Thailand, after the 2016 Pandemic. Viruses 2022, 14, 476. [Google Scholar] [CrossRef] [PubMed]
- Russell, P.K.; Udomsakdi, S.; Halstead, S.B. Antibody response in dengue and dengue hemorrhagic fever. Jpn. J. Med. Sci. Biol. 1967, 20, 103–108. [Google Scholar] [PubMed]
Sample/Test | ZIKV IgG | ZIKV NS1-IgG | ZIKV NS1-IgG /DENV NS1-IgG | BOB | ZIKV NS1-IgG followed by BOB | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+ | − | % | + | − | % | + | − | % | + | − | % | + | − | % | |
Non-flavivirus (n = 6) | 0 | 6 | 0% | 0 | 6 | 0% | 0 | 6 | 0% | 0 | 3 | 0% | 0 | 3 | 0% |
Primary DENV (n = 10) | 2 | 8 | 20% | 1 | 9 | 10% | 1 | 9 | 10% | 0 | 10 | 0% | 0 | 10 | 0% |
Secondary DENV (n = 21) | 15 | 6 | 71.4% | 10 | 11 | 47.6% | 2 | 19 | 9.52% | 2 | 19 | 9.52% | 2 | 19 | 9.52% |
ZIKV (n = 30) | 30 | 0 | 100% | 30 | 0 | 100% | 9 | 21 | 30% | 3 | 27 | 10% | 3 | 27 | 10% |
ELISA | Sensitivity (95% CI) | Specificity | ||
---|---|---|---|---|
In Primary DENV Samples (95% CI) | In Secondary DENV Samples (95% CI) | In Overall Serum Samples (95% CI) | ||
ZIKV IgG | 100% (88.7–100%) | 80% (49.0–96.5%) | 28.57% (13.8–50%) | 54.05% (38.4–69%) |
ZIKV NS1-IgG | 100% (88.7–100%) | 90% (59.6–99.5%) | 52.4% (32.4–71.7%) | 70.27% (54.2–82.5%) |
ZIKV NS1-IgG/DENV NS1-IgG | 30% (16.7–47.9%) | 90% (59.6–99.5%) | 90.48% (71.1–98.3%) | 91.89% (78.7–97.2%) |
BOB | 10% (3.5–25.6%) | 100% (72.3–100%) | 90.48% (71.1–98.3%) | 94.59% (82.3–99%) |
ZIKV NS1-IgG followed by BOB | 10% (3.5–25.6%) | 100% (72.3–100%) | 90.48% (71.1–98.3%) | 94.59% (82.3–99%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sittikul, P.; Sriburin, P.; Rattanamahaphoom, J.; Limkittikul, K.; Sirivichayakul, C.; Chatchen, S. Combining Immunoassays to Identify Zika Virus Infection in Dengue-Endemic Areas. Trop. Med. Infect. Dis. 2022, 7, 254. https://doi.org/10.3390/tropicalmed7100254
Sittikul P, Sriburin P, Rattanamahaphoom J, Limkittikul K, Sirivichayakul C, Chatchen S. Combining Immunoassays to Identify Zika Virus Infection in Dengue-Endemic Areas. Tropical Medicine and Infectious Disease. 2022; 7(10):254. https://doi.org/10.3390/tropicalmed7100254
Chicago/Turabian StyleSittikul, Pichamon, Pimolpachr Sriburin, Jittraporn Rattanamahaphoom, Kriengsak Limkittikul, Chukiat Sirivichayakul, and Supawat Chatchen. 2022. "Combining Immunoassays to Identify Zika Virus Infection in Dengue-Endemic Areas" Tropical Medicine and Infectious Disease 7, no. 10: 254. https://doi.org/10.3390/tropicalmed7100254
APA StyleSittikul, P., Sriburin, P., Rattanamahaphoom, J., Limkittikul, K., Sirivichayakul, C., & Chatchen, S. (2022). Combining Immunoassays to Identify Zika Virus Infection in Dengue-Endemic Areas. Tropical Medicine and Infectious Disease, 7(10), 254. https://doi.org/10.3390/tropicalmed7100254