An Overview on Leishmaniasis in Romania: Diagnosis and Therapeutics
Abstract
:1. Introduction
2. Epidemiological Data of Leishmaniasis in Humans and Animals Reported in Romania
2.1. Autochthonous and Imported Animal Cases
2.2. Animal Screening Studies
2.3. Human Cases of Leishmaniasis
3. Diagnostic Tools Available for Leishmaniasis Confirmation
3.1. Clinical Diagnosis
3.2. Conventional Diagnosis
3.3. Serological Diagnosis
3.4. Nonspecific Tests
3.5. Specific Tests
3.6. Enzyme-Linked Immunosorbent Assay (ELISA)
3.7. Immunochromatographic Tests
3.8. PCR Diagnosis
3.9. Real-Time PCR
3.10. Nested and Semi-Nested PCR
3.11. MALDI-TOF Mass Spectrometry
3.12. Clinical Diagnosis in Veterinary Medicine
4. Conventional Antileishmanial Therapy
4.1. Pentavalent Antimonials
4.2. Amphotericin B Deoxycholate/Liposomal Amphotericin B
4.3. Miltefosine
4.4. Nucleoside Analogues
4.5. Paromomycin
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Manual on Visceral Leishmaniasis Control; No. WHO/LEISH/96.40; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Mcgwire, B.S.; Satoskar, A.R. Leishmaniasis: Clinical syndromes and treatment. QJM Int. J. Med. 2014, 107, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arango Duque, G.; Descoteaux, A. Leishmania survival in the macrophage: Where the ends justify the means. Curr. Opin. Microbiol. 2015, 26, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Aronson, N.; Herwaldt, B.L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and treatment of leishmaniasis: Clinical practice guidelines by the infectious diseases society of America (IDSA) and the American Society of tropical medicine and hygiene (ASTMH). Am. J. Trop. Med. Hyg. 2016, 96, 24–45. [Google Scholar] [CrossRef]
- Thakur, S.; Joshi, J.; Kaur, S. Leishmaniasis diagnosis: An update on the use of parasitological, immunological and molecular methods. J. Parasit. Dis. 2020, 44, 253–272. [Google Scholar] [CrossRef]
- Desjeux, P. Leishmaniasis: Current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis. 2004, 27, 305–318. [Google Scholar] [CrossRef]
- Pigott, D.M.; Bhatt, S.; Golding, N.; Duda, K.A.; Battle, K.E.; Brady, O.J.; Messina, J.P.; Balard, Y.; Bastien, P.; Pratlong, F.; et al. Global distribution maps of the Leishmaniases. Elife 2014, 3, e02851. [Google Scholar] [CrossRef]
- Zijlstra, E.E. Biomarkers in Post-kala-azar Dermal Leishmaniasis. Front. Cell Infect. Microbiol. 2019, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Arevalo, J.; Ramirez, L.; Adaui, V.; Zimic, M.; Tulliano, G.; Miranda-Verástegui, C.; Lazo, M.; Loayza-Muro, R.; De Doncker, S.; Maurer, A.; et al. Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J. Infect. Dis. 2007, 195, 1846–1851. [Google Scholar] [CrossRef] [Green Version]
- Sundar, S.; Chakravarty, J. An update on pharmacotherapy for leishmaniasis. Expert Opin. Pharmacother. 2015, 16, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Mihăilescu, M.N.D. Two cases of spontaneous canine leishmaniasis in Romania. Arch. Vet 1934, 26, 43–53. [Google Scholar]
- Mircean, V.; Dumitrache, M.O.; Mircean, M.; Bolfa, P.; Györke, A.; Mihalca, A.D. Autochthonous canine leishmaniasis in Romania: Neglected or (re)emerging? Parasites Vectors 2014, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Pavel, G.; Timofte, D.; Mocanu, D.; Malancus, R.; Solcan, C. Imported leishmaniasis in a dog in a sandfly-populated area in northeastern Romania. J. Vet. Diagnostic Investig. 2017, 29, 683–685. [Google Scholar] [CrossRef] [PubMed]
- Tanase, O.I.; Daraban, C.; Velescu, E.; Boghean, D.; Bocaneti-Daraban, F. Symptomatic leishmaniasis in an italian segugio dog from Northeastern Romania: A case report. Iran. J. Parasitol. 2019, 13, 673–678. [Google Scholar]
- Toma, G.C.; Taulescu, M.; Mircean, V.; Ionica, A.M.; Cora, R.; Catoi, C.; Dumitrache, M.O. Imported canine leishmaniasis in Romania: A case report. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Vet. Med. 2018, 75, 125–128. [Google Scholar] [CrossRef]
- Hamel, D.; Silaghi, C.; Lescai, D.; Pfister, K. Epidemiological aspects on vector-borne infections in stray and pet dogs from Romania and Hungary with focus on Babesia spp. Parasitol. Res. 2011, 110, 1537–1545. [Google Scholar] [CrossRef]
- Dumitrache, M.O.; Nachum-Biala, Y.; Gilad, M.; Mircean, V.; Cazan, C.D.; Mihalca, A.D.; Baneth, G. The quest for canine leishmaniasis in Romania: The presence of an autochthonous focus with subclinical infections in an area where disease occurred. Parasites Vectors 2016, 9, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihalca, A.D.; Cazan, C.D.; Sulesco, T.; Dumitrache, M.O. A historical review on vector distribution and epidemiology of human and animal leishmanioses in Eastern Europe. Res. Vet. Sci. 2019, 123, 185–191. [Google Scholar] [CrossRef]
- Ionica, A.M.; Deak, G.; Kalmar, Z.; Gherman, C.M.; Mihalca, A.D.; Dumitrache, M.O. Molecular survey on Leishmania infantum infection in red foxes (Vulpes Vulpes) from Romania. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Vet. Med. 2017, 74, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Mitková, B.; Hrazdilová, K.; D’Amico, G.; Duscher, G.G.; Suchentrunk, F.; Forejtek, P.; Gherman, C.M.; Matei, I.A.; Ionicǎ, A.M.; Daskalaki, A.A.; et al. Eurasian golden jackal as host of canine vector-borne protists. Parasites Vectors 2017, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Cimpan, A.A.; Diakou, A.; Papadopoulos, E.; Miron, L.D. Serological study of exposure to Leishmania in dogs living in shelters, in south-east Romania. Rev. Rom. Med. Vet. 2019, 29, 54–58. [Google Scholar]
- Cazan, C.D.; Ionicǎ, A.M.; Matei, I.A.; D’Amico, G.; Muñoz, C.; Berriatua, E.; Dumitrache, M.O. Detection of Leishmania infantum DNA and antibodies against Anaplasma spp., Borrelia burgdorferi s.l. And Ehrlichia canis in a dog kennel in South-Central Romania. Acta Vet. Scand. 2020, 62, 42. [Google Scholar] [CrossRef] [PubMed]
- Gǎman, A.; Dobrea, C.; Gǎman, G. A case of visceral leishmaniasis in oltenia region (Romania). Rom. J. Morphol. Embryol. 2010, 51, 391–394. [Google Scholar] [PubMed]
- Minculescu M Primul focar de leishmanioză infantilă identificat în România. Stud. Cercet. Inframicrobiol. 1956, 6, 595.
- Erscoiu, S.; Voinea, C.; Florescu, S.C.E. Imported visceral leishmaniasis in Romania. Rom J. Parasitol. 2004, 14, 89–91. [Google Scholar]
- Neghina, R.; Neghina, A.M.; Merkler, C.; Marincu, I.; Moldovan, R.; Iacobiciu, I. Importation of visceral leishmaniasis in returning Romanian workers from Spain. Travel Med. Infect. Dis. 2009, 7, 35–39. [Google Scholar] [CrossRef]
- Gogoaşe, M.G.; Teodorescu, I.; Preda, C.; Ionescu, S.C. Two case reports on visceral leishmaniasis diagnosed in Romania. Roum. Arch. Microbiol. Immunol. 2013, 72, 49–62. [Google Scholar]
- Alexa, T.; Luca, A.; Crǎcanǎ, I.; Merticariu, A.; Dǎnǎilǎ, C. Leishmaniasis—An unusual cause of splenomegaly in Romania. Med.-Surg. J. 2014, 118, 101–106. [Google Scholar]
- Dos Santos Marques, L.H.; Da Rocha, I.C.M.; Reis, I.A.; Da Cunha, G.M.E.R.; Oliveira, E.; Pfeilsticker, T.R.; De Araújo, V.E.M.; Morais, M.H.F.; Rabello, A.; Carneiro, M. Leishmania infantum: Illness, transmission profile and risk factors for asymptomatic infection in an endemic metropolis in Brazil. Parasitology 2017, 144, 546–556. [Google Scholar] [CrossRef]
- Reithinger, R. Diagnosis and treatment of cutaneous leishmaniasis. Expert Rev. Dermatol. 2008, 3, 315–327. [Google Scholar] [CrossRef]
- Shirian, S.; Oryan, A.; Hatam, G.R.; Panahi, S.; Daneshbod, Y. Comparison of conventional, molecular, and immunohistochemical methods in diagnosis of typical and atypical cutaneous leishmaniasis. Arch. Pathol. Lab. Med. 2008, 3, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Elmahallawy, E.K.; Sampedro Martinez, A.; Rodriguez-Granger, J.; Hoyos-Mallecot, Y.; Agil, A.; Navarro Mari, J.M.; Gutierrez Fernandez, J. Diagnosis of leishmaniasis. J. Infect. Dev. Ctries. 2014, 8, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundar, S.; Rai, M. Laboratory diagnosis of visceral leishmaniasis. Clin. Diagn. Lab. Immunol. 2002, 9, 951–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, P.; Dayama, A.; Mehrotra, S.; Sundar, S. Diagnosis of visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurya, R.; Mehrotra, S.; Prajapati, V.K.; Nylén, S.; Sacks, D.; Sundar, S. Evaluation of blood agar microtiter plates for culturing leishmania parasites to titrate parasite burden in spleen and peripheral blood of patients with visceral leishmaniasis. J. Clin. Microbiol. 2010, 48, 1932–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neghina, R.; Neghina, A.M.; Marincu, I.; Iacobiciu, I. Epidemiology and history of human parasitic diseases in Romania. Parasitol. Res. 2011, 108, 1333–1346. [Google Scholar] [CrossRef]
- Antonio, L.D.F.; Fagundes, A.; Oliveira, R.V.C.; Pinto, P.G.; Bedoya-Pacheco, S.J.; Vasconcellos, D.C.F.E.; Valete-Rosalino, M.C.; Lyra, M.R.; Passos, S.R.L.; Pimentel, M.I.F.; et al. Montenegro skin test and age of skin lesion as predictors of treatment failure in cutaneous leishmaniasis. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Singh, O.P.; Sundar, S. Developments in diagnosis of visceral leishmaniasis in the elimination era. J. Parasitol. Res. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Attar, Z.J.; Chance, M.L.; El-Safi, S.; Carney, J.; Azazy, A.; El-Hadi, M.; Dourado, C.; Hommel, M. Latex agglutination test for the detection of urinary antigens in visceral leishmaniasis. Acta Trop. 2001, 78, 11–16. [Google Scholar] [CrossRef]
- Koltas, I.S.; Eroglu, F.; Uzun, S.; Alabaz, D. A comparative analysis of different molecular targets using PCR for diagnosis of old world leishmaniasis. Exp. Parasitol. 2016, 164, 43–48. [Google Scholar] [CrossRef]
- Colombo, F.A.; Pereira-Chioccola, V.L.; Meira, C.D.S.; Motoie, G.; Gava, R.; Hiramoto, R.M.; de Almeida, M.E.; da Silva, A.J.; Cutolo, A.A.; Menz, I. Performance of a real time PCR for leishmaniasis diagnosis using a L. (L.) infantum hypothetical protein as target in canine samples. Exp. Parasitol. 2015, 157, 156–162. [Google Scholar] [CrossRef]
- Diotallevi, A.; Buffi, G.; Ceccarelli, M.; Neitzke-Abreu, H.C.; Gnutzmann, L.V.; da Costa Lima Junior, M.S.; Di Domenico, A.; De Santi, M.; Magnani, M.; Galluzzi, L. Data on the differentiation among Leishmania (Viannia) spp., Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis in Brazilian clinical samples using real-time PCR. Data Br. 2020, 28, 104914. [Google Scholar] [CrossRef] [PubMed]
- Ejazi, S.A.; Choudhury, S.T.; Bhattacharyya, A.; Kamran, M.; Pandey, K.; Das, V.N.R.; Das, P.; da Silva, F.O.; Costa, D.L.; Costa, C.H.N.; et al. Development and clinical evaluation of serum and urine-based lateral flow tests for diagnosis of human visceral leishmaniasis. Microorganisms 2021, 9, 1369. [Google Scholar] [CrossRef] [PubMed]
- Pattabhi, S.; Whittle, J.; Mohamath, R.; El-Safi, S.; Moulton, G.G.; Guderian, J.A.; Colombara, D.; Abdoon, A.O.; Mukhtar, M.M.; Mondal, D.; et al. Design, development and evaluation of rK28-based point-of-care tests for improving rapid diagnosis of visceral leishmaniasis. PLoS Negl. Trop. Dis. 2010, 4, e822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, G.; Castillo, A.; Ayala, M.S.; Flórez, C.; Cantillo-Barraza, O.; Ramirez, J.D. Evaluation of four rapid diagnostic tests for canine and human visceral Leishmaniasis in Colombia. BMC Infect. Dis. 2019, 19, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, T.H.S.; Faria, A.R.; Leite, H.M.; da Silveira, J.A.G.; Carneiro, C.M.; Andrade, H.M. Chemiluminescent ELISA with multi-epitope proteins to improve the diagnosis of canine visceral leishmaniasis. Vet. J. 2019, 253, 105387. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.D.S.F.D.; Silva, V.L.; Labarthe, N. Evaluation of DPP® and SNAP® rapid tests for diagnosis of Leishmania infantum canine infections. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, L.; de Moura, L.D.; Mateus, N.L.F.; de Moraes, M.H.; do Nascimento, L.F.M.; de Jesus Melo, N.; Taketa, L.B.; Catecati, T.; Huete, S.G.; Penichet, K.; et al. Improving the serodiagnosis of canine Leishmania infantum infection in geographical areas of Brazil with different disease prevalence. Parasite Epidemiol. Control 2020, 8, e00126. [Google Scholar] [CrossRef]
- Bray, R. Immunodiagnosis of leishmaniasis. In Leishmaniasis; Chang, K.P., Bray, B.R., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1985; pp. 177–181. [Google Scholar]
- De Colmenares, M.; Portus, M.; Riera, C.; Gallego, M.; Aisa, M.J.; Torras, S.; Munoz, C. Short report: Detection of 72-75-kD and 123-kD fractions of Leishmania antigen in urine of patients with visceral leishmaniasis. Am. J. Trop. Med. Hyg. 1995, 52, 427–428. [Google Scholar] [CrossRef] [Green Version]
- Lévêque, M.F.; Battery, E.; Delaunay, P.; Lmimouni, B.E.; Aoun, K.; L’ollivier, C.; Bastien, P.; Mary, C.; Pomares, C.; Fillaux, J.; et al. Evaluation of six commercial kits for the serological diagnosis of mediterranean visceral leishmaniasis. PLoS Negl. Trop. Dis. 2020, 14, e0008139. [Google Scholar] [CrossRef] [Green Version]
- De Brito, R.C.F.; Aguiar-Soares, R.D.D.O.; Cardoso, J.M.D.O.; Coura-Vital, W.; Roatt, B.M.; Reis, A.B. Recent advances and new strategies in Leishmaniasis diagnosis. Appl. Microbiol. Biotechnol. 2020, 104, 8105–8116. [Google Scholar] [CrossRef]
- Scalone, A.; De Luna, R.; Oliva, G.; Baldi, L.; Satta, G.; Vesco, G.; Mignone, W.; Turilli, C.; Mondesire, R.R.; Simpson, D.; et al. Evaluation of the Leishmania recombinant K39 antigen as a diagnostic marker for canine leishmaniasis and validation of a standardized enzyme-linked immunosorbent assay. Vet. Parasitol. 2001, 104, 275–285. [Google Scholar] [CrossRef]
- Souto, D.E.P.; Silva, J.V.; Martins, H.R.; Reis, A.B.; Luz, R.C.S.; Kubota, L.T.; Damos, F.S. Development of a label-free immunosensor based on surface plasmon resonance technique for the detection of anti-Leishmania infantum antibodies in canine serum. Biosens. Bioelectron. 2013, 46, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mettler, M.; Grimm, F.; Capelli, G.; Camp, H.; Deplazes, P. Evaluation of enzyme-linked immunosorbent assays, an immunofluorescent- antibody test, and two rapid tests (immunochromatographic-dipstick and gel tests) for serological diagnosis of symptomatic and asymptomatic Leishmania infections in dogs. J. Clin. Microbiol. 2005, 43, 5515–5519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, E.R.; Gomez, M.A.; Scheske, L.; Rios, R.; Marquez, R.; Cossio, A.; Albertini, A.; Schallig, H.; Saravia, N.G. Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling coupled to qPCR. Parasitology 2014, 141, 1891–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, C.M.; Cesetti, M.V.; De Paula, N.A.; Vernal, S.; Gupta, G.; Sampaio, R.N.R.; Roselino, A.M. Field validation of SYBR Green- and TaqMan-based real-time PCR using biopsy and swab samples to Diagnose American Tegumentary Leishmaniasis in an Area Where Leishmania (Viannia) braziliensis is endemic. J. Clin. Microbiol. 2017, 55, 526–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhoundi, M.; Downing, T.; Votýpka, J.; Kuhls, K.; Lukeš, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; et al. Leishmania infections: Molecular targets and diagnosis. Mol. Aspects Med. 2017, 57, 1–29. [Google Scholar] [CrossRef]
- Lachaud, L.; Fernández-Arévalo, A.; Norman, A.C.; Lami, P.; Nabet, C.; Donnadieu, J.L.; Piarroux, M.; Djenad, F.; Cassagne, C.; Ravel, C.; et al. Identification of Leishmania by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry using a free web-based application and a dedicated mass-spectral library. J. Clin. Microbiol. 2017, 55, 2924–2933. [Google Scholar] [CrossRef]
- Aparecida de Carvalho, C.; Mitsuyoshi Hiramoto, R.; Regina Meireles, L.; Franco de Andrade Júnior, H. Serum antibodies blocked by glycan antigens in canine visceral leishmaniasis serology are mostly IgA immune complexes. Parasitology 2021, 148, 1509–1515. [Google Scholar] [CrossRef]
- Farahmand, M.; Khalaj, V.; Mohebali, M.; Khalili, G.; Naderi, S.; Ghaffarinejad, P.; Nahrevanian, H. Comparison of recombinant A2-ELISA with rKE16 dipstick and direct agglutination tests for diagnosis of visceral leishmaniasis in dogs in Northwestern Iran. Rev. Soc. Bras. Med. Trop. 2015, 48, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Olías-Molero, A.I.; Corral, M.J.; Jiménez-Antón, M.D.; Alunda, J.M. Early antibody response and clinical outcome in experimental canine leishmaniasis. Sci. Rep. 2019, 9, 18606. [Google Scholar] [CrossRef] [Green Version]
- Manzillo, V.F.; Restucci, B.; Pagano, A.; Gradoni, L.; Oliva, G. Pathological changes in the bone marrow of dogs with leishmaniosis. Vet. Rec. 2006, 158, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.R.A.; de Mendonça, I.L.; do Bonfim, J.M.; Rodrigues, J.A.; Werneck, G.L.; Costa, C.H.N. Canine visceral leishmaniasis in Teresina, Brazil: Relationship between clinical features and infectivity for sand flies. Acta Trop. 2011, 117, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Vianna, G. Comunicação à Sessão de 24 de abril de 1912 da Sociedade Brasileira de Dermatologia. Arch. Bras. Med. 1912, 1, 36–38. [Google Scholar]
- Herman, J.D.; Gallalee, J.V.; Best, J.M. Sodium stibogluconate (pentostam) inhibition of glucose catabolism via the glycolytic pathway, and fatty acid β-oxidation in leishmania mexicana amastigotes. Biochem. Pharmacol. 1987, 36, 197–201. [Google Scholar] [CrossRef]
- Berman, J.D.; Waddel, D.; Hanson, B.D. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. Antimicrob. Agents Chemother. 1985, 27, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Sudhandiran, G.; Shaha, C. Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J. Biol. Chem. 2003, 278, 25120–25132. [Google Scholar] [CrossRef] [Green Version]
- Denton, H.; McGregor, J.C.; Coombs, G.H. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem. J. 2004, 381, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Li, F.; Ding, K.; Sun, H. Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. J. Biol. Inorg. Chem. 2003, 8, 689–697. [Google Scholar] [CrossRef]
- Dos Santos Ferreira, C.; Silveira Martins, P.; Demicheli, C.; Brochu, C.; Ouellette, M.; Frézard, F. Thiol-induced reduction of antimony(V) into antimony(III): A comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. BioMetals 2003, 16, 441–446. [Google Scholar] [CrossRef]
- Singh, K.; Garg, G.; Ali, V. Current therapeutics, their problems and thiol metabolism as potential drug targets in leishmaniasis. Curr. Drug Metab. 2016, 17, 897–919. [Google Scholar] [CrossRef]
- Vásquez, L.; Scorza Dagert, J.V.; Scorza, J.V.; Vicuña-Fernández, N.; de Peña, Y.P.; López, S.; Bendezú, H.; Rojas, E.; Vásquez, L.; Pérez, B. Pharmacokinetics of experimental pentavalent antimony after intramuscular administration in adult volunteers. Curr. Ther. Res.-Clin. Exp. 2006, 67, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kip, A.E.; Schellens, J.H.M.; Beijnen, J.H.; Dorlo, T.P.C. Clinical pharmacokinetics of systemically administered antileishmanial drugs. Clin. Pharmacokinet. 2017, 57, 151–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaghloul, I.Y.; Al-Jasser, M. Effect of renal impairment on the pharmacokinetics of antimony in hamsters. Ann. Trop. Med. Parasitol. 2004, 98, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Coukell, A.J.; Brogden, R.N. Liposomal amphotericin B: Therapeutic use in the management of fungal infections and visceral leishmaniasis. Drugs 1998, 55, 585–612. [Google Scholar] [CrossRef]
- Wortmann, G.; Zapor, M.; Ressner, R.; Fraser, S.; Hartzell, J.; Pierson, J.; Weintrob, A.; Magill, A. Lipsosomal amphotericin B for treatment of cutaneous leishmaniasis. Am. J. Trop. Med. Hyg. 2010, 83, 1028–1033. [Google Scholar] [CrossRef] [Green Version]
- Beach, D.H.; Goad, L.J.; Holz, G.G. Effects of antimycotic azoles on growth and sterol biosynthesis of Leishmania promastigotes. Mol. Biochem. Parasitol. 1988, 31, 149–162. [Google Scholar] [CrossRef]
- Brajtburg, J.; Powderly, W.G.; Kobayashi, G.S.; Medoff, G. Amphotericin B: Current understanding of mechanisms of action. Antimicrob. Agents Chemother. 1990, 34, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Lamy-Freund, M.T.; Ferreira, V.F.N.; Schreier, S. Mechanism of inactivation of the polyene antibiotic amphotericin B evidence for radical formation in the process of autooxidation. J. Antibiot. 1985, 38, 753–757. [Google Scholar] [CrossRef]
- Roatt, B.M.; de Oliveira Cardoso, J.M.; De Brito, R.C.F.; Coura-Vital, W.; de Oliveira Aguiar-Soares, R.D.; Reis, A.B. Recent advances and new strategies on leishmaniasis treatment. Appl. Microbiol. Biotechnol. 2020, 104, 8965–8977. [Google Scholar] [CrossRef]
- Sundar, S.; Jha, T.K.; Thakur, C.P.; Mishra, M.; Singh, V.P.; Buffels, R. Single-dose liposomal amphotericin B in the treatment of visceral leishmaniasis in India: A multicenter study. Clin. Infect. Dis. 2003, 37, 800–804. [Google Scholar] [CrossRef]
- Bekersky, I.; Fielding, R.M.; Dressler, D.E.; Lee, J.W.; Buell, D.N.; Walsh, T.J. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob. Agents Chemother. 2002, 46, 828–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamiru, A.; Tigabu, B.; Yifru, S.; Diro, E.; Hailu, A. Safety and efficacy of liposomal amphotericin B for treatment of complicated visceral leishmaniasis in patients without HIV, North-West Ethiopia. BMC Infect. Dis. 2016, 16, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, D.; Perveen, S.; Sharma, R.; Singh, K. Advancement in leishmaniasis diagnosis and therapeutics: An update. Eur. J. Pharmacol. 2021, 910, 174436. [Google Scholar] [CrossRef]
- Palić, S.; Beijnen, J.H.; Dorlo, T.P.C. An update on the clinical pharmacology of miltefosine in the treatment of leishmaniasis. Int. J. Antimicrob. Agents 2021, 59, 106459. [Google Scholar] [CrossRef] [PubMed]
- Croft, S.L.; Engel, J. Miltefosine—Discovery of the antileishmanial activity of phospholipid derivatives. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, S4–S8. [Google Scholar] [CrossRef]
- Verma, N.K.; Dey, C.S. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob. Agents Chemother. 2006, 100, S4–S8. [Google Scholar] [CrossRef] [Green Version]
- Sundar, S.; Singh, A.; Rai, M.; Prajapati, V.K.; Singh, A.K.; Ostyn, B.; Boelaert, M.; Dujardin, J.C.; Chakravarty, J. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin. Infect. Dis. 2012, 55, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Dorlo, T.P.C.; Rijal, S.; Ostyn, B.; De Vries, P.J.; Singh, R.; Bhattarai, N.; Uranw, S.; Dujardin, J.C.; Boelaert, M.; Beijnen, J.H.; et al. Failure of miltefosine in visceral leishmaniasis is associated with low drug exposure. J. Infect. Dis. 2014, 210, 146–153. [Google Scholar] [CrossRef]
- van Griensven, J.; Balasegaram, M.; Meheus, F.; Alvar, J.; Lynen, L.; Boelaert, M. Combination therapy for visceral leishmaniasis. Lancet Infect. Dis. 2010, 10, 184–194. [Google Scholar] [CrossRef]
- Koutinas, A.F.; Saridomichelakis, M.N.; Mylonakis, M.E.; Leontides, L.; Polizopoulou, Z.; Billinis, C.; Argyriadis, D.; Diakou, N.; Papadopoulos, O. A randomised, blinded, placebo-controlled clinical trial with allopurinol in canine leishmaniosis. Vet. Parasitol. 2001, 98, 247–261. [Google Scholar] [CrossRef]
- Nelson, D.J.; LaFon, S.W.; Tuttle, J.V.; Miller, W.H.; Miller, R.L.; Krenitsky, T.A.; Elion, G.B.; Berens, R.L.; Marr, J.J. Allopurinol ribonucleoside as an antileishmanial agent. Biological effects, metabolism, and enzymatic phosphorylation. J. Biol. Chem. 1979, 254, 11544–11549. [Google Scholar] [CrossRef]
- Marr, J.J. Purine analogs as chemotherapeutic agents in leishmaniasis and American trypanosomiasis. J. Lab. Clin. Med. 1991, 118, 111–119. [Google Scholar] [PubMed]
- Shapiro, T.A.; Were, J.B.O.; Danso, K.; Nelson, D.J.; Desjardins, R.E.; Pamplin, C.L. Pharmacokinetics and metabolism of allopurinol riboside. Clin. Pharmacol. Ther. 1991, 49, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Jhingran, A.; Chawla, B.; Saxena, S.; Barrett, M.P.; Madhubala, R. Paromomycin: Uptake and resistance in Leishmania donovani. Mol. Biochem. Parasitol. 2009, 164, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; De, M.; Ali, N. Combination therapy with paromomycin-associated stearylamine-bearing liposomes cures experimental visceral leishmaniasis through Th1-biased immunomodulation. Antimicrob. Agents Chemother. 2011, 55, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
Assay | Sensitivity | Specificity | Comments | References |
---|---|---|---|---|
Parasitological diagnosis: light microscopy | From 93.1 to 98.7% in splenic aspirate, or 52% or less in lymph node aspirate and peripheral blood smear. | 100% | For the culture, sophisticated laboratories are required and techniques can be risky for the patient. | [30,31,32,38] |
Antigen detection: latex agglutination test (KATEX) | From 68 to 100% in urine; preliminary. Sensitivity estimates of 85.9% (95% CI, 72.3–93.4). | 94.8% (95% confidence intervals (CI), 92.7–96.4) | The major disadvantage: multiple pipetting processes, extensive incubation time and high cost of antigen. The urine-based latex agglutination test detects mostly active patients and quickly turns negative after a successful response. | [32,39] |
Conventional PCR | From 70 to 100%, it depends on the genomic region used and the concentration of DNA in the sample. | 100% | Precise results, high specificity and sensitivity. Uncomplicated. | [5,40] |
Real-time PCR | Sensitivity 95.6% and 100% in dog (bone marrow samples) and human (peripheral blood and bone marrow) samples. | 100% | High performance; lack of standardization; various protocols can be performed. | [41,42] |
Immunochromatographic tests (IC) | From 83.4 to 95.8% | 90–100% | No need for specialized devices. Small quantities of patient blood samples (from the fingertip). | [33,43,44,45] |
ELISA test | From 65.3% and 97.1%, depending on the antigen used. | 54.1–99.9% | A sensitive serodiagnosis method of VL that depends on the antigen used. | [46,47,48] |
Indirect immunofluorescence assay (IFA) | 80–100% | 90–100% | Main limitations: Cross-reaction with other trypanosomatids and the low sensitivity in detecting asymptomatic patients. | [45,46,48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daraban Bocaneti, F.; Ivanescu, L.M.; Miron, L.; Tanase, O.I.; Dascalu, M.A. An Overview on Leishmaniasis in Romania: Diagnosis and Therapeutics. Trop. Med. Infect. Dis. 2022, 7, 334. https://doi.org/10.3390/tropicalmed7110334
Daraban Bocaneti F, Ivanescu LM, Miron L, Tanase OI, Dascalu MA. An Overview on Leishmaniasis in Romania: Diagnosis and Therapeutics. Tropical Medicine and Infectious Disease. 2022; 7(11):334. https://doi.org/10.3390/tropicalmed7110334
Chicago/Turabian StyleDaraban Bocaneti, Florentina, Larisa Maria Ivanescu, Liviu Miron, Oana Irina Tanase, and Mihaela Anca Dascalu. 2022. "An Overview on Leishmaniasis in Romania: Diagnosis and Therapeutics" Tropical Medicine and Infectious Disease 7, no. 11: 334. https://doi.org/10.3390/tropicalmed7110334
APA StyleDaraban Bocaneti, F., Ivanescu, L. M., Miron, L., Tanase, O. I., & Dascalu, M. A. (2022). An Overview on Leishmaniasis in Romania: Diagnosis and Therapeutics. Tropical Medicine and Infectious Disease, 7(11), 334. https://doi.org/10.3390/tropicalmed7110334